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We give some new conditions for existence and uniqueness of best proximity point. We also
introduce the concept of strongly proximity pair and give some interesting results.

1. Introduction

Let X be a metric space andA and B nonempty subsets of X. If there is a pair (x0, y0) ∈ A×B
for which d(x0, y0) = d(A,B), that d(A,B) is distance of A and B, then the pair (x0, y0) is
called a best proximity pair for A and B. Best proximity pair evolves as a generalization of
the concept of best approximation, and reader can find some important results of it in [1–4].

Now, as in [5] (see also [6–14]), we can find the best proximity points of the setsA and
B by considering a map T : A ∪ B → A ∪ B such that T(A) ⊂ B and T(B) ⊂ A. We say that
the point x ∈ A ∪ B is a best proximity point of the pair (A,B), if d(x, Tx) = d(A,B), and we
denote the set of all best proximity points of (A,B) by PT (A,B), that is,

PT (A,B) := {x ∈ A ∪ B : d(x, Tx) = d(A,B)}. (1.1)

Best proximity pair also evolves as a generalization of the concept of fixed point of mappings,
because if A ∩ B /= ∅, every best proximity point is a fixed point of T .

The concept of approximate best proximity pair on metric space was introduced in [10,
Definition 1.1], but it is clear that Pa

T (A,B) = A×B. Now, in section two of this paper, we give
some conditions that guarantee the existence, uniqueness, or compactness of the set PT (A,B).
Then, in section three, by introducing the concepts of T -approximatively compact pair and
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T -strongly compact pair, we give some characterizations of a subclass of the best proximity
points, namely, the strongly proximity pairs of sets.

2. Some Existence Theorems

In this section, we will consider the existence of the best proximity points, by considering
some sequences which converge to that best proximity point. At first, we generalize some
result of Eldred and Veeramani [6].

Theorem 2.1. Let A and B be nonempty closed subsets of a complete metric space X. Suppose that
the mapping T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A, and

d
(
Tx, Ty

) ≤ αd
(
x, y

)
+ β

[
d(x, Tx) + d

(
y, Ty

)]
+ γd(A,B), (2.1)

for all x, y ∈ A∪B, where α, β, γ ≥ 0 and α+ 2β+ γ < 1. IfA (or B) is boundedly compact, then there
exists x ∈ A ∪ B with d(x, Tx) = d(A,B).

Proof. Suppose x0 is an arbitrary point of A ∪ B and define xn+1 = Txn. Now,

d(xn+1, xn+2) = d(Txn, Txn+1)

≤ αd(xn, xn+1) + β[d(xn, Txn) + d(xn+1, Txn+1)] + γd(A,B).
(2.2)

So

d(xn+1, xn+2) ≤
α + β

1 − β
d(xn, xn+1) +

γ

1 − β
d(A,B), (2.3)

which implies that

d(xn+1, xn+2) ≤ kd(xn, xn+1) + (1 − k)d(A,B), (2.4)

where k = ((α + β)/(1 − β)) < 1. Hence, inductively, we have

d(xn+1, xn) ≤ knd(x1, x0) + (1 − kn)d(A,B), (2.5)

and so

d(xn+1, xn) −→ d(A,B). (2.6)

Therefore, by Proposition 3.3 of [6], both sequences {x2n} and {x2n+1} are bounded. Now,
since A (or B) is boundedly compact then {x2n} has a convergent subsequence, and so, by
Proposition 3.2 of [6], there exists x ∈ A such that d(x, Tx) = d(A,B).

Now, we show that the mapping T , which satisfies (2.1), has a unique best proximity
point in the uniformly convex Banach space X.
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Theorem 2.2. LetA and B be two nonempty closed and convex subsets of a uniformly convex Banach
space X. Suppose that the mapping T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A and the
condition (2.1). Then, there exists a unique element x ∈ A such that ‖x − Tx‖ = d(A,B). Further, if
x0 ∈ A and xn+1 = Txn, then {x2n} converges to the above unique element.

Proof. One can prove this theorem by the method of the Proposition 3.10 of [6].

Note that the uniform convexity of the Banach space X is necessary for uniqueness of
PT (A,B); for instance, let X = R

2 with ‖ · ‖∞, A = x0 +BX , and B = −x0 +BX where x0 = (2, 0).
If T : A ∪ B → A ∪ B by T(a, b) = (−a, b), then one can easily see that PT (A,B) is an infinite
set.

Corollary 2.3. LetA and B be two nonempty closed and convex subsets of a uniformly convex Banach
space X. Suppose that the mapping T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A, and

∥∥Tx − Ty
∥∥ ≤ a1

∥∥x − y
∥∥ + a2‖x − Tx‖ + a3

∥∥y − Ty
∥∥ + a4d(A,B) (2.7)

for all x, y ∈ A ∪ B, where ai ≥ 0, i = 1, 2, 3, 4 and
∑4

i=1 ai < 1. Then, there exists a unique element
x ∈ A ∪ B with ‖x − Tx‖ = d(A,B).

