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We study the norming points and norming functionals of symmetric operators on Lp

spaces for p = 2m or p = 2m/(2m− 1). We prove some general result relating uniqueness
of minimal projection to the set of norming functionals. As a main application, we obtain
that the Fourier projection onto span[1,sinx, cosx] is a unique minimal projection in Lp.
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1. Introduction

This paper had been motivated by the question of uniqueness of minimal projections in
Lp spaces. As an example, let Lp(−π,π) be the Banach space of all 2π-periodic functions
f (t) such that

‖ f ‖pp =
∫
| f |pdμ <∞, (1.1)

where 1≤ p ≤∞ and μ is normalized Lebesgue measure on (−π,π). Let V be the space of
trigonometric polynomials of degree n and let P be the Fourier projection from Lp(−π,π)
onto V . It is well known (see [2, 3, 16]) that P is a minimal projection, that is, P has the
least norm among all projections from Lp(−π,π) onto V . For p = 1,2 and p =∞, it was
proved that P is a unique projection that has this property (see [4, 7]). For the other
values of p, the uniqueness of the minimal projection is a wide open question.

More generally, let V be a complemented subspace of Lp(μ). Define

λ
(
V ,Lp(μ)

)= inf
{‖P‖ : P is a projection from Lp(−π,π) onto V

}
. (1.2)

A projection P from Lp(−π,π) onto V is called minimal if ‖P‖ = λ(V ,Lp(μ)). The study
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of minimal projections have been instigated by Cheney and Price and continued by many
authors (see [2, 3, 5, 8, 10–13, 15, 16]).

Yet, as of today the authors of this article do not know a single example of a subspace
V ⊂ Lp(μ) with 1 < p <∞ for which the minimal projection is not unique! There are a few
(very few) instances for which the uniqueness of the minimal projection had been verified
(see [1, 6, 9, 14, 16–18, 20]). As an application of the general technique developed in this
paper we will add a few bits and pieces to the list of examples of uniqueness of minimal
projections. In particular we will prove that the minimal projection from Lp(−π,π) onto
span{1,sin t, cos t} is unique.

It was clear from the very beginning (see [14, 18, 20]) that the understanding of mini-
mal projections depends strongly on our knowledge of norming points; that is, the func-
tions f ∈ Lp(μ) such that ‖P f ‖ = ‖P‖‖ f ‖. By predicting the norming points of a min-
imal projection, one can find the minimal projections itself and forecast its properties.
The spaces L1(μ) have few extreme points and thus have few candidates for the norming
points. This is one of the reasons for the successful studies of the minimal projections in
L1(μ). The space Lp(μ) on the other hand is a very different story. Every point of the unite
ball of Lp(μ) is an extreme point. Even if the operator P is given in advance, the norm of
the operator P : Lp(μ)→ Lp(μ) as well as its norming points are hard to come by. Readers,
sceptical of our last statement are invited to find the norm of a nontrivial 3× 3 matrix as
an operator on l3p for 1 < p <∞ and p �= 2.

In the next section, we will develop a convenient relationship between the symmetric
operators on Lp(μ) and its norming points. In the last section we will apply these rela-
tionships to investigate the uniqueness of minimal projections. We will use the rest of this
section to establish some notations.

The symbol Lp(μ) will always denote the real Banach space with an arbitrary positive
Borel measure μ. The index p, throughout this paper, will be of the form

p = 2m or p = 2m
2m− 1

with m∈N. (1.3)

The dual space to Lp(μ) is identified with Lq(μ) with 1/p+ 1/q = 1. For ( f ,g)∈ Lp(μ)×
Lq(μ), the pairing ( f ,g)→ ∫

f gdμ defines the duality.

Definition 1.1. For an operator P from a Banach space X onto its subspace Y , define the
set of norming points as

N(P) := {x ∈ X : ‖Px‖ = ‖P‖‖x‖, x �= 0
}

;

N1(P)= {x ∈N(P); ‖x‖ = 1
} (1.4)

and norming functionals

NF(P) := { f ∈ X∗ : ‖ f ◦P‖ = ‖P‖‖ f ‖, f �= 0
}

;

NF1(P)= { f ∈NF(P); ‖ f ‖ = 1
}
.

(1.5)
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It is well known (see [16]) that if P is compact, then NF(P) �= ∅ if we additionally know
that X is reflexive then also N(P) �= ∅ (without reflexivity, the last statement is not true—
Fourier projection �(π,π)→ Tn does not have a norming point). For x ∈ X , we let

N(x) := { f ∈ X∗ : ‖ f x‖ = ‖ f ‖‖x‖, f �= 0
}

;

N1(x)= { f ∈N(P); ‖ f ‖ = 1
}
.

