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We obtain the general solution and the generalized Hyers-Ulam stability of the general cubic-
quartic functional equation for fixed integers k with k #0,+1: f(x + ky) + f(x —ky) = K2(f(x+y) +

fx=y))+2(1-K2) f (x) + ((k* = k) /4) (f 2y) -8f (y)) + f (2x) =16 f (x), where f(x) := f(x) + f(-).

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] in 1940,
concerning the stability of group homomorphisms. Let (Gy,-) be a group and let (G, *) be
a metric group with the metric d(-,-). Given € > 0, does there exist a 6 > 0, such that if a
mapping h : G; — G, satisfies the inequality d(h(x - y), h(x) * h(y)) < 6 for all x,y € Gy,
then there exists a homomorphism H : G; — G, with d(h(x), H(x)) < € for all x € G;? In
other words, under what condition does there exists a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we replace the
functional equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [2] gave the first affirmative answer to the question of Ulam for Banach spaces. Let
f : E — E'be a mapping between Banach spaces such that

lf(x+y)-fx)-f(y)|| <6 (1.1)

for all x, y € E and for some 6 > 0. Then there exists a unique additive mapping T : E — E'
such that

|f(x)-Tx)| <6 (1.2)
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for all x € E. Moreover, if f(tx) is continuous in t € R for each fixed x € E, then T is linear. In
1978, Rassias [3] proved the following theorem.

Theorem 1.1. Let f : E — E' be a mapping from a normed vector space E into a Banach space E'
subject to the inequality

1f Ge+y) = F) = fF W) < eCllxll” + Nl [I") (1.3)

forall x,y € E, where € and p are constants with € > 0 and p < 1. Then there exists a unique additive
mapping T : E — E' such that

2e
”f(x) —T(.X')” < 2_9op

[l]” (1.4)

forall x € E. If p < O then inequality (1.3) holds for all x,y#0 and (1.4) for x #0. Also, if the
function t — f(tx) from R into E' is continuous in real t for each fixed x € E, then T is linear.

In 1990, Rassias during the 27th International Symposium on Functional Equations
asked the question whether such a Theorem can also be proved for all real values of p that
are greater or equal to one. In 1991, Gajda [4], following the same approach as that of Rassias,
provided an affirmative solution to this question for all real values of p that are strictly greater
than one. The new concept of stability of the linear mapping that was inspired by Rassias’
stability theorem is called Hyers-Ulam-Rassias stability of functional equations.

Jun and Kim [5] introduced the following cubic functional equation:

f@x+y)+f(2x-y) =2f(x+y) +2f (x —y) + 12f (x), (1.5)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.5). The function f(x) = x> satisfies the functional equation
(1.5), which is thus called a cubic functional equation. Every solution of the cubic functional
equation is said to be a cubic function. Jun and Kim proved that a function f between real
vector spaces X and Y is a solution of (1.5) if and only if there exists a unique function C :
X x X xX — Y such that f(x) = C(x, x,x) for all x € X and C is symmetric for each fixed
one variable and is additive for fixed two variables. The stability of the quartic functional
equations was studied by Park and Bae [6], when

flx+2y) + f(x-2y) =4(f(x +y) + f(x ~y)) +24f (y) - 6f (x). (1.6)

In fact, they proved that a function f between real vector spaces X and Y is a solution of
(1.6) if and only if there exists a unique symmetric multi-additive function Q : X x X x X x
X — Y such that f(x) = Q(x,x,x,x) for all x € X (see also [7, 8]). It is straightforward
to verify that the function f(x) = x* satisfies the functional equation (1.6), which is called a
quartic functional equation and every solution of the quartic functional equation is said to be
a quartic function.

The stability problems of several functional equations have been extensively investi-
gated by a number of authors, and there are many interesting results concerning this problem.
(see [9-45]).
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In 2008, Gordji et al. [17] provided the solution as well as the stability of a mixed type
cubic-quartic functional equation. We only mention here the papers [19, 32, 33] concerning
the stability of the mixed type functional equations.