Proof. Interchange the roles of x and y in (2.7); then add the new inequality with (2.7).

In the following, we present some new conditions on the mapping T , such as weak
closedness, such that it has a best proximity point in the uniformly convex Banach space X.
We remember that the mapping T : A ∪ B → A ∪ B is said to be weakly closed if xn ⇀ x
weakly in A ∪ B and Txn ⇀ y weakly, then Tx = y.

Theorem 2.4. LetA and B be two nonempty closed and convex subsets of a uniformly convex Banach
space X such thatA is bounded. Suppose that the mapping T : A∪B → A∪B satisfying T(A) ⊂ B,
T(B) ⊂ A, and

∥∥Tx − Ty
∥∥ ≤ α

∥∥x − y
∥∥ + β

[‖x − Tx‖ + ∥∥y − Ty
∥∥], (2.8)

for all x, y ∈ A ∪ B, where α, β ≥ 0 and α + 2β ≤ 1. If one of the following conditions:

(i) T is weakly closed and T(A) is bounded,

(ii) T is weakly sequentially continuous,

satisfies, then there exists x ∈ A with ‖x − Tx‖ = d(A,B).

Proof. Let

A0 :=
{
x ∈ A :

∥∥x − y
∥∥ = d(A,B), for some y ∈ B

}
. (2.9)
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By Lemma 3.2 of [5],A0 is nonempty; hence, there are x0 ∈ A and y0 ∈ B such that ‖x0−y0‖ =
d(A,B). For every positive integer n ∈ N, define

Tn(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
n
y0 +

(
1 − 1

n

)
Tx, x ∈ A,

1
n
x0 +

(
1 − 1

n

)
Tx, x ∈ B.

(2.10)

Then, for every x, y ∈ A ∪ B,

∥
∥Tnx − Tny

∥
∥ ≤

(
1 − 1

n

)∥
∥Tx − Ty

∥
∥ +

1
n
d(A,B)

≤
(
1 − 1

n

)
α
∥∥x − y

∥∥ +
(
1 − 1

n

)
β
(‖x − Tx‖ + ∥∥y − Ty

∥∥)

+
1
n
d(A,B).

(2.11)

Therefore, by Theorem 2.2, for every n ∈ N, there exists xn ∈ A such that

‖xn − Tnxn‖ = d(A,B). (2.12)

Since A is bounded and closed, there exist x ∈ A such that xn ⇀ x (by passing to a
subsequence, if necessary). If (i) holds, then the sequence {Txn} has a weakly convergent
subsequence Txnk ⇀ Tx, thanks to the weak closedness of T . So xnk − Txnk ⇀ x − Tx. On the
other hands, since ‖Tnxn − Txn‖ = (1/n)‖y0 − Txn‖ → 0, we have

‖xnk − Txnk‖ ≤ ‖xnk − Tnkxnk‖ + ‖Tnkxnk − Txnk‖ −→ d(A,B). (2.13)

Therefore,

‖x − Tx‖ ≤ lim inf
k→∞

‖xnk − Txnk‖ ≤ d(A,B). (2.14)

The proof of the statement in the case (ii) is even simpler and is a part of the above proof.

Theorem 2.5. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping
T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A, and

d
(
Tx, T2x

)
≤ kd(x, Tx) + (1 − k)d(A,B), (2.15)

for all x ∈ A ∪ B, where 0 ≤ k < 1. If there are u ∈ A ∪ B and n ∈ N such that Tnu = u, then
d(u, Tu) = d(A,B).



Abstract and Applied Analysis 5

Proof. Suppose there are u ∈ A ∪ B and n ∈ N such that Tnu = u. If d(A,B) < d(u, Tu), since
T satisfies (2.15), we have

d(u, Tu) = d
(
T
(
Tn−1u

)
, T2

(
Tn−1u

))

≤ kd
(
Tn−1u, T

(
Tn−1u

))
+ (1 − k)d(A,B)

≤ k2d
(
Tn−2u, Tn−1u

)
+
(
1 − k2

)
d(A,B)

...

≤ knd(u, Tu) + (1 − kn)d(A,B)

< d(u, Tu),

(2.16)

which is a contradiction, so d(u, Tu) = d(A,B).

Corollary 2.6. Let A and B be nonempty subsets of a metric space X. Suppose that the mapping
T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A, and (2.1). If there are u ∈ A ∪ B and n ∈ N
such that Tnu = u, then d(u, Tu) = d(A,B).