(1.6)

We also define the sets of norming pairs

E(P) := {( f ,x)∈ X∗ ×X : f (Px)= ‖P‖‖x‖‖ f ‖, ‖x‖‖ f ‖ �= 0
}

,

E1(P) := {( f ,x)∈ E(P) : ‖x‖ = ‖ f ‖ = 1
}
.

(1.7)

The sets of norming pairs had been also termed extremal pairs by Chalmers and Met-
calf (see [2, 3]). The Holder inequality establishes an easy relation between norming
points and norming pairs. This relationship is especially transparent in cases p = 2m/
(2m− 1) or p = 2m for some integer m. From now on, we will only deal with these values
for p. To formalize it, we avail ourself of Holder functionals.

Definition 1.2. Let f be a nonzero function in Lp. Define

Hp( f )= ( f )p−1∥∥( f )p−1
∥∥
q

∈ Lq. (1.8)

Observe that Hp : Lp\{0} → Lq is a nonlinear (continuous) mapping. Here are a few
simple properties of this functional.

Proposition 1.3. Let p = 2m/(2m− 1) or p = 2m for some integer m. Then
(1) ‖Hp( f )‖q = 1,
(2)

∫
f Hp( f )dμ= ‖ f ‖p,

(3) Hp(λ f )= sign(λ)Hp( f ),
(4) g ∈N( f ) if and only if f ∈N(g),
(5) if 0 �= f ∈ Lp, then g ∈N( f ) if and only if g =Hp( f ).

2. Orthogonal projections onto subspaces of Lp

Let V be a finite-dimensional subspace of Lp ∩ L2. By the orthogonal projection from Lp

onto V we mean an orthogonal projection P from L2 onto V considered as the map-
ping on Lp. In the above settings, P∗ is an orthogonal projection in Lq with the range V
(regarded as a subspace of Lq). The following proposition is obvious.

Proposition 2.1. Let V be a finite-dimensional subspace of Lp and let P be a projection
from Lp onto V . Regard P as an operator from Lp to Lp. Then P∗ is a projection regarded as
an operator from Lq to Lq. There exists

‖P‖Lp→Lp =
∥∥P∗∥∥Lq→Lq

. (2.1)



4 Norming points of orthogonal projections

Furthermore, the following are equivalent:
(1) 0 �= (g, f )∈ E∗(P),
(2) 0 �= ( f ,g)∈ E∗(P∗),
(3) g ∈N∗(P f ) and f ∈N∗(P),
(4) f ∈N∗(P∗g) and g ∈N∗(P∗),

where N∗ (resp., E∗) stands for either N or N1 (resp., E or E1).

Keeping in mind the form of the Holder functional Hp, we obtain the following theo-
rem.

Theorem 2.2. Let p = 2m/(2m− 1) or p = 2m and let P be a projection from Lp onto V .
Suppose that f �= 0. Then

f ∈N(P) iff
(‖P‖)p f p−1 = P∗

(
(P f )p−1). (2.2)

In particular if p = 2m,

f ∈N(P) iff
(‖P‖)2m/(2m−1)

f = P∗
(
(P f )2m−1)1/(2m−1)

, (2.3)

and if p = 2m/(2m− 1),

f ∈N(P) iff
(‖P‖)2m

f = P∗
(
(P f )1/(2m−1))2m−1

. (2.4)

Proof. Without loss, we can assume that f ∈N1(P). Take g ∈ Lq such that gP f = ‖P‖.
So g ∈ N1(P f ) and as a result from Proposition 1.3 we have g = Hp(P f ). Therefore
(Hp(P f ), f ) ∈ E1(P). Using Proposition 2.1, we have ( f ,Hp(P f )) ∈ E1(P∗). This im-
plies that

‖P‖ = ∥∥P∗∥∥= ∥∥P∗(Hp(P f )
)∥∥

q =
∥∥∥∥∥P∗

(
(P f )p−1∥∥(P f )p−1

∥∥
q

)∥∥∥∥∥
q

= P∗
(
(P f )p−1

)
∥∥(P f )p−1

∥∥
q

=
∥∥P∗((P f )p−1

)∥∥
q(‖P f ‖p

)p/q =
∥∥P∗((P f )p−1

)∥∥
q

‖P‖p/q ,

(2.5)

hence

∥∥P∗((P f )p−1)∥∥
q =

(‖P‖)p, (2.6)

f ∈N1
(
P∗
(
Hp(P f )