In this paper, we deal with the following general cubic-quartic functional equation:

k* - k2

flxrky)+ f(x—ky) =K (f(x+y) + f(x-y)) +2(1- k) f(x) +

x (f(2y) = 8f (¥)) + f(2x) ~16f (x),
where f(x) = f(x) + f(—x).

(1.7)

Then it follows easily that the function f(x) = ax* + bx> satisfies (1.7). We investigate the
general solution and the generalized Hyers-Ulam-Rassias stability of the functional equation
(1.7).

2. General Solution

In this section, we establish the general solution of functional equation (1.7).

Theorem 2.1. Let X, Y be vector spaces and let f : X — Y be a function. Then f satisfies (1.7) if
and only if there exists a unique symmetric multiadditive function Q : X x X x X x X — Y and a
unique function C : X x X x X — Y such that f(x) = Q(x,x,x,x) +C(x, x,x) for all x € X, where
the function C is symmetric for each fixed one variable and is additive for fixed two variables.

Proof. Let f satisfies (1.7). We decompose f into the even part and odd part by setting
fo) = 5@+ £, fol@) = 5 (F0) = fx) @)
for all x € X. By (1.7), we have
fole + k) + folx—ky) = 3 [f(x+ ky) + f(-x ~ky) + f(x - ky) + f(~x + ky)]
= LGt ky)+ (e R)] + 3 L () (k) +£ () = (k)]
. %[k2<f<x+ v+ ) +2(1- )

k4
+

_ |2 ~ ~
() -85 () + Fem - 16f<x>]

+ %[kz(f(—x—y) +f(=x+y)) +2(1- k) f(x) + £ ;k

x(f(-2y) -8f (-y)) + f(-2x) - 16f<—x>]
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+ E (fx) +f(—2x))]
- 16[3 (Feo + F0))|
=2 (fo(x+y) + fo(x - 1)) +2(1-K) ful)

k* - k2 ~ =
S (e(2y) -8 (1)) + Fol20) ~ 16 ()
(2.2)
for all x, y € X. This means that f, satisfies (1.7), or
fex +ky) + fe(x = ky) = R (fe(x +y) + fe(x = 1)) +2(1 - K) fel()
(1.5(e))

T (1Y) - 81.(9) + o2 - 16]0)

for all x, y € X. Applying the fact that the function f. is even for all x,y € X, (1.5(e)) can be
written in the form

fele+ky) + folx—ky) = R (Ffolx+ ) + folx-9)) +2(1 - K) o)

k4_k2
o @) - 81.) 220 - 3210

(2.3)

for all x, y € X. Now be setting x = y = 0 in (2.3), we get f.(0) = 0. Similarly, by setting y = 0
in (2.3), we obtain

fe(2x) = 16f.(x) (2.4)
for all x € X. Hence (2.3) can be written as

fe(x+ky) + fo(x = ky) = k2 (fo(x+ 1) + fo(x = 1)) +2(1=K2) folx) +2(K* = k) fo ()
(2.5)
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for all x, y € X. By substituting x by x + y in (2.5), we have

fe(x+ A+k)y) + fe(x+ (1 -k)y)

(2.6)
= K2 (fo(x +2y) + fo(x) +2(1- k) fu(x + ) + 2(K* = ) fe ()
for all x, y € X. Substituting —y for y in (2.6), we get by evenness of f
fe(x=A+k)y) + fe(x-(1-k)y)
(2.7)

= K(fo(x = 29) + o)) +2(1- k) fo(x — y) +2(K* - K2) fu ()
for all x, y € X. Adding (2.6) to (2.7), we obtain

fe(x+Q+k)y) + fe(x+ (1 -k)y) + fe(x = A+ k)y) + fe(x - (1 -k)y)
= K2 (fo(x +2y) + fo(x=2y)) + 22 £o(x) +2(1 =) (folx +y) + fo(x-))  (28)
+4(k =) fo(y)

for all x, y € X. By substituting x by x — ky in (2.5), we have

fe(x) + fo(x =2ky) = K*(fo(x+ 1= k)y) + fo(x = (k+ 1)y)) +2<1 —k2>fe(x— ky)

