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We study the existence of solutions an H-system for a revolution surface without bound-
ary for H depending on the radius f. Under suitable conditions we prove that the ex-
istence of a solution is equivalent to the solvability of a scalar equation N(a) = L/+/2,
where N : sl € R* — R is a function depending on H. Moreover, using the method of
upper and lower solutions we prove existence results for some particular examples. In
particular, applying a diagonal argument we prove the existence of unbounded surfaces
with prescribed H.
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ative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

The prescribed mean curvature equation for a vector function X : Q — R is given by the
following nonlinear system of partial differential equations:

AX =2HX) Xy A Xy (u,v) €Q. (1.1)

Here Q) C R? is a bounded domain, A denotes the exterior productin R* and H : R® — R
is a given function. It is well known that if X is isothermal, namely

|Xu| - |Xv| =X,X,=0 (1-2)

then H is the mean curvature of the surface parameterized by X (see, e.g., [8]). Equation
(1.1) is also known in the literature as an H-system.

The parametric Plateau and Dirichlet problems for (1.1) have been extensively stud-
ied by different authors (see [3-5, 8-10]). Nonparametric and more general quasilinear
equations are considered in [1, 2, 6, 7].
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2 An H-system for a revolution surface without boundary

We will consider the particular case of a revolution surface
X(u,v) = (f(u)cosv, f(u)sinv,g(u)) (1.3)
with f,g € C*(I) n C(I) such that f >0 over the open interval I C R. Then (1.1) reads

f"—-f=-2H(f.gfg inl

% ;o 1.4
g '=2H(f,9)ff inl, (14)
where H: R* X R — R is given.
It is easy to see that any solution of (1.4) verifies the equality
(f2+(g)=f+c (1.5)

Hence, the isothermal condition (1.2) holds if and only if ¢ = 0.
We will study (1.4) for a compact surface without boundary. Without loss of generality
we may assume that I = (0,L), and hence the problem reads

f"—f=-2H(f.gfg inl
§"=2H(f.8)ff" inl

F0)= f(I)=0, f>0inI (16)
§'(0)=g'(L)=0.
In particular, when H depends only on the radius f, from the equality
¢ =2H(Nff,  g0)=0, (17)

we easily reduce problem (1.6) to a single equation: indeed, if H (t) = fot sH(s)ds, it holds
that g'(t) = ZI-NI(f(t)), and ¢g'(L) = Zﬁ(f(L)). Thus, solving (1.6) is equivalent to obtain
a positive solution of the problem

"~ f=—4H(f)fH(f) in (0,+o)

f0)=f(L)=0 o

with H : R* — R. We remark that if >0 then g’ >0, and if f is a positive solution
of (1.8) the parametrization X given in (1.3) defines a regular revolution surface. For
example, this holds when H is positive.

We will also consider the case L = +o0, namely the problem

'~ f=—4H(f)fH(f) inl
f(0)=0,  f(+o0)=r,

(1.9)
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where r >0 is a constant. Note that if f is a positive solution of (1.9) then g'(+o) =
2H (r). Thus, if H (r) > 0 it follows that the surface parameterized by X is unbounded in
the direction z — +o0 of the upper halfspace R? X R*.

The paper is organized as follows. In Section 2 we prove that under suitable conditions
the existence of a positive solution of (1.8) is equivalent to the solvability of the scalar
equation N(a) = L/+/2, where N is defined by

a dz
N = —_— 1.10
R e o
with
R
$(u) 1= 2 (u) - . (1.11)

Moreover, we prove existence and uniqueness of solutions for some particular examples.
In Section 3 we apply the method of upper and lower solutions and a diagonal argu-
ment in order to prove the existence of solutions of problem (1.9).

2. A scalar equation for (1.8)

In this section we study the existence of positive solutions of (1.8). Let us first note that if
¢ is defined as in (1.11), the problem may be written as

f'+¢'(f)=0 inl

£0) = fw)=0 2
Then we have the following theorem.
THEOREM 2.1. Leta € A, where
A={aeR:¢(a)>d(u) for0<u<al, (2.2)

and let N be defined by (1.10).
Then (2.1) admits at most one positive solution f witha = || f || c(jo,17)- Furthermore, (2.1)
admits a positive solution f with a = || f || c(o,1)) if and only if N(a) = L/~/2.

Proof. Let f be a positive solution of (2.1) with a = || f ll¢(f0,17)> and fix xo € (0,L) such
that f(xo) = a. Multiplying the equation by f” it follows by integration that

E:=(f')?+2¢(f) = 2¢(a). (2.3)

Note that if f'(x) = 0 for some x € (0,L) then ¢(f(x)) = ¢(a), and hence f(x) = a. We
conclude that xj is the only critical point of f. Thus,

[ =+2(¢(a) —¢(f)) 0<x<xp,

fr==\2(p(a) —¢(f)) xo<x<L.