))
. (2.7)

Using Proposition 1.3, the second equality (2.7) gives us

f =Hq
(
P∗
(
Hp(P f )

))
. (2.8)
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Now applying (2.6) to (2.8), we obtain

f =Hq
(
P∗
(
Hp(P f )

))=Hq

(
P∗
(

(P f )p−1∥∥(P f )p−1
∥∥
q

))

=Hq

(
P∗
(
(P f )p−1

)
∥∥(P f )p−1

∥∥
q

)
=Hq

(
P∗
(
(P f )p−1))

=
(
P∗
(
(P f )p−1

))q−1

∥∥(P∗((P f )p−1
))q−1∥∥

p

=
(
P∗
(
(P f )p−1

))q−1

(∥∥P∗((P f )p−1
)∥∥

q

)q/p =
(
P∗
(
(P f )p−1

))q−1

(‖P‖)q .

(2.9)

Multiplying and raising both sides to the power 1/(q− 1)= p− 1 gives (2.2).
Assume now that f fulfills (2.2). Without loss, we may assume that ‖ f ‖p = 1 and

compute

1=
∫
f p dμ=

∫
f f p−1dμ=

∫
f P∗

(
(P f )p−1

)
(‖P‖)p dμ. (2.10)

Hence

f
(
P∗
(
(P f )p−1))= (‖P‖)p. (2.11)

On the other hand,

f
(
P∗
(
(P f )p−1))≤ ‖ f ‖p ·∥∥P∗∥∥ ·∥∥(P f )p−1

∥∥
q = ‖P‖ ·

(‖P f ‖p
)p−1

. (2.12)

If we combine (2.11) and (2.12), then we get

‖P‖ ≤ ‖P f ‖p, (2.13)

hence f ∈N1(P). �

Even though Theorem 2.2 gives us an if and only if condition, it cannot be applied
directly to find a norming functionals. In order to check the equality in condition (2.2)
one has to know ‖P‖. We may drop ‖P‖ and formulate Theorem 2.2 as follows.

Corollary 2.3. Let p = 2m/(2m− 1) or p = 2m and let P be a projection from Lp onto V .
Suppose that f �= 0 and f ∈N(P). Then there is a constant M such that

f p−1 =MP∗
(
(P f )p−1). (2.14)

In particular if p = 2m,

f =MP∗
(
(P f )2m−1)1/(2m−1)

, (2.15)

and if p = 2m/(2m− 1),

f =MP∗
(
(P f )1/(2m−1))2m−1

. (2.16)
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If we now investigate (2.14) then for M = 0, we obtain f = 0 and for M = (‖P‖)−p ≤ 1,
we obtain all norming points for P. The problem is there are many M for which there is a
solution to (2.14). Consider the Fourier projection P : L2m/(2m−1) → span[1,cos t, sin t]. In
Section 3, it is proved that a function f = (cos t)2m−1 is not a norming point for P, yet it
satisfies (2.16) for some M < 1. On the other hand in general, Corollary 2.3 brings some
extremely useful information on norming points.

Theorem 2.4. Let P be a projection from Lp onto V . Define

Vα := { f α : f ∈V
}
. (2.17)

If p = 2m/(2m− 1) for some integer m, then

N(P)⊂V 2m−1. (2.18)

If p = 2m for some integer m, then

N(P)⊂V 1/(2m−1). (2.19)

The proof follows immediately from Corollary 2.3.

Corollary 2.5. Assuming in the last theorem that m= 1, an obvious result that the orthog-
onal projection P : L2 → L2 has a norming point in V is obtained and being a projection, it
follows that ‖P‖ = 1.

Corollary 2.6. Let Tn = span[1,coskt, sinkt]nk=1. Let Q be an orthogonal projection from
Lp onto Tn. If p = 2m/(2m− 1) for some integer m, then

‖Q‖Lp→Lp = ‖Q‖Tn(2m−1)→Tn . (2.20)

In the language of projectional constants, we can reformulate this result as

λ
(
Tn,Lp

)= λ
(
Tn,T(2m−1)n

)
. (2.21)

In terms of norming points, we conclude that there exists a trigonometric polynomial g
of degree (2m− 1)n which is a norming point for Q. In stark contrast to the last corollary,
we have the following corollary.