+2(k =) fo ()

(2.9)
for all x, y € X. Substituting —x for x in (2.9), we get by evenness of f,
Fol@) + fo(x +2ky) = K2(fo(x + (k= 1)y) + fo(x+ (e + 1)y)) +2(1 = k) fo(x + ky)
+2(k' =) fo ()
(2.10)

for all x, y € X. Adding (2.9) to (2.10), we obtain
fo(xx+2ky) + fo(x = 2ky) = K2(fo(x+ (1= K)y) + fo(x = (k + D)y) + fo(x + (k= 1)y)
+ folx+ e+ 1)y)) +2(1- ) (fo(x — ky) + fo(x + ky))

+4(k =1 foy) - 2fe ()
(2.11)
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for all x, y € X. Now, by using (2.5), (2.8), and (2.11), we lead to
fe(x+2ky) + fe(x = 2ky) = k*(fe (x +2y) + fe(x - 2y))

AR (1= ) (folx + ) + fe(x =) + 8(K =) fo(y)

+ <6k4 — 8Kk + 2) fo(x)
(2.12)

for all x,y € X. If we replace y by 2y in (2.5), we get

fo(x +2ky) + fo(x = 2ky) = K2 (fo(x +2y) + fo(x = 2)) +2(1 = K?) fu(x) o)
13
+2(k' =) fo(2y)

for all x, y € X. It follows from (2.12) and (2.13) that
K (fo(x+2y) + fo(x = 29)) +4K2 (1= I2) (fo(x + y) + folx = y)) +8(K - k) fu(y)
+ <6k4 — 8Kk + 2) fo(x)

= K2 (fo(x +2y) + fo(x = 2y)) +2(1 = k) fo(x) + 2(K* = K2) fo (2y)
(2.14)

for all x, y € X. So we have
fe(x+2y) + fe(x =2y) = 4(fe(x +y) + fe(x ~y)) + 24fe(y) ~6fe(x) (2.15)

for all x, y € X. This means that f, is a quartic function. Thus there exists a unique symmetric
multiadditive function Q : X x X x X x X — Y such that f.(x) = Q(x,x,x, x) for all x € X.
On the other hand, we can show that f, satisfies (1.7), or

folx+ky) + folx = ky) = K2 (fo(x +y) + fo(x = y)) +2(1 = k) fo(x)

- ] ) (15(0))
+ = (fo(2y) =8fo(y)) + fo(2%) = 16fo(x)
for all x, y € X. By oddness of f, for all x,y € X, (1.5(0)) can be written as
folx+ky) + fo(x = ky) = K2 (fo(x +y) + fo(x =) +2(1= k) fo(x)
(2.16)

K ) -850)

+
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for all x,y € X. Now by setting x = y = 0 in (3.2), we get f,(0) = 0, and by setting x = 0 in
(2.16), we obtain

fo(2y) = 8fo(y) (2.17)

for all y € X. Hence (2.16) can be written as
fo(x + ky) + fo(x = ky) = R (fo(x+y) + folx = y)) +2(1-K) folx) (2.18)
for all x, y € X. Replacing x by x — y in (2.18), we obtain
fola+ (k= 1)y) + folx = (k + 1)y) = K2 (fo(x = 29) + fo(x)) +2(1 = &) fo(x - y)  (2:19)
for all x, y € X. Substituting —x for x in (2.19), we get by oddness of f,

~folx+ A= K)y) = folx + (k+ 1)y) = K2(~fo(x +2y) = fox)) = 2(1= k) fo(x + y)
(2.20)

for all x, y € X. If we subtract (2.19) from (2.20), we obtain

folx+(k=1)y) + fo(x = (k+1)y) + fo(x + (1 - k)y) + fo(x + (k +1)y)