Proof. If y = Tx in (2.1), then

d
(
Tx, T2x

)
≤ αd(x, Tx) + β

[
d(x, Tx) + d

(
Tx, T2x

)]
+ γd(A,B). (2.17)

So

d
(
Tx, T2x

)
≤ α + β

1 − β
d(x, Tx) +

γ

1 − β
d(A,B). (2.18)

Hence, by Theorem 2.5, we have d(u, Tu) = d(A,B).

3. Strongly Proximity Pairs

Let A and B be nonempty subsets of a metric space X, δ > 0, and T : A ∪ B → A ∪ B such
that T(A) ⊂ B and T(B) ⊂ A. Put

Pδ
T (A,B) := {x ∈ A ∪ B : d(x, Tx) < d(A,B) + δ}. (3.1)

We say that the pair (A,B) is a strongly proximity pair, if it is proximity pair, and, for any
neighborhood V of 0 in X there exists δ > 0 such that Pδ

T (A,B) ⊆ PT (A,B) + V .
For example, if

A =
{(

x, y
)
: (x − 2)2 + y2 ≤ 1

}
, B =

{(
x, y

)
: (x + 2)2 + y2 ≤ 1

}
, (3.2)



6 Abstract and Applied Analysis

and T(x, y) = (−x, y), then for every ε > 0, Pδ
T (A,B) ⊆ PT (A,B)+V , where δ =

√
4 + ε2−2 and

V is the sphere with radius ε and center of zero. Hence the pair (A,B) is a strongly proximity
pair.

Also, if

A =
{(

0, y
)
: −1 ≤ y ≤ 1

}
, B = {(x, 0) : 1 ≤ x ≤ 2 or − 2 ≤ x < −1} (3.3)

and T : A ∪ B → A ∪ B such that

T
(
x, y

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
y + 1, x

)
y ≥ 0,

(
x, y

) ∈ A,
(
y − 1, x

)
y < 0,

(
x, y

) ∈ A,
(
y, x − 1

)
x ≥ 1,

(
x, y

) ∈ B,
(
y, x + 1

)
x < −1, (x, y) ∈ B,

(3.4)

Therefore T(A) ⊂ B, and T(B) ⊂ A and PT (A,B) = {(0, 0), (1, 0)}, but the pair (A,B) is not a
strongly proximity pair, while it is a proximity pair.

Here, by introducing the concepts of T -approximatively compact pair and T -strongly
compact pair, we give some characterizations of the strongly proximity pairs of sets.

Definition 3.1. Let A and B be nonempty subsets of a metric space X and T : A ∪ B → A ∪ B
such that T(A) ⊂ B and T(B) ⊂ A. We say the following.

(i) The sequence {zn} ⊆ A ∪ B is T -minimizing if

lim
n→∞

d(zn, Tzn) = d(A,B). (3.5)

(ii) The pair (A,B) is T -approximatively compact pair (T -a.c.p.) if every T -minimizing
sequence {zn} ⊆ A ∪ B has convergent subsequence.

(iii) The pair (A,B) is T -strongly compact pair (T -s.c.p.) if every T -minimizing sequence
{zn} ⊆ A ∪ B is convergent.

In the last section, we find some conditions on T such that PT (A,B)/= ∅, and so in this
section, we can always suppose that PT (A,B)/= ∅. At the first, we state an elementary lemma,
which can be used in the proof of the main theorems that follow.

Lemma 3.2. Let A and B be nonempty subsets of a metric space X, T : A ∪ B → A ∪ B such that
T(A) ⊂ B and T(B) ⊂ A, and the pair (A,B) is T -s.c.p. Then, PT (A,B) is singleton.

Proof. Let x, y ∈ PT (A,B), hence,

d
(
y, Ty

)
= d(x, Tx) = d(A,B). (3.6)
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Now, define

zn =

⎧
⎨

⎩

x, n odd,

y, n even.
(3.7)

Then, the sequence {zn} is T -minimizing but is not convergent provided that x /=y and so a
contradiction.

Now, we can prove the main theorems of this section.

Theorem 3.3. LetA and B be nonempty closed subsets of a normed spaceX, and T : A∪B → A∪B
is a continuous function, such that T(A) ⊂ B and T(B) ⊂ A and PT (A,B)/= ∅. Then, the pair (A,B)
is T -a.c.p. if and only if the pair (A,B) is strongly proximity pair and PT (A,B) compact.

Proof. Let the pair (A,B) be T -a.c.p., and {xn} ⊆ PT (A,B) is an arbitrary sequence. Then
for each n, d(xn, Txn) = d(A,B), and, by hypothesis, the sequence {xn} has a convergent
subsequence to an element of PT (A,B). Thus, PT (A,B) is compact.

