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We study the existence of solutions an H-system for a revolution surface without bound-
ary for H depending on the radius f . Under suitable conditions we prove that the ex-
istence of a solution is equivalent to the solvability of a scalar equation N(a) = L/

√
2,

where N : � ⊂ R+ → R is a function depending on H . Moreover, using the method of
upper and lower solutions we prove existence results for some particular examples. In
particular, applying a diagonal argument we prove the existence of unbounded surfaces
with prescribed H .

Copyright © 2006 P. Amster et al. This is an open access article distributed under the Cre-
ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The prescribed mean curvature equation for a vector function X : Ω→R3 is given by the
following nonlinear system of partial differential equations:

�X = 2H(X)Xu∧Xv (u,v)∈Ω. (1.1)

Here Ω⊂R2 is a bounded domain, ∧ denotes the exterior product in R3 and H :R3 →R
is a given function. It is well known that if X is isothermal, namely

∣
∣Xu

∣
∣−∣∣Xv

∣
∣= XuXv = 0 (1.2)

then H is the mean curvature of the surface parameterized by X (see, e.g., [8]). Equation
(1.1) is also known in the literature as an H-system.

The parametric Plateau and Dirichlet problems for (1.1) have been extensively stud-
ied by different authors (see [3–5, 8–10]). Nonparametric and more general quasilinear
equations are considered in [1, 2, 6, 7].
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2 An H-system for a revolution surface without boundary

We will consider the particular case of a revolution surface

X(u,v)= ( f (u)cosv, f (u)sinv,g(u)
)

(1.3)

with f ,g ∈ C2(I)∩C(I) such that f > 0 over the open interval I ⊂R. Then (1.1) reads

f ′′ − f =−2H( f ,g) f g′ in I

g′′ = 2H( f ,g) f f ′ in I ,
(1.4)

where H :R+×R→R is given.
It is easy to see that any solution of (1.4) verifies the equality

( f ′)2 + (g′)2 = f 2 + c. (1.5)

Hence, the isothermal condition (1.2) holds if and only if c = 0.
We will study (1.4) for a compact surface without boundary. Without loss of generality

we may assume that I = (0,L), and hence the problem reads

f ′′ − f =−2H( f ,g) f g′ in I

g′′ = 2H( f ,g) f f ′ in I

f (0)= f (L)= 0, f > 0 in I

g′(0)= g′(L)= 0.

(1.6)

In particular, when H depends only on the radius f , from the equality

g′′ = 2H( f ) f f ′, g′(0)= 0, (1.7)

we easily reduce problem (1.6) to a single equation: indeed, if H̃(t)= ∫ t0 sH(s)ds, it holds
that g′(t)= 2H̃( f (t)), and g′(L)= 2H̃( f (L)). Thus, solving (1.6) is equivalent to obtain
a positive solution of the problem

f ′′ − f =−4H( f ) f H̃( f ) in (0,+∞)

f (0)= f (L)= 0
(1.8)

with H : R+ → R. We remark that if H̃ > 0 then g′ > 0, and if f is a positive solution
of (1.8) the parametrization X given in (1.3) defines a regular revolution surface. For
example, this holds when H is positive.

We will also consider the case L= +∞, namely the problem

f ′′ − f =−4H( f ) f H̃( f ) in I

f (0)= 0, f (+∞)= r,
(1.9)
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where r > 0 is a constant. Note that if f is a positive solution of (1.9) then g′(+∞) =
2H̃(r). Thus, if H̃(r) > 0 it follows that the surface parameterized by X is unbounded in
the direction z→ +∞ of the upper halfspace R2×R+.

The paper is organized as follows. In Section 2 we prove that under suitable conditions
the existence of a positive solution of (1.8) is equivalent to the solvability of the scalar
equation N(a)= L/

√
2, where N is defined by

N(a)=
∫ a

0

dz
√

φ(a)−φ(z)
(1.10)

with

φ(u) := 2H̃2(u)− u2

2
. (1.11)

Moreover, we prove existence and uniqueness of solutions for some particular examples.
In Section 3 we apply the method of upper and lower solutions and a diagonal argu-

ment in order to prove the existence of solutions of problem (1.9).

2. A scalar equation for (1.8)

In this section we study the existence of positive solutions of (1.8). Let us first note that if
φ is defined as in (1.11), the problem may be written as

f ′′ +φ′( f )= 0 in I

f (0)= f (L)= 0
(2.1)

Then we have the following theorem.