(2.21)
= K2(fo(x +2y) + fo(x = 29)) + 2K o (x) + 2(1 = K?) (fo(x + ) + fo(x - ¥))

for all x, y € X. By substituting x by x + ky in (2.18), we have

Fol) + fo(x +2ky) = I3 (fo(x + (k + 1)y) + fo(x + (k= 1)y)) +2(1 - k) fo(x + ky)
(2.22)

for all x, y € X. Substituting —y for y in (2.22), we get

Fo) + fox = 2ky) = k¥ (fo(x = (k+ 1)y) + fo(x = (k= 1)y)) +2(1 = k) fo(x - ky)
(2.23)

for all x, y € X. Adding (2.22) to (2.23), we obtain
fo(xx +2ky) + fo(x =2ky) = K2(fo(x + (k+ 1)y) + fo(x+ (k= 1)y) + fo(x - (k+1)y)

+fo(x = (k=1)y)) +2(1= k) (fo(x + ky) + fo(x = ky))

= 2fo(x)
(2.24)
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for all x, y € X. Now, by using (2.18), (2.21), and (2.24), we lead to

folx+2ky) + fo(x = 2ky) = 4k* (1= k%) (fo(x +y) + fo(x~ 1))

(2.25)
+ (6" =8I +2) folx) + k' (fo(x +2y) + fo(x - 2y))

for all x, y € X. If we replace y by 2y in (2.18), we get
Fol+2ky) + fo(x = 2ky) = K2(fo(x+2y) + fo(x = 29)) +2(1- ) folx)  (226)
for all x, y € X. If we compare (2.25) with (2.26), then we conclude that
folx+2y) + fo(x = 2y) =4(fo(x +y) + fo(x - y)) = 6fo(x) (227)
for all x, y € X. Replacing x by 2x in (2.27), we get
fo2(x+ 1)) + fo(2(x~y)) = 4(fo(2x +y) + fo(2x ~y)) ~6fo(2x)  (2.28)
for all x, y € X. Finally, it follows from (2.17) and (2.28) that
8(folx+y) + fo(x~y)) =4(fo(2x +y) + fo(2x ~y)) ~ 48/, () (2.29)
for all x, y € X. By multiplying both sides of (2.29) by 1/4, we get
2(fo(x+y) + fo(x=y)) = (fo(2x +y) + fo(2x = y)) = 12fo(x) (2.30)

for all x, y € X. This means that f, is a cubic function and that there exits a unique function
C: X xXxX — Ysuch that f,(x) = C(x,x,x) for all x € X and C is symmetric for each
fixed one variable and is additive for fixed two variables. Thus for all x € X, we have

f(x) = fe(x) + fo(x) = C(x,x,x) + Q(x, x, x, x). (2.31)

The proof of the converse is trivially. O
The following corollary is an alternative result of above Theorem 2.1.

Corollary 2.2. Let X, Y be vector spaces, and let f : X — Y be a function satisfying (1.7). Then the
following assertions hold.

(a) If f is even function, then f is quartic.
(b) If f is odd function, then f is cubic.
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3. Stability

We will investigate the generalized Hyers-Ulam-Rassias stability problem for the functional
equation (1.7). In the following, let X be a real vector space and let Y be a Banach space.
Given f : X — Y, we define the difference operator Dy : X x X — Y by

Dy(x,y) = f(x+ky) + f(x —ky) =2 (f(x +y) + f(x~y)) - 2(1- k) f (x)

(3.1)
k* - k2 ~ -
oK (ray) -87(v) - Fax) + 1670
forall x,y € X.
Theorem 3.1. Let j € {-1,1} be fixed and let ¢ : X x X — [0, 00) be a function such that
S ki XY
>k (p(ki]., ki}.) <o (3.2)

i=(1+j)/2

forall x,y € X. Suppose that an even function f : X — Y with f(0) = 0 satisfies the inequality

I1Ds (e )l < 9(xw) (3.3)
forall x,y € X. Then the limit
Q(x) := lim K f(%) (3.4)

exists forall x € X and Q : X — Y is a unique quartic function satisfying
1
£ G0 - Q)| < 5 Fe(x) (35)

forall x € X, where

_ & il x k*-k* [/ «x
(Ife(x) = Z k4] [E(P<O’ E) + T(P(ﬁ,())] (36)

i=(1+j)/2

Proof. Let j = 1. It follows from (3.3) and using evenness of f that

ferky) + Flx—ky) ~R(f(x+y) + (=) ~2(1-K) f)