Corollary 2.7. Let p = 2m > 2 and let P be the orthogonal projection from Lp onto Tn.
Then for every trigonometric polynomial (of any degree) f ,

‖P f ‖ < ‖P‖‖ f ‖. (2.22)

Proof. Let us assume that there is a trigonometric polynomial of the exact degree N such
that f ∈N1(P). Since ‖P‖ > 1 we have N > n. According to (2.15) we have f 2m−1 ∈ V =
Tn. But f 2m−1 is a trigonometric polynomial of the exact degree N(2m− 1). But N(2m−
1) > n which gives a contradiction. �
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From the above, we may conclude that if p = 2m, then any norming point for P (an
orthogonal projection onto polynomials Tn) is not a polynomial.

Remark 2.8. While the norming points of P are not trigonometric polynomials, the pre-
vious corollary shows that the norming functionals g ∈N1(P f ) with f ∈N1(P) are pol-
ynomials of exact degree (2m− 1)n. Hence, whether p = 2m or p = 2m/(2m− 1), at
least one component of the norming pair (g, f ) ∈ E(P) is a polynomial of exact degree
(2m− 1)n.

We finish this section with one more application of this technique to the best approx-
imation problem in Lp.

Theorem 2.9. Let p = 2m/(2m− 1) and let Tc
n = Im(Id−P). That is, Tc

n is the closure in
Lp of trigonometric polynomials with frequencies larger than n. Then for every f ∈ Tn, the
element (Id−P)( f 2m−1) is the unique best approximation to P( f 2m−1) from Tc

n.

Proof. Consider

Hp
(
f 2m−1)=

(
f 2m−1

)p−1

∥∥( f )p−1
∥∥
q

= 1∥∥( f )p−1
∥∥
q

f . (2.23)

Since f ∈ Tn, we conclude that

Hp
(
f 2m−1)⊥Tc

n. (2.24)

Also, by the definition of the Holder functional,

∥∥P f 2m−1− (I −P) f 2m−1
∥∥
p =

∥∥ f 2m−1
∥∥
p =Hp

(
f 2m−1)( f 2m−1)

=Hp
(
f 2m−1)(P f 2m−1− (I −P) f 2m−1). (2.25)

Properties (2.24) and (2.25) combined with the well-known criterium (see [19]) for the
best approximation imply the conclusion of the theorem. �

The above theorem is very useful obtaining many examples of best approximation in
Lp—what we need is to raise some elements to the appropriate power. Here is a simple
illustration of the usefulness of this theorem.

Example 2.10. Let f = (1 + cosx+ sinx). Then f 3 = (1 + cosx+ sinx)3 = 4 + (9/2)cosx+
(9/2)sinx+ 3sin2x− (1/2)cos3x+ (1/2)sin3x. Hence

(
3sin2x− 1

2
cos3x+

1
2

sin3x
)

(2.26)

is the best approximation to

(
4 +

9
2

cosx+
9
2

sinx
)

(2.27)

from the space Tc
1 (trigonometric polynomials with frequencies larger 1) in the space L4/3.
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3. Applications

We start with general theorem which will connect uniqueness of a given projection to its
norming points. First we state the following theorem.

Theorem 3.1 (Rudin) [21, III.B.13]. Let X be a Banach space and V a complemented
subspace. Let G be a compact group which acts as a group of linear operators on X such that

(1) Tg(x) is a continuous function of g, for every x ∈ X ,
(2) Tg(V)⊂V , for all g ∈G,
(3) Tg are isometries, for all g ∈G.

Furthermore, assume that there exists only one projection P : X → V which commutes with
G. Then this projection is minimal.

Once we know that there is only one projection P commuting with G, the following
can be easily found: fix any projection Q from X onto V , then this projection P equals

P(x)=
∫
G
TgQTg−1 (x)dg, for x ∈ X. (3.1)

Now we are ready to prove the following theorem.

Theorem 3.2. Let V be a complimented subspace of Lp(μ) (1 < p <∞) and assume there
is a group G acting on Lp(μ) as in Theorem 3.1. Let P : Lp(μ)→ V be a minimal projection
given by (3.1). Assume additionally that the set of norming functionals for P is total on V
(i.e., if v ∈V , and f (v)= 0 for any f ∈NF(P), then v = 0). Then projection P is the unique
minimal projection.