(2.4)
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This implies that

for 0 < x < xo,

SRV S S -
Yo X L L2(¢(a) — ¢(f)) Jf<x)\/2(¢(a)—</5(Z))
x_x():_Jx ff :J'ﬂ dz

0 \2(¢(a) — o(f)) V@ \2(¢(a) - ¢(2))

In particular, xo = L — X9, and then xy = L/2. Furthermore, for x = 0 we obtain

(2.5)

for xo < x < L.

)

L _ J’” dz _ N(a .
2 Jo \a(p@)-)) V2

Conversely, if N(a) = L/+/2 for some a € A, define f implicitly by

(2.6)

L
) (2.7)

J:(X) 7\/m = \/E(x— %) for x >

and extend it by symmetry for x < L/2. It is immediate to verify that f is a positive so-
lution of problem (2.1). Moreover, from the above computations it is clear that if f is a
positive solution with || f llc(j0,17) = g, then f = f. O

Remark 2.2. The proof of existence of a solution in the previous theorem holds for any
a € Dom(N) C R* such that N(a) = L/+/2.

Remark 2.3. If H is bounded in a neighborhood of 0, then ¢’ (0*) < 0 and hence 0 ¢ .

Example 2.4. As an application, we may consider H : R* — R* given by H(u) = cu’
for some ¢ > —2 and ¢ # 0. In this case H(u) = (¢/(d +2))u’*?, and d(u) = (2¢*/ (0 +
2)2)u?ot — 42/2. For 0 > —1 a simple computation shows that & = [a,+), with a =
((o+2)/2[c|)Ve*D, Moreover, N is strictly non-increasing, with

lim N(a) =+ ulierN(a) =0. (2.8)

a—at

On the other hand, if —2 < ¢ < —1, it holds that 4 = (0,«], with & = ((0 +2)/4¢?)¥(20+2),
Moreover, N is strictly non-decreasing, with

Li{ISN(a) =0 lim N(a) = +oo. (2.9)

a—o-

Thus, in both cases it follows that the problem admits a unique solution. The case 0 = —1
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corresponds to the well known linear problem — f” = (4¢?> — 1) f. Here

@ ifdct <1
A= (2.10)
R* if4c? > 1.
Moreover, if 4c > 1 then
N(a)= —" | (2.11)
2(4c2 - 1)

and hence N(a) = L/+/2 if and only if 4c2 — 1 = (n/L)>.

3. Upper and lower solutions and unbounded revolution surfaces

In this section we apply the method of upper and lower solutions in order to solve a
nonhomogeneus Dirichlet problem associated to (1.4). In particular, applying a diagonal
argument we prove the existence of solutions of (1.9).

We recall that (a,8) € (C?([0,4)))? is an ordered couple of a lower and an upper
solution of the problem if &« <  and

o —a>—4H(a)aH(a) in (0,+)
a(0) <0, a(+o0) <7,

B’ —B<—4H(B)BH(B) in (0,+c0)
B0)=0, P(+w)=r.

(3.1)

For simplicity we will assume that H is continuously differentiable.
Remark 3.1. If f is a solution of (1.9), then f"'(+oc0) =1 — 4rI-NI(r)H(r). As f(+00) < oo,
it follows that

4H(r)H(r) = 1. (3.2)

In particular, if (3.2) holds we may take 8 = r as an upper solution.

THEOREM 3.2. Let (a,3) be an ordered couple of a lower and an upper solution of (1.9), let
N >0 and let cy be any constant with «(N) < cy < B(N). Then the Dirichlet problem

[’ =f=-4H(f)fH(f) in(O,N)

(3.3)
f0)=0,  f(N)=cn

admits at least one solution f with aljoN) < f < BlionN]-

Proof. Fix a constant A > —1 such that

A= —2(H)" (u) (3.4)
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for any u € R such that

inf o« <u < supf. (3.5)
[0,N] [0,N]

This choice of A implies that the function &(x) := —4H (x)xI—NI (x) — Ax is non-increasing.

We will construct a sequence {f,} given recursively by fo = « and f,+ the unique
solution of the linear problem

fn,-:—l —(1 +A)fn+1 = _4H(fn)fnﬁ(fn) _Afn in (O,N)

(3.6)
fn+1(0) =0, fn+l(N) = CN.
We claim that { f,} is non-decreasing, with « < f, < f8. Indeed, as
fI'=(1+ M) fi = —4H(a)aH (a) - da < a’’ — (1+A)a, 5

£1(0)=a(0),  fi(N) = a(N)

by the comparison principle we deduce that f; = o. Now assume that f, > f,_; then

vt = (L) fasr = =4H (f) fu H (f) = A fs
< —4H (fu1) far H(far1) = A (3.8)
=1, —(1+M)f,

and we deduce that f,41 = f,.
On the other hand, fy = a < f3, and if f, < § we have that