Also, if (A,B) is not strongly proximity pair, then there exist a neighborhood V of 0
and a T -minimizing sequence {zn} ⊆ A∪B with zn not belonging to PT (A,B)+V for all n ≥ 1.
Since (A,B) is T -a.c.p., there is a subsequence {znk} such that znk → z0. Then, z0 ∈ PT (A,B),
and so zn ∈ z0 + V ⊆ PT (A,B) + V for sufficiently large n, that is a contradiction.

Conversely, suppose that (A,B) is a strongly proximity pair and PT (A,B) compact,
but (A,B) is not T -a.c.p. Then, there is a T -minimizing sequence {zn} ⊆ A ∪ B without any
convergent subsequence. It follows that, for any x ∈ PT (A,B), there is a neighborhood Ux

of x such that, for sufficiently large n, zn does not belong to Ux. Since PT (A,B) is compact,
one can cover PT (A,B) by finitely many Uxi , i = 1, 2, ..., n. So there is a neighborhood V of 0
and n0 ∈ N such that for all n ≥ n0, zn does not belong to PT (A,B) + V . Since PT (A,B) is
strongly proximity pair, there exists δ > 0 such that Pδ

T (A,B) ⊆ PT (A,B) + V . Since {zn} is a
T -minimizing sequence, zn ∈ Pδ

T (A,B) for sufficiently large n ∈ N and this is a contradiction.

Corollary 3.4. Let A and B be nonempty subsets of normed space X such that A ∪ B is compact and
T : A ∪ B → A ∪ B is continuous such that T(A) ⊂ B and T(B) ⊂ A. Then, the pair (A,B) is
strongly proximity pair and PT (A,B) is compact.

Proof. Since A ∪ B is compact, it is obvious that the pair (A,B) is T -a.c.p. Now, apply
Theorem 3.3.

Theorem 3.5. LetA and B be nonempty closed subsets of a normed spaceX, and T : A∪B → A∪B
is continuous such that T(A) ⊂ B and T(B) ⊂ A and PT (A,B)/= ∅. Then, the pair (A,B) is a T -s.c.p.
if and only if the pair (A,B) is strongly proximity pair and PT (A,B) singleton.

Proof. Suppose that (A,B) is T -s.c.p. By Theorem 3.3, (A,B) is strongly proximity pair, and,
by Lemma 3.2, PT (A,B) is singleton.

Conversely, suppose (A,B) is strongly proximity pair and PT (A,B) = {z0}. Let V be
a neighborhood of 0. Since (A,B) is strongly proximity pair, there exists δ > 0 such that
Pδ
T (A,B) ⊆ z0 +V . Thus, for any T -minimizing sequence {zn} ⊆ A∪B, zn ∈ Pδ

T (A,B) ⊆ z0 +V
for sufficiently large n. Hence, zn → z0.
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Theorem 3.6. Let A and B be nonempty closed and convex subsets of a uniformly convex Banach
space X. Suppose that the mapping T : A ∪ B → A ∪ B satisfying T(A) ⊂ B, T(B) ⊂ A, and, for
every x, y ∈ A

∥
∥Tx − Ty

∥
∥ ≤ α

∥
∥x − y

∥
∥ (0 < α < 1). (3.8)

Then, the pair (A,B) is a T -s.c.p. if and only if PT (A,B) is singleton.

Proof. The necessary condition follows from Theorem 3.5.
For the proof of sufficient condition, suppose that PT (A,B) = {z0} but (A,B) is not a

T -s.c.p. Then, there is a T -minimizing sequence {zn} ⊆ A∪B that is not convergent. It follows
that there exists a subsequence {znk} of {zn} and a scaler d > 0 such that for all integer k,

‖znk − z‖ ≥ d. (3.9)

By uniform convexity of X, there exists ε > 0 such that

(d(A,B) + ε)
[
1 − δX

(
d(1 − α)

d(A,B) + ε

)]
< d(A,B). (3.10)

Since limn→∞‖zn − Tzn‖ = d(A,B), there exists k such that

‖znk − Tznk‖ < d(A,B) + ε. (3.11)

Also,

‖z0 − Tz0‖ = d(A,B) < d(A,B) + ε. (3.12)

But

‖z0 − Tz0 − (znk − Tznk)‖ ≥ ‖z0 − znk‖ − ‖Tz0 − Tznk‖
≥ ‖z0 − znk‖ −

∥∥z0 − ynk

∥∥α

= ‖z0 − znk‖(1 − α)

> d(1 − α),

(3.13)

BecauseA and B are convex, ((z+znk)/2) ∈ A, and Tz+Tznk/2 ∈ B, the following inequality
leads to a contradiction:

∥∥∥∥
z + znk

2
− Tz + Tznk

2

∥∥∥∥ ≤ (d(A,B) + ε)
[
1 − δX

(
d(1 − α)

d(A,B) + ε

)]

< d(A,B).

(3.14)
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