Proof. Assume to the contrary that there is another minimal projection Q. Therefore
‖P‖ = ‖Q‖. We will prove now that

E1(P)⊂ E1(Q). (3.2)

To do this assume to contrary that ‖ f (Qx)‖ < ‖Q‖ = ‖P‖. As in the proof of Theorem 3.1
observe that the function

g �−→ Tg( f )QTg−1(x) (3.3)

is continuous. Therefore in some open neighborhood U of g = 1, we have

∥∥Tg( f )QTg−1(x)
∥∥ < ‖Q‖ = ‖P‖, (3.4)

and by (3.1)

‖P‖ = ∥∥ f (Px)‖ =
∥∥∥∥
∫
G
Tg f QTg−1 (x)dg

∥∥∥∥≤
∫
G

∥∥Tg f QTg−1 (x)
∥∥dg

=
∫
U

∥∥Tg f QTg−1 (x)
∥∥dg +

∫
G\U

∥∥Tg f QTg−1 (x)
∥∥dg

<
∫
U
‖Q‖dg +

∫
G\U

‖Q‖dg = ‖P‖,

(3.5)
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which is a contradiction. Now (3.2) gives us

f (P)(x)= f (Q)(x)= ‖P‖ = ‖Q‖, for any ( f ,x)∈ E1(P). (3.6)

That is

(
P∗ f
‖P‖

)
(x)=

(
Q∗ f
‖Q‖

)
(x)= 1, for any ( f ,x)∈ E1(P). (3.7)

But Lp is a smooth space—an element x can only have one norming functional, therefore

P∗ f =Q∗ f , for any f ∈N1(P). (3.8)

Take any x ∈ Lp(μ), we have Px−Qx ∈V . Now for any f ∈N1(P) using (3.8), we have

f (Px−Qx)= (P∗ f −Q∗ f
)
x = 0, (3.9)

but the set of norming functionals is total on V so Px =Qx, hence P =Q. �

We will prove now that for p = 2m or p = 2m/(2m− 1) orthogonal projection onto
span[1,cos t, sin t] is unique minimal projection. The main trick is based on Corollary 2.3.
For Fourier projection P, we have P∗ = P. It implies that if f is a norming point for P
(for p = 2m/(2m− 1)), then for some constant M <≤ 1 we have

f =M
(
P
(
(P f )1/(2m−1)))2m−1

. (3.10)

Hence any norming point has to be of the form

f = g2m−1, g ∈ span[1,cos t, sin t],

g =MP
((
P
(
g2m−1))1/(2m−1)

)
,

(3.11)

for some constant M. As we will see later, both (3.10) and (3.11) are only necessary condi-
tions, g=cos t and f =(cos t)2m−1 fulfill, respectively, (3.11) and (3.10), yet f =(cos t)2m−1

is not a norming point for a Fourier projection. That is actually the main difficulty in
showing uniqueness of Fourier projection.

Theorem 3.3. Let T1 = span[1,cos t, sin t]. Let P be an orthogonal projection from Lp onto
T1. If p = 2m/(2m− 1) for some integer m> 1, then there is a norming pair (g, f ) for P such
that

f |span[1,cos t,sin t] = a0 + a1 cos t+ a2 sin t,

g|span[1,cos t,sin t] = b0 + b1 cos t+ b2 sin t,
(3.12)

where a0, a1, a2, b0, b1, b2 �= 0.
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Proof. Fourier projection is invariant under the isometries Iθ : f (t) �→ f (t+ θ), (i.e., PIθ =
IθP)—see [2, 3, 16]. This implies

f (t)∈N(P)⇐⇒ f (t+ θ)∈N(P), (3.13)

for any θ. So assume that f is a norming point for P. According to (3.11),

f = (a0 + a1 cos t+ a2 sin t
)2m−1

. (3.14)

Observe that a2
1 + a2

2 > 0 (otherwise ‖P‖ = 1), therefore

f = (a0 + a1 cos t+ a2 sin t
)2m−1

= (a2
1 + a2

2

)(2m−1)/2

⎛
⎝ a0√

a2
1 + a2

2

+
a1√

a2
1 + a2

2

cos t+
a2√

a2
1 + a2

2

sin t

⎞
⎠

2m−1

.
(3.15)

Now there is θ such that cos(θ)= a1/(
√
a2

1 + a2
2) and sin(θ)= a2/(

√
a2

1 + a2
2), and now

f = (a0 + a1 cos t+ a2 sin t
)2m−1

= (a2
1 + a2

2

)(2m−1)/2

⎛
⎝ a0√

a2
1 + a2

2

+ cosθ cos t+ sinθ sin t

⎞
⎠

2m−1

= (a2
1 + a2

2

)(2m−1)/2

⎛
⎝ a0√

a2
1 + a2

2

+ cos(t− θ)

⎞
⎠

2m−1

.