Theorem 2.1. Let a∈�, where

�= {a∈R+ : φ(a) > φ(u) for 0 < u < a
}

, (2.2)

and let N be defined by (1.10).
Then (2.1) admits at most one positive solution f with a= ‖ f ‖C([0,1]). Furthermore, (2.1)

admits a positive solution f with a= ‖ f ‖C([0,1]) if and only if N(a)= L/
√

2.

Proof. Let f be a positive solution of (2.1) with a = ‖ f ‖C([0,1]), and fix x0 ∈ (0,L) such
that f (x0)= a. Multiplying the equation by f ′ it follows by integration that

E := ( f ′)2 + 2φ( f )= 2φ(a). (2.3)

Note that if f ′(x) = 0 for some x ∈ (0,L) then φ( f (x)) = φ(a), and hence f (x) = a. We
conclude that x0 is the only critical point of f . Thus,

f ′ =
√

2
(

φ(a)−φ( f )
)

0 < x < x0,

f ′ = −
√

2
(

φ(a)−φ( f )
)

x0 < x < L.

(2.4)
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This implies that

x0− x =
∫ x0

x

f ′
√

2
(

φ(a)−φ( f )
) =

∫ a

f (x)

dz
√

2
(

φ(a)−φ(z)
) for 0 < x ≤ x0,

x− x0 =−
∫ x

x0

f ′
√

2
(

φ(a)−φ( f )
) =

∫ a

f (x)

dz
√

2
(

φ(a)−φ(z)
) for x0 ≤ x < L.

(2.5)

In particular, x0 = L− x0, and then x0 = L/2. Furthermore, for x = 0 we obtain

L

2
=
∫ a

0

dz
√

2
(

φ(a)−φ(z)
) = N(a)√

2
. (2.6)

Conversely, if N(a)= L/
√

2 for some a∈�, define f implicitly by

∫ a

f (x)

dz
√

φ(a)−φ(z)
=√2

(

x− L

2

)

for x ≥ L

2
(2.7)

and extend it by symmetry for x < L/2. It is immediate to verify that f is a positive so-

lution of problem (2.1). Moreover, from the above computations it is clear that if f̃ is a

positive solution with ‖ f̃ ‖C([0,1]) = a, then f̃ = f . �

Remark 2.2. The proof of existence of a solution in the previous theorem holds for any
a∈Dom(N)⊂R+ such that N(a)= L/

√
2.

Remark 2.3. If H is bounded in a neighborhood of 0, then φ′(0+) < 0 and hence 0 �∈�.

Example 2.4. As an application, we may consider H : R+ → R+ given by H(u) = cuσ

for some σ > −2 and c �= 0. In this case H̃(u) = (c/(σ + 2))uσ+2, and φ(u) = (2c2/(σ +
2)2)u2σ+4 − u2/2. For σ > −1 a simple computation shows that � = [α,+∞), with α =
((σ + 2)/2|c|)1/(σ+1). Moreover, N is strictly non-increasing, with

lim
a→α+

N(a)= +∞ lim
a→+∞N(a)= 0. (2.8)

On the other hand, if −2 < σ <−1, it holds that �= (0,α], with α= ((σ + 2)/4c2)1/(2σ+2).
Moreover, N is strictly non-decreasing, with

lim
a→0

N(a)= 0 lim
a→α−

N(a)= +∞. (2.9)

Thus, in both cases it follows that the problem admits a unique solution. The case σ =−1
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corresponds to the well known linear problem − f ′′ = (4c2− 1) f . Here

�=
⎧

⎨

⎩

∅ if 4c2 ≤ 1

R+ if 4c2 > 1.
(2.10)

Moreover, if 4c2 > 1 then

N(a)≡ π
√

2
(

4c2− 1
) , (2.11)

and hence N(a)= L/
√

2 if and only if 4c2− 1= (π/L)2.

3. Upper and lower solutions and unbounded revolution surfaces

In this section we apply the method of upper and lower solutions in order to solve a
nonhomogeneus Dirichlet problem associated to (1.4). In particular, applying a diagonal
argument we prove the existence of solutions of (1.9).

We recall that (α,β) ∈ (C2([0,+∞)))2 is an ordered couple of a lower and an upper
solution of the problem if α≤ β and

α′′ −α≥−4H(α)αH̃(α) in (0,+∞)

α(0)≤ 0, α(+∞)≤ r,

β′′ −β ≤−4H(β)βH̃(β) in (0,+∞)

β(0)≥ 0, β(+∞)≥ r.