(3.7)
k4_k2
— (f(2y) - 8(y)) ~2f (2x) + 32 (x)

<¢(xy)
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for all x, y € X. Replacing x and y by 0 and x in (3.7), respectively, we see that

for all x € X.

forall x € X.

forall x € X.

for all x € X.

for all x € X.

for all x € X.

for all x € X.
see that

HZf(kx) + (2K - 4K2) £ (x) + K : K x| < p(0,2)
If we divide both sides of (3.8) by 2, we get
“ Fkx) + (k4 - 2k2) fx) + K g K fx)| < %(p(O,x)

Putting y = 0 in (3.7), we obtain
I12f(22) = 32f ()| < 9(x,0)

If we multiply both sides of (3.10) by (k* — k?)/16, then we have

4 2

16

k4_k2
8

<

»(x,0)

f@x)-2(k - k) f ()

It follows from (3.9) and (3.11) that

k4 _ kz
16

£k~ K5 )| < 50002 + L p(,0)

Let

4 2

gl = 3900, + (.0

Thus by (3.12), we get

| £ 0ex) =K )| < e ()

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

If we replace x in (3.14) by x/k"*! and multiply both sides of (3.14) by k**, we

n X n X n X
k4( H)f(W) - f(ﬁ) < K ‘P€<kn+1>

(3.15)
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for all x € X and all nonnegative integers n. So

k4(n+1)f<kn+1> _ k4mf<kim)

<3

i=m

() )

(3.16)
Z ( i+l >
for all nonnegative integers n and m with n > m and all x € X. By (3.2), we infer that
o i X . n x
Zk4 (Fe<ki+1> < oo, nlgrc}ok4 ‘Pf<kn+1> =0 (3.17)

for all x € X. It follows from (3.16) and (3.17) that the sequence {k*"f(x/k")} is a Cauchy
sequence for all x € X. Since Y is complete, the sequence {k*'f(x/k™)} converges for all
x € X. So one can define a mapping Q : X — Y by (3.4) for all x € X. Letting m = 0 and
passing the limit n — oo in (3.16), we obtain (3.5). It follows from (3.4), (3.15), and (3.17)

that
Jeer-wa(D)] = ers (&) s (i)

. " x
< nlgr;ok4 ([fe<W> =0

(3.18)
for all x € X. So
Q(kx) = k*Q(x) (3.19)
for all x € X. On the other hand, it follows from (3.2), (3.3), and (3.4) that
. n x Yy . n X Y
Do (x,y) | = lim k* Df(ﬁ,@ < limk* ‘P<FF) =0 (3.20)

for all x, y € X. Therefore, by Corollary 2.2, the function Q : X — Y is quartic.
To prove the uniqueness of Q, let Q' : X — Y be a another quartic function satisfying
(3.5). Since

: n i X Y : < i X
lim k* Zk4(p<kn+l k”+l> = lim Z k4(P<F l]</1> 0 (3.21)

n— oo n— oo,
i=1 i=n+1

for all x,y € X, hence

rllgr;ok‘*"q;e( ) =0 (3.22)
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for all x € X. So it follows from (3.5) and (3.22) that

4n
low) -l = fimk| (&) - ()| < jm () -0 62
forallx € X. Hence Q = Q'.
For j = -1, the proof of the theorem is similar. ]

Theorem 3.2. Let j € {-1,1} be fixed, and let ¢ : X x X — [0, c0) be a function such that

- = i X
Ge(xy)= Y 23@@%)@ (3.24)

i=(1+)/2

forall x,y € X. Suppose that an odd function f : X — Y with f(0) = 0 satisfies the inequality (3.3).
Then the limit

— i o3 X
C(x): nlgr;gZ f<2n]. > (3.25)
exists forall x € X and C : X — Y is a unique cubic function satisfying

| f(x) - C)| < (0, x) (3.26)

_
2(k' - k2)

forall x € X.