(3.16)

Using (3.13), it follows that in searching for norming points of P, we can restrict ourselves
to the functions of the form

f (t)= (x+ cos t)2m−1. (3.17)

We will prove that P has a norming point of the form (3.17) for some x �= 0. To do this,
we need to prove that the function

T(x)=
∥∥P((x+ cos t)2m−1

)∥∥p
p∥∥(x+ cos t)2m−1

∥∥p
p

=
∫ 2π

0

(
P
(
(x+ cos t)2m−1

))2m/(2m−1)
dt∫ 2π

0 (x+ cos t)2mdt
(3.18)

does not attain its maximum at x = 0. Define (whenever it makes sense)

F(ν)=
∫ 2π

0
(cos t)νdt. (3.19)
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Observe that for any k ∈N,

F(2k)=
∫ 2π

0
(cos t)2kdt = 4

∫ π/2

0
(cos t)2kdt = 2 ·√π ·Γ(1/2 + k)

Γ(1 + k)
(3.20)

and by the symmetry of the cosine graph,

F(2k− 1)=
∫ 2π

0
(cos t)2k−1 = 0, F

(
1

2k− 1

)
=
∫ 2π

0
(cos t)1/2k−1 = 0. (3.21)

What is more, for any k ∈N,

F
(

2k
2k− 1

)
=
∫ 2π

0
(cos t)2k/(2k−1)dt

= 4
∫ π/2

0
(cos t)2k/(2k−1)dt = 2 ·√π ·Γ(1/2 + k/(2k− 1)

)
Γ(1 + k/(2k− 1)

) ,

F
(
− 2k− 2

2k− 1

)
=
∫ 2π

0

(
1

cos t

)(2k−2)/(2k−1)

dt

= 4
∫ π/2

0

(
1

cos t

)(2k−2)/(2k−1)

dt = 2 ·√π ·Γ(1/(4k− 2)
)

Γ
(
k/(2k− 1)

) .

(3.22)

First we need to compute P((x+ cos t)2m−1). Observe that

P
(
(x+ cos t)2m−1)= a0(x) + a1(x)cos t, (3.23)

where

a0(x)= 1
2π

∫ 2π

0
(x+ cos t)2m−1dt,

a1(x)= 1
2π

∫ 2π

0
(x+ cos t)2m−1 cos t dt.

(3.24)

Using Newton formula (x+ cos t)2m−1 =∑2m−1
i=1

(
2m−1

i

)
xi(cos t)2m−1−i and obtain

a0(x)= 1
2π

∫ 2π

0

2m−1∑
i=1

(
2m− 1

i

)
xi(cos t)2m−1−idt

=
2m−1∑
i=1

1
2π

(
2m− 1

i

)
xi
∫ 2π

0
(cos t)2m−1−idt

=
2m−1∑
i=1

1
2π

(
2m− 1

i

)
xiF(2m− 1− i)

=
∑

i−odd

1
2π

(
2m− 1

i

)
xiF(2m− 1− i),

(3.25)
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and similarly

a1(x)= 1
2π

∫ 2π

0

2m−1∑
i=1

(
2m− 1

i

)
xi(cos t)2m−1−i cos t dt

=
2m−1∑
i=1

1
2π

(
2m− 1

i

)
xi
∫ 2π

0
(cos t)2m−1−i cos t dt

=
2m−1∑
i=1

1
2π

(
2m− 1

i

)
xiF(2m− i)

=
∑

i−even

1
2π

(
2m− 1

i

)
xiF(2m− i).

(3.26)

We have T(x)=H(x)/G(x), where

H(x)=
∫ 2π

0

(
P
(
(x+ cos t)2m−1))2m/(2m−1)

dt =
∫ 2π

0

(
a0(x) + a1(x)cos t

)2m/(2m−1)
dt

G(x)=
∫ 2π

0
(x+ cos t)2mdt.

(3.27)

We need to prove that

H(x)
G(x)

>
H(0)
G(0)

, (3.28)

for some small x > 0. Since H(0), G(0) > 0, this is equivalent to showing that the function
q(x) = H(x)G(0)−G(x)H(0) is increasing for some small x > 0. We will prove that by
showing that q′′(0) > 0 (interestingly enough, one may easily show that q′(0)= 0 so q(x)
as well as T(x), has in fact local minimum at zero).

