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We investigate a more general family of one-dimensional shallow water equations. Analogous
to the Camassa-Holm equation, these new equations admit blow-up phenomenon and infinite
propagation speed. First, we establish blow-up results for this family of equations under various
classes of initial data. It turns out that it is the shape instead of the size and smoothness of
the initial data which influences breakdown in finite time. Then, infinite propagation speed for
the shallow water equations is proved in the following sense: the corresponding solution u(t, x)
with compactly supported initial datum u0(x) does not have compact x-support any longer in its
lifespan.

1. Introduction

In this paper we consider the equation

ut − uxxt + (a + b)uux = auxuxx + buuxxx, (1.1)

where a > 0 and b > 0 are real constants.
Set Λ = (1 − ∂2x)

1/2, then we can rewrite (1.1) as

ut + buux + ∂xΛ−2
(
a

2
u2 +

3b − a

2
u2
x

)
= 0. (1.2)

Let y(t, x) = u(t, x) − uxx(t, x), then (1.1) can be reformulated in terms of y(t, x):

yt + auxy + buyx = 0. (1.3)
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By comparisonwith the Camassa-Holm equation [1], the Degasperis-Procesi equation,
[2] and the Holm-Staley b-family of equations [3], it is easy to find that (1.1) is more general.
The Camassa-Holm equation, the Degasperis-Procesi equation, and the Holm-Staley b-family
of equations are the special cases with a = 2, b = 1; a = 3, b = 1, and b = 1, respectively.
The equation of type (1.1) arises in the modeling of shallow water waves; compare with the
discussion in the papers [4, 5].

When a = 2b, use the scaling ũ(t, x) = bu(t, x), then (1.1) can be reformulated into

ũt − ũxxt + 3ũũx = 2ũxũxx + ũũxxx, (1.4)

which is the well-known Camassa-Holm equation. The Camassa-Holm equation was first
written explicitly and derived physically as a water wave equation by Camassa and Holm
[1], who also studied its solutions. It has infinitely many conserved integrals including the
H1-norm, but wave breaking also happens in finite time, which coincides with physical
phenomenon. Some satisfactory results have been obtained recently [6–8] for strong
solutions. Moreover, wave breaking for a large class of initial data has been established
in [9–11], and recently, a new and direct proof for McKean’s theorem is given in [12]. In
[13] some new criterion on blowup is established for the Camassa-Holm equation with
weakly dissipative term. In [14] (see also [15]), Xin and Zhang showed global existence and
uniqueness for weak solutions with u0(x) ∈ Hs. The solitary waves of the Camassa-Holm
equation are peaked solitons and are orbitally stable [16] (see also [17, 18]). It is worthwhile
to point out that the peakons replicate a feature that is characteristic for the waves of great
height waves of largest amplitude that are exact solutions of the governing equations for
water waves; compare with the papers [19–21]. Similarly, if a = 3b, use the some scaling,
then (1.1) can be reformulated into the Degasperis-Procesi equation, the existence of global
solutions, persistence properties and propagation speed of Degasperis-Procesi equation is
given in [22] and the references therein. For the the weakly dissipative Degasperis-Procesi
equation, [23] is concerned with some aspects of existence of global solutions, persistence
properties, and propagation speed. So, in our following discussion, we will always exclude
these two cases.

In general, the family of equations are not always completely integrable systems.
However, one can find the following conservation laws:

H0 =
∫

R

y dx, H1 =
∫

R

yb/a dx, H2 =
∫

R

y2
xy

−2−(b/a) +
a2

b
y−b/a dx, (1.5)

which are quite different from the invariants of the Camassa-Holm equation

H0 =
∫

R

y dx, H1 =
∫

R

u2 + u2
x dx, H2 =

∫
R

u3 + uu2
x dx. (1.6)

Due to the similarity of (1.2) and the Camassa-Holm equation, just by following the
argument for the Camassa-Holm equation, it is easy to establish the followingwell-posedness
theorem for (1.2).
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Theorem 1.1. Given u0(x) ∈ Hs(R), s > 3/2, then there exist a T and a unique solution u to (1.1)
such that

u(t, x) ∈ C([0, T);Hs(R)) ∩ C1
(
[0, T);Hs−1(R)

)
. (1.7)

To make the paper concise we would like to omit the detailed proof, since one can find
similar ones for these types of equations in [7, 24].