Proof. Let j = 1. It follows from (3.3) and using oddness of f that

fertky) + f(x—ky) =R (f(x+y) + f(x-v)) -2(1- k) f(x)

. (3.27)
k* -k
5 (f2y) -8 ()| < o(xv)
for all x, y € X. Replacing x and y by 0 and x in (3.27), respectively, we see that
k* - k2
() -8f(0) || <p(0,%) (3.28)

for all x € X. If we multiply both sides of (3.28) by 4/ (k* - k?), we get

lf(2x) - 8f(x)] < ﬁtp(o,x) (3.29)
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for all x € X. If we replace x in (3.29) by x/2"*! and multiply both sides of (3.29) by 2", we
see that

S 23n

23(n+1)f< n+1> _23nf<2£n>

for all x € X and all nonnegative integers n. So

23<n+1>f<2n+1>_ ( <)

4 x
aa(05) (330

n

<2

i=m

3(i+1) _adigf X
25 (5) -2 (5)

(3.31)
3i X
k2 ZZ < 21+1 >
for all nonnegative integers n and m with n > m and all x € X. By (3.24), we infer that
C 3i X Yy . 3n X v B
ZZ ‘P(ﬁrzzﬂ) < oo, nlglgoz 90<2n+1,2n+1> =0 (3.32)

i=m

for all x,y € X. It follows from (3.31) and (3.32) that the sequence {2 f(x/2")} is a Cauchy
sequence for all x € X. Since Y is complete, the sequence {2 f(x/2")} converges for all
x € X. So one can define a mapping C : X — Y by (3.25) for all x € X. Letting m = 0 and
passing the limit n — oo in (3.31), we obtain (3.26). It follows from (3.25), (3.30), and (3.32)
that

[ceo -2 = Jim s (35) -2 (g )| < im0 (0.5 ) =0

(3.33)
forall x € X. So
C(2x) =23C(x) (3.34)
for all x € X. On the other hand, it follows from (3.3), (3.24), and (3.25) that
_ 13 3n i l : 3n i Yy _
1De (e, y) | = Jimm. 2 Df(zn’ 2n>| < im2 "’<2n 2n> =0 (3:35)

for all x, y € X. Therefore by Corollary 2.2, the function C : X — Y is cubic.
To prove the uniqueness of C, let C' : X — Y be a another cubic function satisfying
(3.26). Since

3 3 x ¥ \_ 3 Y\ _
Aim 2 ”ZZ‘ (2 2) ,}EI;OZZ‘ (515)—0 (3.36)
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for all x, y € X, hence

lim 23" ~<2£n 21> ~0 (3.37)

n— oo

for all x, y € X. So it follows from (3.26) and (3.37) that

f(3)-<(5)

[C(x) - C'(x)]| = lim 2*"

<m0 5) 0 9

for all x € X. Hence C = C'.
For j = -1, the proof of the theorem is similar. ]

Theorem 3.3. Let j € {1,-1} be fixed. Suppose that a function f : X — Y with f(0) = 0 satisfies
the inequality (3.3). If the upper bound ¢ : X x X — [0, o0) is a mapping such that

1+ N wj (X Y 1-7Y 55 <£ l)]
(LYot Yo ()2 )] < o9

forall x,y € X, then there exists a unique quartic function Q : X — Y and a unique cubic function
C: X — Y satisfying

[ee]

i=(1+j)/2

| f(x) - Q(x) -Cx)[| < 2%4 [Fe () + Ge(—x)] + [$c(0,x) + §c(0,-x)]  (3.40)

_
4(k* - k2)

forall x € X, where

& 211 x k*-k*> [/ x
~ — 4ij | = - -
o= > k [2‘P<O’kﬁ)+ 16 "’(kif’o)]’

i=(1+j)/2

= _ N o[ X Y
Fe(x,y) Z 2 (P<2ij’2ij>'

i=(1+/)/2

(3.41)

Proof. Let f.(x) = (1/2)(f(x) + f(-x)) for all x € X. Then f,(0) = 0 and f, is even function
satisfying || Dy, (x, y)|| < (1/2)[¢(x,y) + ¢(-x,~y)] for all x,y € X. By Theorem 3.1, there
exists a unique quartic function Q : X — Y satisfying