We will compute G(0), G′′(0), H(0), H′′(0) next. To do so, observe that

a0(x)=
(

1
2π

(
2m− 1

1

)
F(2m− 2)

)
x+

(
1

2π

(
2m− 1

3

)
F(2m− 4)

)
x3 + ···

a1(x)=
(

1
2π

F(2m)

)
+

(
1

2π

(
2m− 1

2

)
F(2m− 2)

)
x2 + ··· ,

(3.29)

therefore

a0(0)= 0, (a0)′(0)= 1
2π

(2m− 1)F(2m− 2), (a0)′′(0)= 0,

a1(0)= 1
2π

F(2m), (a1)′(0)= 0, (a1)′′(0)= 1
2π

(2m− 1)(2m− 2)F(2m− 2).

(3.30)
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Now

G(0)=
∫ 2π

0
(cos t)2mdt = F(2m),

G′′(x)=
∫ 2π

0
2m(2m− 1)(x+ cos t)2m−2dt.

(3.31)

Therefore

G′′(0)= 2m(2m− 1)F(2m− 2). (3.32)

Also

H(0)=
∫ 2π

0

(
a0(0) + a1(0)cos t

)2m/(2m−1)
dt

=
∫ 2π

0

(
1

2π
F(2m)cos t

)2m/(2m−1)

dt

=
(

1
2π

)2m/(2m−1)(
F(2m)

)2m/(2m−1)
F
(

2m
2m− 1

)
,

(3.33)

and lastly we will compute H′′(0),

H′′(x)=
(∫ 2π

0

(
a0(x) + a1(x)cos t

)2m/(2m−1)
dt
)′′

(x)

= 2m
(2m− 1)2

∫ 2π

0

(
a0(x) + a1(x)cos t

)−(2m−2)/(2m−1)(
a′0(x) + a′1(x)cos t

)2
dt

+
2m

2m− 1

∫ 2π

0

(
a0(x) + a1(x)cos t

)1/(2m−1)(
a′′0 (x) + a′′1 (x)cos t

)
dt.

(3.34)

As a result,

H′′(0)= 2m
(2m− 1)2

∫ 2π

0

(
1

2π
F(2m)cos t

)−(2m−2)/(2m−1)( 1
2π

(2m− 1)F(2m− 2)
)2

dt

+
2m

2m− 1

∫ 2π

0

(
1

2π
F(2m)cos t

)1/(2m−1)( 1
2π

(2m− 1)(2m− 2)F(2m− 2)cos t
)
dt

= 2m
(2m− 1)2

(
1

2π
F(2m)

)−(2m−2)/(2m−1)( 1
2π

(2m− 1)F(2m− 2)
)2

F
(
− 2m− 2

2m− 1

)

+
2m

2m− 1

(
1

2π
F(2m)

)1/(2m−1) 1
2π

(2m− 1)(2m− 2)F(2m− 2)F
(

2m
2m− 1

)

=
(

1
2π

)2m/(2m−1)

2m
(
F(2m)

)−(2m−2)/(2m−1)
(F(2m− 2)

)2
F
(
− 2m− 2

2m− 1

)

+
(

1
2π

)2m/(2m−1)

2m(2m− 2)
(
F(2m)

)1/(2m−1)
F(2m− 2)F

(
2m

2m− 1

)
.

(3.35)
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Combining what we have computed, we may state that H′′(0)G(0)−G′′(0)H(0) > 0 is
equivalent to

(
1

2π

)2m/(2m−1)

2m
(
F(2m)

)1/(2m−1)(
F(2m− 2)

)2
F
(
− 2m− 2

2m− 1

)

+
(

1
2π

)2m/(2m−1)

2m(2m− 2)
(
F(2m)

)2m/(2m−1)
F(2m− 2)F

(
2m

2m− 1

)

>
(

1
2π

)2m/(2m−1)

2m(2m− 1)
(
F(2m)

)2m/(2m−1)
F(2m− 2)F

(
2m

2m− 1

)
,

(3.36)

which after simplifications turns out to be

F(2m− 2)F
(
− 2m− 2

2m− 1

)
> F(2m)F

(
2m

2m− 1

)
. (3.37)

We may observe that F(2x) > F(2x+ 2) as follows. Since 1 > cos2(t), we have

F(2x)= 4
∫ π/4

0

(
cos(t)

)2x−2
dt > 4

∫ π/4

0

(
cos(t)

)2x−2(
cos(t)

)2
dt = F(2x+ 2). (3.38)

Letting now 2x = 2m− 2, we get F(2m− 2) > F(2m) and letting x =−(2m− 2)/(2m− 1),
we get F(−(2m− 2)/(2m− 1)) > F(2m/(2m− 1)). These two inequalities combined to-
gether gives (3.37).

