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For p ∈ [0, 1], the generalized Seiffert mean of two positive numbers a and b is defined by Sp(a, b) =
p(a−b)/ arctan[2p(a−b)/(a+b)], 0 < p ≤ 1, a /= b; (a+b)/2, p = 0, a /= b; a, a = b. In this paper,
we find the greatest value α and least value β such that the double inequality Sα(a, b) < T(a, b) <
Sβ(a, b) holds for all a, b > 0 with a/= b, and give new bounds for the complete elliptic integrals of

the second kind. Here, T(a, b) = (2/π)
∫π/2
0

√
a2cos2θ + b2sin2θdθ denotes the Toader mean of two

positive numbers a and b.

1. Introduction

For p ∈ [0, 1], the generalized Seiffert mean of two positive numbers a and b is defined by

Sp(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(a − b)
arctan

[
2p(a − b)/(a + b)

] , 0 < p ≤ 1, a /= b,

a + b

2
, p = 0, a /= b,

a, a = b.

(1.1)

It is well known that Sp(a, b) is continuous and strictly increasing with respect to p ∈
[0, 1] for fixed a, b > 0 with a/= b. In particular, if p = 1/2, then the generalized Seiffert mean
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reduces to the Seiffert mean

S(a, b) =

⎧
⎪⎨

⎪⎩

a − b

2 arctan((a − b)/(a + b))
, a /= b,

a, a = b.
(1.2)

Recently, the Seiffert mean and its generalization have been the subject of intensive
research, many remarkable inequalities for these means can be found in the literature [1–5].

In [6], Toader introduced the Toader mean T(a, b) of two positive numbers a and b as
follows:

T(a, b) =
2
π

∫π/2

0

√
a2cos2θ + b2sin2θdθ,

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2aE
(√

1 − (b/a)2
)

π
, a > b,

2bE
(√

1 − (a/b)2
)

π
, a < b,

a, a = b,

(1.3)

where E(r) =
∫π/2
0 (1 − r2sin2t)

1/2
dt, r ∈ [0, 1) is the complete elliptic integral of the second

kind.
Vuorinen [7] conjectured that

M3/2(a, b) < T(a, b) (1.4)

for all a, b > 0 with a/= b, where

Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0

(1.5)

is the power mean of order p of two positive numbers a and b. This conjecture was proved
by Barnard et al. [8].

In [9], Alzer and Qiu presented a best possible upper power mean bound for the
Toader mean as follows:

T(a, b) < Mlog 2/ log(π/2)(a, b) (1.6)

for all a, b > 0 with a/= b.
The main purpose of this paper is to find the greatest value α and least value β such

that the double inequality Sα(a, b) < T(a, b) < Sβ(a, b) holds for all a, b > 0 with a/= b and
give new bounds for the complete elliptic integrals of the second kind.
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2. Lemmas

In order to establish ourmain result, we need several formulas and lemmas, whichwe present
in this section.

The following formulas were presented in [10, Appendix E, pages 474-475]: Let r ∈
[0, 1), then

K(r) =
∫π/2

0

(
1 − r2sin2t

)−1/2
dt, K(0) =

π

2
, K(1−) = +∞,

E(r) =
∫π/2

0

(
1 − r2sin2t

)1/2
dt, E(0) = π/2, E(1−) = 1,

dK(r)
dr

=
E(r) − (1 − r2

)K(r)
r(1 − r2)

,
dE(r)
dr

=
E(r) −K(r)

r
,

d
[E(r) − (1 − r2

)K(r)
]

dr
= rK(r),

d[K(r) − E(r)]
dr

=
rE(r)
1 − r2

,

E
(
2
√
r

1 + r

)
=

2E(r) − (1 − r2
)K(r)

1 + r
.

(2.1)

Lemma 2.1 (see [10, Theorem 1.25]). For −∞ < a < b < ∞, let f(x), g(x) : [a, b] → R be
continuous on [a, b] and be differentiable on (a, b), let g ′(x)/= 0 for all x ∈ (a, b). If f ′(x)/g ′(x) is
increasing (decreasing) on (a, b), then so are

f(x) − f(a)
g(x) − g(a)

,
f(x) − f(b)
g(x) − g(b)

. (2.2)

If f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2. (1) [E(r) − (1 − r2)K(r)]/r2 is strictly increasing from (0, 1) onto (π/4, 1);
(2) {[E(r) − (1 − r2)K(r)]/r2 − π/4}/r2 is strictly increasing from (0, 1) onto (π/32,

1 − π/4);
(3) [K(r) − E(r)]/r2 is strictly increasing from (0, 1) onto (π/4,+∞);
(4) 2E(r) − (1 − r2)K(r) is strictly increasing from (0, 1) onto (π/2, 2);
(5) F(r) = [(2 − r2)K(r) − 2E(r)]/r4 is strictly increasing from (0, 1) onto (π/16,+∞);
(6) G(r) = [4π − πr2 − 8E(r)]/r4 is strictly increasing from (0, 1) onto (3π/16, 3π − 8).