1) = QI < 5 [ (0) + () (342)

for all x € X, where

_ & il x k*-k* [ x
Fo(x) = D, k4’[§(p<0,@>+ 16 <p<@,0>] (3.43)

i=(1+j)/2
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for all x € X. Let now f,(x) = (1/2)(f(x) — f(—x)) for all x € X. Then f,(0) = 0 and f, is
an odd function satisfying || Dy, (x, y)|| < (1/2)[¢(x, y) + ¢(-x,-y)] for all x,y € X. Hence, in
view of Theorem 3.2, there exists a unique cubic function C : X — Y such that

1 - -
| fo(x) = Q)| € —7—5 [#(0, %) + §(0,—x)] (3.44)
4(k* - k?)
for all x € X, where
~ & x Yy
Ge(x,y) = 23’”tp<f, f> (3.45)
i=<§>/z 202

for all x,y € X. On the other hand, we have f(x) = f.(x) + fo(x) for all x € X. Then by
combining (3.42) and (3.44), it follows that

| f(x) = C(x) = Q)| < || fe(x) = Q)| + || fo(x) = C()|

1 1 (3.46)
< — [Fe(x) + Fe(—x)] + ———=< [F(0, %) + F (0, —x)]
S o Pe Pe 4(k4 _ k2) @Y, ¢ (U,

for all x € X. O

We are going to investigate the Hyers-Ulam-Rassias stability problem for functional
equation (1.7).

Corollary 3.4. Let p € (-o0,3) U (4,+0), 8 > 0. Suppose f : X — Y satisfies f(0) = 0 and
inequality

1Ds(x )| < Cllxl” + w7 (3.47)

forall x,y € X. Then there exist a unique quartic function Q : X — Y and a unique cubic function
C: X — Y satisfying

[l £(x) - Q(x) - Cx)||

ol (& 1+k4_k2< ! > — ( L ) >4
“\\2" 716 J\k*-1)) 20— k)\23-1/) ) P77
1 /(1 K-k 1 1 1
[ p— —
6l <k4<<2+ = >(1_kp_4)>+2(k4_k2)(1_2p_3)>, p<3,

(3.48)

<

forall x € X.

Proof. In Theorem 3.3, put ¢(x,y) = 0(||x|” + ||y||’) for all x, y € X. O
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Similarly, one can solve Ulam stability problem for functional equation (1.7) when the
norm of the Cauchy difference is controlled by the mixed type product-sum function

(¢, y) — 0(lIxllx [y llx + IxIP + [[¥]]7)- (3.49)

Corollary 3.5. Let u, v, p be real numbers such that u+v,p € (—o0,3)U (4, +oo) and 6 > 0. Suppose
f X — Y satisfies f(0) = 0 and inequality

1D Ce, ) || < OClIxlx |yl + I1x1P + [[w]17) (3.50)

forall x,y € X. Then there exist a unique quartic function Q : X — Y and a unique cubic function
C: X — Y satisfying

[l f(x) - Q(x) - Cx)||

o (1 ( (3555 ) (1) ) * s (57 ) ) P>
K4\ \ 2 16 kr=4 -1 2k =K\ -1/ )’ p ==
1 1 k*-k? 1 1 1
P — Z
Ollx|l <k4<<2+ 16 ><1—kp4>>+2(k4_k2)<1_2p—3>>r p<3,

(3.51)

<

forall x € X.

Applying Corollary 3.4, one can obtain the stability of the functional equation (1.7) in
the following form.

Corollary 3.6. Let ¢ be a positive real number. Suppose f : X — Y satisfies f(0) = 0 and

IDs(x, y)|l < € forall x,y € X. Then there exists a unique quartic function Q : X — Y and a
unique cubic function C : X — Y satisfying

1//1 K-k k* 1 8
||f(x)—Q(x)—C(x)||S€<F<<§+ 16 ><k4_1>>+2(k4—k2)<8—1>>

(3.52)

forall x € X.
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