Therefore, we have just shown that there is a norming point for P of the form

f (t)= (x+ cos t)2m−1, (3.39)

for some x �= 0. Now according to (3.23),

f |span[1,cos t,sin t] = a0(x) + a1(x)cos t, (3.40)

where a0(x), a1(x) are given by (3.25) and (3.26). Observe that

a0(x)= x

(m−1∑
i=1

pix
2i

)
, pi > 0

a1(x)=
m−1∑
i=1

qix
2i, qi > 0,

(3.41)

and since x �= 0 it gives us a0(x) �= 0 and a1(x) �= 0. Let g be the norming functional asso-
ciated with f (i.e., ( f ,g)∈ E1(P)). Using (3.40) for some constant K , we have

P f = K(y + cos t), y �= 0. (3.42)

Moreover g =N(P f ) and using Proposition 1.3 for some constant L, we have

g = L(y + cos t)1/(2m−1). (3.43)
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We may write

g|span[1,cos t,sin t] = b0(y) + b1(y)cos t+ b2(y)sin t, (3.44)

and then we will show that b0(y). To do so, observe that

b0(y)= L
∫ 2

0
πg(t)dt = 2L

∫ π

0
g(t)dt = 2L

∫ π

0
(y + cos t)1/(2m−1)dt. (3.45)

Without loss of generality, we may assume that y > 0. If y ≥ 1, then the function inside
the integral is ≥ 0 and then since y > 0, it follows that b0(y) > 0. If y ∈ (0,1), then there
exists t0 ∈ (0,π/2) such that y = cos(π/2− t0), and we can make some estimations:

∫ π

0
(y + cos t)1/(2m−1)dt =

∫ π/2+t0

0
(y + cos t)1/(2m−1)dt+

∫ π

π/2−t0
(y + cos t)1/(2m−1)dt

=
∫ π/2+t0

0
(y + cos t)1/(2m−1)dt+

∫ π/2−t0

0
(y− cos t)1/(2m−1)dt

=
∫ π/2−t0

0

(
(y + cos t)1/(2m−1)− (y− cos t)1/(2m−1)

)
dt

+
∫ π/2+t0

π/2−t0
(y + cos t)1/(2m−1)dt ≥

∫ π/2+t0

π/2−t0
(y + cos t)1/(2m−1)dt > 0.

(3.46)

This proves that b0(y) �= 0. It is easy to prove that b1(y)2 + b2(y)2 > 0. If not, then Pg = b,
where b is a constant function. But f (Pg)= ‖P‖ in L2m and as a result of Proposition 1.3
for some constant C, we would have f = C(b)2m−1 which implies that ‖P‖ = 1, a contra-
diction. Since we know that in (3.40) a0(x), a1(x) �= 0 and in (3.44) b0(y) �= 0 and one of
b1(y), b2(y) is �= 0, we may apply (3.13) to obtain the result. �

Theorem 3.4. Let T1 = span[1,cos t, sin t]. Let P be an orthogonal projection from Lp onto
T1. If p = 2m for some integer m> 1, then there is a norming pair (g, f ) for P such that

f |span[1,cos t,sin t]= a0 + a1 cos t+ a2 sin t,

g |span[1,cos t,sin t]= b0 + b1 cos t+ b2 sin t,
(3.47)

where a0,a1,a2,b0,b1,b2 �= 0.

The proof is a straightforward consequence of Theorem 3.3 and Proposition 2.1.

Theorem 3.5. Let T1 = span[1,cos t, sin t]. Let P be the orthogonal projection from Lp onto
T1. If p = 2m/(2m− 1) or p = 2m for some integer m > 1, then P is a unique minimal
projection.

Proof. Having Theorems 3.3 and 3.4, we may apply Theorem 3.2 to obtain uniqueness of
the orthogonal projection P. �

Observe that, due to (3.13), Fourier projection always has infinite many norming
points and norming functionals. Therefore, Corollary 2.6 produces us an extremely in-
teresting example.
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Remark 3.6. There is a finite dimensional smooth space X and its subspace V such that
the minimal projection from X onto V has norm greater than one and it has infinitely
many norming points and norming functionals.

The above example shows us the crucial difference between the study of minimal pro-
jections in �p and �1 spaces.
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