Whenwe study the Camassa-Holm equation, themost frequently (crucially) used con-
servation law is that of theH1-norm of the solution. However, if u is a strong solution (decays
rapidly at infinity) to (1.1), direct computation yields

d

dt

∫
R

u2 + u2
x dx = (2b − a)

∫
R

u3
x dx. (1.8)

Hence, the H1-norm of the solution is not conserved at all except for a = 2b. However, we
also have a clear blow-up scenario as follows: the solution blows up if and only if the first-
order derivative blows up that is, wave breaking occurs. More precisely, assume that T is the
lifespan of the corresponding solution, then

lim sup
t→ T

‖ux(t, x)‖L∞(R) = +∞. (1.9)

Before giving our main results, we list some notations that will be used in our paper.
(·, ·) denotes the inner product in the Hilbert space L2(R), (f, g)r

.= (Λrf,Λrg); use ‖ · ‖Ls(R)

for the corresponding Ls(R) norm and ‖ · ‖Hs(R) to denote the corresponding Hs(R) norm.
The remainder of the paper will be organized as follows. In the next section, we

establish blow-up results for this family of equations under various classes of initial data.
In the last section, infinite propagation speed for the shallow water equations is proved.

2. Blow-Up Phenomenon

After local well posedness of strong solutions is established, the next question is whether this
local solution can exist globally. If the solution exists only for a finite time, how about the
behavior of the solution when it blows up? What induces the blowup? On the other hand, to
find sufficient conditions to guarantee the finite time blowup or global existence is of great
interest, particularly for sufficient conditions added on the initial data.

Set p(t, x) as the characteristic evolved by the solution; that is, it satisfies

pt(t, x) = bu
(
t, p(t, x)

)
,

p(0, x) = x.
(2.1)

Taking derivative with respect to x in (2.1), we obtain

dpx
dt

= bux

(
p, t

)
px. (2.2)
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Hence

px(t, x) = eb
∫ t
0 ux(p(τ,x),τ)dτ , (2.3)

which is always positive before the blow-up time. Therefore, the function p(t, x) is an increas-
ing diffeomorphism of the line before blowup. In addition, from (1.1), the following identity
is proved:

y
(
t, p(t, x)

)
pa/bx (t, x) = y0(x). (2.4)

The following theorem is proved in [25] it is one of sufficient conditions to guarantee
the finite time blowup added on the initial data.

Theorem 2.1. Let a > 0, b > 0, a > b, 3b − a > 0, u0 ∈ Hs(R) with s > 3/2 being odd and
u′
0(0) < 0. Then the corresponding solution of (1.1) blows up in finite time.

From the above blow-up result we can obtain the following.

Theorem 2.2. Let a > 0, b > 0, a > b, 3b − a > 0, u0 ∈ H3(R). Suppose that y0 is odd and∫∞
0 e−ξy0(ξ) ≤ 0. Then the corresponding solution of (1.1) blows up in finite time.

Proof. If y0(x) is odd, then u0(x) is also odd. In fact

u0(x) =
1
2

∫
R

e−|x−z|y0(z)dz

=
1
2

∫
R

e−|x−z|
(−y0(−z)

)
dz

= −1
2

∫
R

e−|x−z|y0(z)dz

= −u0(−x).

(2.5)

On the other hand

u′
0(0) = −1

2

∫0

−∞
eξy0(ξ)dξ +

1
2

∫0

−∞
e−ξy0(ξ)dξ

=
∫∞

0
e−ξy0(ξ)dξ < 0.

(2.6)

So Theorem 2.2, follows from Theorem 2.1.

Before giving our main result, we first recall the following three lemmas that will be
used in our proof.
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Lemma 2.3. If s > 0, thenHs(R) ∩ L∞(R) is algebra. Moreover

∥∥fg∥∥Hs(R) ≤ C
(∥∥f∥∥L∞(R)

∥∥g∥∥Hs(R) +
∥∥g∥∥L∞(R)

∥∥f∥∥Hs(R)

)
. (2.7)

Lemma 2.4. If s > 0, then

∥∥[Λs, f
]
g
∥∥
L2(R) ≤ C

(∥∥∂xf∥∥L∞(R)

∥∥∥Λs−1g
∥∥∥
L2(R)

+
∥∥g∥∥L∞(R)

∥∥Λsf
∥∥
L2(R)

)
. (2.8)

Here [A,B] = AB − BA denotes the commutator of the linear operators A and B.