(3.1)

For simplicity we will assume that H is continuously differentiable.

Remark 3.1. If f is a solution of (1.9), then f ′′(+∞)= r − 4rH̃(r)H(r). As f (+∞) <∞,
it follows that

4H̃(r)H(r)= 1. (3.2)

In particular, if (3.2) holds we may take β ≡ r as an upper solution.

Theorem 3.2. Let (α,β) be an ordered couple of a lower and an upper solution of (1.9), let
N > 0 and let cN be any constant with α(N)≤ cN ≤ β(N). Then the Dirichlet problem

f ′′ − f =−4H( f ) f H̃( f ) in (0,N)

f (0)= 0, f (N)= cN
(3.3)

admits at least one solution f with α|[0,N] ≤ f ≤ β|[0,N].

Proof. Fix a constant λ≥−1 such that

λ≥−2
(

H̃2)′′(u) (3.4)
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for any u∈R such that

inf
[0,N]

α≤ u≤ sup
[0,N]

β. (3.5)

This choice of λ implies that the function ξ(x) :=−4H(x)xH̃(x)− λx is non-increasing.
We will construct a sequence { fn} given recursively by f0 = α and fn+1 the unique

solution of the linear problem

f ′′n+1− (1 + λ) fn+1 =−4H
(

fn
)

fnH̃
(

fn
)− λ fn in (0,N)

fn+1(0)= 0, fn+1(N)= cN .
(3.6)

We claim that { fn} is non-decreasing, with α≤ fn ≤ β. Indeed, as

f ′′1 − (1 + λ) f1 =−4H(α)αH̃(α)− λα≤ α′′ − (1 + λ)α,

f1(0)≥ α(0), f1(N)≥ α(N)
(3.7)

by the comparison principle we deduce that f1 ≥ α. Now assume that fn ≥ fn−1 then

f ′′n+1− (1 + λ) fn+1 =−4H
(

fn
)

fnH̃
(

fn
)− λ fn

≤−4H
(

fn−1
)

fn−1H̃
(

fn−1
)− λ fn−1

= f ′′n − (1 + λ) fn

(3.8)

and we deduce that fn+1 ≥ fn.
On the other hand, f0 = α≤ β, and if fn ≤ β we have that

f ′′n+1− (1 + λ) fn+1 =−4H
(

fn
)

fnH̃
(

fn
)− λ fn ≥−4H(β)βH̃(β)− λβ≤ β′′ − (1 + λ)β.

(3.9)

As

fn+1(0)≤ β(0), fn+1(N)≤ β(N), (3.10)

using again the comparison principle we deduce that fn+1 ≤ β.
It follows that { fn} converges pointwise to some function f . By the standard a priori

bounds and using the fact that α≤ fn ≤ β for each n we have that

∥
∥ fn
∥
∥
H2 ≤ c0 + c1

∥
∥4H

(

fn−1
)

fn−1H̃
(

fn−1
)− λ fn−1

∥
∥
L2 ≤ C (3.11)

for some constant C. Thus, if we suppose that fn � f uniformly, taking a subsequence we
may assume that ‖ fn− f ‖C([0,N])≥ε for some ε > 0. By the Sobolev imbeddingH2(0,N)↩
C1([0,N]), taking a subsequence we may assume that fn converges to some function g �= f
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for the C1-norm, a contradiction. Hence fn→ f uniformly, and f ′′n → f − 4H( f ) f H̃( f ).
It follows that f is a solution of the problem. �

Remark 3.3. In the previous proof, it is easy to see that the convergence is more accurate
for smaller values of λ. Indeed, if λ ≥ λ, with λ as before, the corresponding sequence
{ f n} given recursively by f 0 = α and f n+1 the unique solution of the linear problem

f
′′
n+1− (1 + λ) f n+1 =−4H

(

f n
)

f nH̃
(

f n
)− λ f n in (0,N)

f n+1(0)= 0, f n+1(N)= cN
(3.12)

is non-decreasing and converges to a solution of the problem. We claim that f n ≤ fn for
every n: indeed, this is trivial for n= 0, and if the claim is true for n we have that

f ′′n+1− (1 + λ) fn+1 =−4H
(

fn
)

fnH̃
(

fn
)− λ fn ≤−4H

(

f n
)

f nH̃
(

f n
)− λ f n

= f
′′
n+1− (1 + λ) f n+1 + (λ− λ) f n

= f
′′
n+1− (1 + λ) f n+1 + (λ− λ)

(

f n− f n+1

)

.