T = (L) fu = —4H(f) full (f2) = Mfu = ~4H(BBE(B) ~ A < f" — 1+ 1)p.
(3.9

As

Jur1(0) < B(0),  fur1(N) < B(N), (3.10)

using again the comparison principle we deduce that f,,; < 8.
It follows that { f,} converges pointwise to some function f. By the standard a priori
bounds and using the fact that « < f, < 8 for each n we have that

fullee < co+ctll4H (fuor) furEH (fuo1) = Afacrll < € (3.11)

for some constant C. Thus, if we suppose that f, - f uniformly, taking a subsequence we
may assume that || f, — f ll ¢(jo,n]) = € for some € > 0. By the Sobolev imbedding H?(0,N) —
C!([0,N]), taking a subsequence we may assume that f, converges to some function g # f
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for the C'-norm, a contradiction. Hence f, — f uniformly, and f;" — f —4H(f) fH(f).
It follows that f is a solution of the problem. O

Remark 3.3. In the previous proof, it is easy to see that the convergence is more accurate
f(ﬂ' smaller values of A. In_deed, if A z_/\, with A as before, the corresponding sequence
{f,} given recursively by f, = aand f,,, the unique solution of the linear problem

Funr = Q0 = —4H(F)FH(F,) =2, in (ON)

fn+1(0):0’ fn+l(N)_CN

(3.12)

is non-decreasing and converges to a solution of the problem. We claim that f, < f, for
every n: indeed, this is trivial for n = 0, and if the claim is true for n we have that

fn+1 1+)L fn+l = —4H(fn)fnﬁ(fn) _)‘fn = _4H(T )T (7 ) 7
:Tm (I+N)f, 0+t A=, (3.13)

= ?;’4’1 (1 +)L)fn+1 (? fn+1)

Using the inductive hypothesis and the fact that {f,} is nondecreasing, it follows that
f n+l = f n+l* o

To conclude this remark, note that {f,} and {f,} converge to the same solution. In-
deed, it suffices to replace 8 by

B=1lim f, (3.14)

n—oo

in the proof of_ Theorem 3.2. As B < f3, the definition of { f,} coincides with the previous
one, and f, < f for every n.

THEOREM 3.4. Let (a,f3) be an ordered couple of a lower and an upper solution of (1.9) with
a(+00) = f(+00) = r. Then (1.9) admits a solution f witha < f < .

Proof For any N € N, by the previous theorem we may choose a solution fy of (3.3) with
cn = (a(N) +B(N))/2 such that @|on] < fv < Blion]. Moreover, if o (x) = (fy(M)/M)x,
there ex1st constants ¢y, ¢y independent of N such that

I fv - ‘PN”HZ(O,M) = EM||H(]CN)](NPNI(]CN)||L2(0,M) =M (3.15)

for any N = M. For M = 1 we may take a subsequence, still denoted { fy}, which con-
verges uniformly in [0,1] to some function f!. Repeating the procedure we may assume
that fy converges uniformly in [0,M] to a function fM. Then f :[0,+00) — [0,+00)
given by f(x) = fN(x) if x < N solves (1.9). Indeed, it is clear that f is well defined,
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and that f(0) =0, f(+o) = r. Moreover, as fy converges uniformly in [0,M] to f —
4H(f)fI—NI(f), for any test function & € C§° (0, M) we obtain that

M N M M M
| (=amnsirE = im [ ge=tim [ A= [CrEn Gae

and the proof follows. O
Example 3.5. Assume that (3.2) holds, and that (ﬁz)” <0on [0,r]. Then (a,p) given by

a(x)=r(l-e™), B=r (3.17)
is an ordered couple of a lower and an upper solution of (1.9). Indeed,
o —a=-r=-2(H (r) = —2(H) (@) (3.18)

since 0 < o < r. From the previous theorem we deduce that (1.9) admits at least one
positive solution between « and f.

3.1. Some numerical experiments. The method described in the proof of Theorem 3.2
can be implemented as a numerical method to compute the solution in an effective way.
At each step of the iterative procedure, we have to solve a linear differential equation, with
Dirichlet boundary conditions.

With that purpose, we use the standard finite difference method: We split the interval
[0,N] into k small sub-intervals of length & = k/N, and we denote by f, the approximate
value of f,(x;). Then, we approximate the linear problem (3.6) by the linear system of
equations

at1 = 2fan + furt

% = (D fin = —4HUD L) -Af) (1 =i<k=1) (3.19)

subject to the boundary conditions

fia=0,  fli=c (3.20)

Let us recall that the energy introduced in (2.3) is constant, for any solution of the
problem, therefore we can use the discrete quantity

' fi— fim1y2 ‘
B = (2= 0) () (321)
as a test for the accuracy of the method. We stop the iteration when this quantity is close
enough to a constant, for the desired precision &, that is, when

‘ Ei(h) — E='(h)

L ‘ <g Vi (3.22)
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H system: iterative method (precision = 0.1)
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Figure 3.1. H system: iterative method (precision = 0.1).

We have implemented this numerical scheme using GNU Octave for different choices
of H. In Figure 3.1, we present the case H(x) =x, N =1,A =10and ¢ = 0.1.
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