Lemma 2.5 (see [26]). Suppose that Ψ(t) is twice continuously differentiable satisfying

Ψ′′(t) ≥ C0Ψ′(t)Ψ(t), t > 0, C0 > 0,

Ψ(0) > 0, Ψ′(0) > 0.
(2.9)

ThenΨ(t) blows up in finite time. Moreover the blow-up time T can be estimated in terms of the initial
datum as

T ≤ max
{

2
C0Ψ(0)

,
Ψ(0)
Ψ′(0)

}
. (2.10)

Now, we are ready to give our main results. Firstly, we present the result which im-
proves Theorem 2.1.

Theorem 2.6. Let u0 ∈ Hr(R) with r > 3/2, and assume that T is the existence time of the corre-
sponding solution with the initial data u0. If there existsM > 0 such that

‖ux(t, x)‖L∞(R) ≤ M, t ∈ [0, T), (2.11)

then theHr(R) norm of u(t, x) does not blow up on [0, T).

Proof. Let u be the solution to (1.1) with initial data u0 ∈ Hr(R) and let T be the maximal
existence time of the solution u. Applying the operator Λr to (1.2), multiplying by Λru, and
integrating, we obtain

d

dt
‖u‖2Hr(R) = −2b(u, uux)r + 2

(
u, f(u)

)
r + 2

(
u, g(u)

)
r , (2.12)
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where f(u) = −a(1 − ∂2x)
−1(uux) and g(u) = −∂x(1 − ∂2x)

−1(((3b − a)/2)u2
x). We have

|(uux, u)r | = |(Λr(uux),Λru)|
= |([Λr , u]∂xu,Λru) + (uΛr∂xu,Λru)|

= ‖[Λr , u]∂xu‖L2(R)‖Λru‖L2(R) +
1
2
|(uxΛru,Λru)|

≤ C‖ux‖L∞(R)‖u‖2Hr(R),

(2.13)

where we applied Lemma 2.4 with s = r. Again applying Lemma 2.4 with s = r −1, we obtain

∣∣(f(u), u)r
∣∣ =

∣∣∣∣−a
((

1 − ∂2x

)−1
uux, u

)
r

∣∣∣∣
= |a|

∣∣∣(Λr−1(uux),Λr−1u
)∣∣∣ = |a|

∣∣∣([Λr−1, u
]
∂xu,Λr−1u

)
+
(
uΛr−1∂xu,Λr−1u

)∣∣∣
≤ C‖ux‖L∞(R)‖u‖2Hr(R),

(2.14)

and, from Lemma 2.3, we have

∣∣(g(u), u)r
∣∣ ≤ ∥∥g(u)∥∥Hr(R)‖u‖Hr(R)

=
∥∥∥∥−∂x

(
1 − ∂2x

)−1(3b − a

2
u2
x

)∥∥∥∥
Hr(R)

‖u‖Hr(R)

≤ C‖ux‖L∞(R)‖u‖2Hr(R).

(2.15)

Combining the above estimates, we obtain

d

dt
‖u‖2Hr(R) ≤ CM‖u‖2Hr(R). (2.16)

From Gronwall inequality, we obtain

‖u(t)‖2Hr(R) ≤ eCMt‖u(0)‖2Hr(R). (2.17)

This completes the proof of the theorem.

In order to help the readers to understand the following theorem,wewould like to give
an intuitive explanation for this result. Neglecting lower-order source terms, (1.2) reduces to
the generalized Hunter-Saxton equation:

ut + buux =
3a − b

2

(∫x

−∞
−
∫∞

x

)
u2
xdy. (2.18)
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Differentiating with respect to x, one obtains

(ux)t + buuxx = (2b − a)u2
x. (2.19)

By looking at the evolution of ux along characteristics, it is clear that one can have ux → −∞
or ux → +∞ depending on the sign of 2b − a.

Theorem 2.7. Let u0 ∈ Hr(R) with r > 3/2. If a = b/2, then every solution will exist globally
in time. If a > b/2, then the solution blows up in finite time if and only if the slope of the solution
becomes unbounded from below in finite time. If a < b/2, then the solution blows up in finite time if
and only if the slope of the solution becomes unbounded from above in finite time.

Proof. It suffices to consider the case r = 3. Let T > 0 be the maximal time of existence
of the solution of (1.1). From [25] we know that u ∈ C([0, T);H3(R)) ∩ C1([0, T);H2(R)).
Multiplying (1.2) by y = u − uxx and integrating by parts, we get

1
2
d

dt

∫
R

y2dx = −a
∫

R

y2uxdx − b

∫
R

uyyxdx

=
(
−a +

b

2

)∫
R

y2uxdx.