(3.13)

Using the inductive hypothesis and the fact that { f k} is nondecreasing, it follows that
fn+1 ≥ f n+1.

To conclude this remark, note that { fn} and { f n} converge to the same solution. In-
deed, it suffices to replace β by

β = lim
n→∞ f n (3.14)

in the proof of Theorem 3.2. As β ≤ β, the definition of { fn} coincides with the previous
one, and fn ≤ β for every n.

Theorem 3.4. Let (α,β) be an ordered couple of a lower and an upper solution of (1.9) with
α(+∞)= β(+∞)= r. Then (1.9) admits a solution f with α≤ f ≤ β.

Proof. For any N ∈N, by the previous theorem we may choose a solution fN of (3.3) with
cN = (α(N) +β(N))/2 such that α|[0,N] ≤ fN ≤ β|[0,N]. Moreover, if ϕN (x)= ( fN (M)/M)x,
there exist constants cM , cM independent of N such that

∥
∥ fN −ϕN

∥
∥
H2(0,M) ≤ cM

∥
∥H
(

fN
)

fNH̃
(

fN
)∥
∥
L2(0,M) ≤ cM (3.15)

for any N ≥M. For M = 1 we may take a subsequence, still denoted { fN}, which con-
verges uniformly in [0,1] to some function f 1. Repeating the procedure we may assume
that fN converges uniformly in [0,M] to a function f M . Then f : [0,+∞) → [0,+∞)
given by f (x) = f N (x) if x ≤ N solves (1.9). Indeed, it is clear that f is well defined,
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and that f (0) = 0, f (+∞) = r. Moreover, as f ′′N converges uniformly in [0,M] to f −
4H( f ) f H̃( f ), for any test function ξ ∈ C∞0 (0,M) we obtain that

∫M

0

(

f − 4H( f ) f H̃( f )
)

ξ = lim
N→∞

∫M

0
f ′′N ξ = lim

N→∞

∫M

0
fNξ

′′ =
∫M

0
f ξ′′, (3.16)

and the proof follows. �

Example 3.5. Assume that (3.2) holds, and that (H̃2)′′ ≤ 0 on [0,r]. Then (α,β) given by

α(x)= r
(

1− e−x
)

, β ≡ r (3.17)

is an ordered couple of a lower and an upper solution of (1.9). Indeed,

α′′ −α=−r =−2
(

H̃2)′(r)≥−2
(

H̃2)′(α) (3.18)

since 0 ≤ α ≤ r. From the previous theorem we deduce that (1.9) admits at least one
positive solution between α and β.

3.1. Some numerical experiments. The method described in the proof of Theorem 3.2
can be implemented as a numerical method to compute the solution in an effective way.
At each step of the iterative procedure, we have to solve a linear differential equation, with
Dirichlet boundary conditions.

With that purpose, we use the standard finite difference method: We split the interval
[0,N] into k small sub-intervals of length h= k/N , and we denote by f in the approximate
value of fn(xi). Then, we approximate the linear problem (3.6) by the linear system of
equations

f i+1
n+1− 2 f in+1 + f i−1

n+1

h2
− (1 + λ) f in+1 =−4H

(

f in
)

f inH̃
(

f in
)− λ f in

(

1≤ i≤ k− 1
)

(3.19)

subject to the boundary conditions

f 0
n+1 = 0, f kn+1 = c. (3.20)

Let us recall that the energy introduced in (2.3) is constant, for any solution of the
problem, therefore we can use the discrete quantity

Ei(h)=
(
f in− f i−1

n

h

)2

+ 2φ
(

f in
)

(3.21)

as a test for the accuracy of the method. We stop the iteration when this quantity is close
enough to a constant, for the desired precision ε0, that is, when

∣
∣
∣
∣

Ei(h)−Ei−1(h)
h

∣
∣
∣
∣ < ε0 ∀i. (3.22)
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H system: iterative method (precision = 0.1)

Figure 3.1. H system: iterative method (precision= 0.1).

We have implemented this numerical scheme using GNU Octave for different choices
of H . In Figure 3.1, we present the case H(x)= x, N = 1, λ= 10 and ε0 = 0.1.
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