Proof. Parts (1)–(4) can be found in [10, Theorem 3.21(1), Theorem 3.31(6), and Exercise
3.43(11) and (13)].

For part (5), clearly F(1−) = +∞. Let F1(r) = (2 − r2)K(r) − 2E(r) and F2(r) = r4, then
F(r) = F1(r)/F2(r), F1(0) = F2(0) = 0 and

F ′
1(r)

F ′
2(r)

=
E(r) − (1 − r2

)K
4r2(1 − r2)

. (2.3)

It follows from (2.3) and part (1) together with Lemma 2.1 that F(r) is strictly
increasing in (0, 1) and F(0+) = π/16.
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For part (6), clearly G(1−) = 3π − 8. Let G1(r) = 4π − πr2 − 8E(r) and G2(r) = r4, then
G(r) = G1(r)/G2(r), G1(0) = G2(0) = 0, and

G′
1(r)

2G′
2(r)

=

(
2 − r2

)K(r) − 2E(r)
r4

+

[E(r) − (1 − r2
)K(r)

]
/r2 − π/4

r2
. (2.4)

From (2.4), parts (2) and (5) together with Lemma 2.1, we know that G(r) is strictly
increasing in (0, 1), and f(0+) = 3π/16.

Lemma 2.3. (1) g(r) = arctan(
√
3r/2) − √

3πr/{4[2E(r) − (1 − r2)K(r)]} is strictly increasing
from (0, 1) onto (0, arctan(

√
3/2) − √

3π/8).
(2) f(r) = arctan r − πr/{2[2E(r) − (1 − r2)K(r)]} < 0 for r ∈ (0, 1).

Proof. For part (1), clearly g(0+) = 0 and g(1−) = arctan(
√
3/2) − √

3π/8 = 0.0335 · · · > 0.
Simple computation leads to

g ′(r) =
2
√
3

4 + 3r2
−

√
3πE(r)

4[2E(r) − (1 − r2)K(r)]2

=
√
3r4E(r)

4(4 + 3r2)[2E(r) − (1 − r2)K(r)]2
g1(r),

(2.5)

where g1(r) = {8[2E(r) − (1 − r2)K(r)]2 − π(4 + 3r2)E(r)}/[r4E(r)].
Making use of Lemma 2.2 (1), (2), and (6), we get

g1(r) =
8

E(r) ·
[
E(r) − (1 − r2

)K(r)
r2

]2
+
16
{[E(r) − (1 − r2

)K(r)
]
/r2 − π/4

}

r2

− 4π − πr2 − 8E(r)
r4

>
16
π

·
(π
4

)2
+ 16 · π

32
− (3π − 8) = 8 − 3π

2
> 0.

(2.6)

Therefore, part (1) follows from (2.5) and (2.6) together with the limiting values of
g(r) at r = 0 and r = 1.

For part (2), simple computations yield that

lim
r→ 0+

f(r) = lim
r→ 1−

f(r) = 0, (2.7)

f ′(r) =
f1(r)

2(1 + r2)[2E(r) − (1 − r2)K(r)]2
, (2.8)
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where f1(r) = 2[2E(r) − (1 − r2)K(r)]2 − π(1 + r2)E(r). Note that

lim
r→ 0+

f1(r) = 0, (2.9)

lim
r→ 1−

f1(r) = 8 − 2π > 0, (2.10)

f ′
1(r) =

4
[
2E(r) − (1 − r2

)K(r)
][E(r) − (1 − r2

)K(r)
]

r
− 2πrE(r)

−π(1 + r2
)E(r) −K(r)

r
= rf2(r),

(2.11)

where f2(r) = 4[2E(r)−(1−r2)K(r)][E(r)−(1−r2)K(r)]/r2−2πE(r)+π(1+r2)[K(r)−E(r)]/r2.
From Lemma 2.2(1), (3), and (4) together with the monotonicity of E(r)we know that

f2(r) is strictly increasing in (0, 1). Moreover,

lim
r→ 0+

f2(r) = −π
2

4
, (2.12)

lim
r→ 1−

f2(r) = +∞. (2.13)

Equations (2.11)–(2.13) and the monotonicity of f2(r) lead to the conclusion that there
exists r0 ∈ (0, 1) such that f1(r) is strictly decreasing in (0, r0) and strictly increasing in (r0, 1).

It follows from (2.8)–(2.10) and the piecewise monotonicity of f1(r) that there exists
r1 ∈ (0, 1) such that f(r) is strictly decreasing in (0, r1) and strictly increasing in (r1, 1).

Therefore, part (2) follows from (2.7) and the piecewise monotonicity of f(r).

3. Main Result

Theorem 3.1. Inequality S√
3/4(a, b) < T(a, b) < S1/2(a, b) holds for all a, b > 0 with a/= b, and

S√
3/4(a, b) and S1/2(a, b) are the best possible lower and upper generalized Seiffert mean bounds for

the Toader mean T(a, b), respectively.

Proof. Firstly, we prove that

S√
3/4(a, b) < T(a, b) < S1/2(a, b) (3.1)

for all a, b > 0 with a/= b.
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Without loss of generality, we assume that a > b. Let t = b/a < 1, r = (1 − t)/(1 + t).
Then (1.1) and (1.3) lead to

T(a, b) − S√
3/4(a, b) =

2a
π

E
(√

1 − t2
)
−

√
3a(1 − t)

4 arctan
[√

3(1 − t)/2(1 + t)
]

=
2a
π

E
(
2
√
r

1 + r

)
−

√
3ar

2(1 + r) arctan
((√

3/2
)
r
)

=
2a
π

[
2E(r) − (1 − r2

)K(r)
]

1 + r
−

√
3ar

2(1 + r) arctan
((√

3/2
)
r
)

=
2a
[
2E(r) − (1 − r2

)K(r)
]

π(1 + r) arctan
((√

3/2
)
r
)g(r),

(3.2)

T(a, b) − S1/2(a, b) =
2a
π

E
(√

1 − t2
)
− a(1 − t)
2 arctan((1 − t)/(1 + t))

=
2a
π

E
(
2
√
r

1 + r

)
− ar

(1 + r) arctan r

=
2a
π

[
2E(r) − (1 − r2

)K(r)
]

1 + r
− ar
(1 + r) arctan r

=
2a
[
2E(r) − (1 − r2

)K(r)
]

π(1 + r) arctan r
f(r),

(3.3)

where g(r) and f(r) are defined as in Lemma 2.3.
Therefore, inequality (3.1) follows from (3.2) and (3.3) together with Lemma 2.3.
Next, we prove that S√

3/4(a, b) and S1/2(a, b) are the best possible lower and upper
generalized Seiffert mean bounds for the Toader mean T(a, b), respectively.

For any ε > 0 and 0 < x < 1, from (1.1) and (1.3) one has

lim
x→ 0

[S1/2−ε(1, x) − T(1, x)] =
1 − 2ε

2 arctan(1 − 2ε)
− 2
π

<
1

2 arctan 1
− 2
π

= 0, (3.4)

S√
3/4+ε(1, 1 − x) − T(1, 1 − x) =

J(x)

arctan
[(√

3 + 4ε
)
x/2(2 − x)

] , (3.5)

where J(x) = (
√
3/4 + ε)x − 2E(

√
2x − x2) arctan{[(√3 + 4ε)x]/[2(2 − x)]}/π .



Abstract and Applied Analysis 7

Letting x → 0 and making use of Taylor expansion, we get

J(x) =

(√
3
4

+ ε

)

x −
(√

3
4

+ ε

)

x

[
1 − 1

2
x +

1
16

x2 + o
(
x2
)]

×
⎧
⎨

⎩
1 +

1
2
x +

⎡

⎣1
4
− 1
3

(√
3
4

+ ε

)2
⎤

⎦x2 + o
(
x2
)
⎫
⎬

⎭

=
ε

3

(√
3
2

+ ε

)(√
3
4

+ ε

)

x3 + o
(
x3
)
.

(3.6)

Inequality (3.4) and equations (3.5) and (3.6) imply that for any ε > 0 there exist
δ1 = δ1(ε) > 0 and δ2 = δ2(ε) > 0, such that S√

3/4+ε(1, 1 − x) > T(1, 1 − x) for x ∈ (0, δ1) and
S1/2−ε(1, x) < T(1, x) for x ∈ (0, δ2).

From Theorem 3.1, we get new bounds for the complete elliptic integrals of the second
kind as follows.

Corollary 3.2. The inequality

√
3π
(
1 −

√
1 − r2

)

8 arctan
{√

3
(
1 −

√
1 − r2

)
/
[
2
(
1 +

√
1 − r2

)]}

< E(r) <
π
(
1 −

√
1 − r2

)

4 arctan
[(

1 −
√
1 − r2

)
/
(
1 +

√
1 − r2

)]

(3.7)

holds for all r ∈ (0, 1).
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