(2.20)

Note that

‖u‖H2(R) ≤ C1
∥∥y∥∥L2(R) ≤ C2‖u‖H2(R). (2.21)

From (2.20), for a = b/2, we have

‖ux‖L∞(R) ≤ ‖u‖H2(R) ≤ C1
∥∥y(t)∥∥L2(R) = C1

∥∥y(0)∥∥L2(R). (2.22)

From Theorem 2.6, for a = b/2 the solution exists globally in time. If a > b/2 and the slope
of the solution is bounded from below or if a < b/2 and the slope of the solution is bounded
from above on [0, T), then there exists M > 0 such that

d

dt

∫
R

y2dx ≤ M

∫
R

y2dx. (2.23)

By Gronwall inequality, we have

∥∥y(t)∥∥L2(R) ≤ eMt
∥∥y(0)∥∥L2(R). (2.24)

There is no doubt that it is the shape of the initial data but not their smoothness or size
that influences the lifespan. However, we try to understand what induces wave breaking.
Another sufficient condition is given in the following theorem. The approach used to prove
the following theorem is rooted in the considerations made in the paper [27].
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Theorem 2.8. Let a − 2b > 0, b > 0. Suppose that u0 ∈ H2(R) and there exists x0 ∈ R such that
y0(x0) = (1 − ∂2x)u0(x0) = 0, and

y0(x) ≥ 0 for x ∈ (−∞, x0), y0(x) ≤ 0 for x ∈ (x0,∞). (2.25)

Then the corresponding solution u(t, x) of (1.1) blows up in finite time with the lifespan

T ≤ max

{
−2

bu0(x)
,

−2u0(x)
b
(
u2
0x(x) − u2

0(x)
)
}
. (2.26)

Proof. Suppose that the solution exists globally. Due to (2.4) and the initial condition, we have
y0(t, p(t, x0)) = 0, and

y
(
t, p(t, x)

) ≥ 0 for x ∈ (−∞, x0),

y
(
t, p(t, x)

) ≤ 0 for x ∈ (x0,∞)
(2.27)

for all t.
Since u(x, t) = G ∗ y(t, x), x ∈ R, t ≥ 0, one can write u(t, x) and ux(t, x) as

u(t, x) =
1
2
e−x

∫x

−∞
eξy(t, ξ)dξ +

1
2
ex

∫∞

x

e−ξy(t, ξ)dξ,

ux(t, x) = −1
2
e−x

∫x

−∞
eξy(t, ξ)dξ +

1
2
ex

∫∞

x

e−ξy(t, ξ)dξ.

(2.28)

Consequently,

u2
x(t, x) − u2(t, x) = −

∫x

−∞
eξy(t, ξ)dξ

∫∞

x

e−ξy(t, ξ)dξ. (2.29)

From the expression of ux(t, x) in terms of y(t, x),

d

dt
ux

(
t, p(t, x0)

)

= bu2(t, p(t, x0)
) − 1

2
e−p(t,x0)

∫p(t,x0)

−∞
eξyt(t, ξ)dξ +

1
2
ep(t,x0)

∫∞

p(t,x0)
eξyt(t, ξ)dξ.

(2.30)

Rewrite (1.1) as

yt + buyx + 2buxy +
a − 2b

2

(
u2 − u2

x

)
x
= 0. (2.31)
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Using this identity, we can obtain

d

dt
ux

(
t, p(t, x0)

)

= bu2(t, p(t, x0)
)

+
b

2
e−p(t,x0)

∫p(t,x0)

−∞
eξ
(
uyξ + 2uξy

)
dξ − b

2
ep(t,x0)

∫∞

p(t,x0)
e−ξ

(
uyξ + 2uξy

)
dξ

+
a − 2b

4
e−p(t,x0)

∫p(t,x0)

−∞
eξ
(
u2 − u2

ξ

)
ξ
dξ − a − 2b

4
ep(t,x0)

∫∞

p(t,x0)
e−ξ

(
u2 − u2

ξ

)
ξ
dξ.

(2.32)

By direct calculation, we have

∫p(t,x0)

−∞
eξ
(
uyξ + 2yuξ

)
(t, ξ)dξ

=
∫p(t,x0)

−∞
eξ
(
u(t, ξ)y(t, ξ)

)
ξdξ +

∫p(t,x0)

−∞
eξy(t, ξ)uξ(t, ξ)dξ

= −
∫p(t,x0)

−∞
eξu(t, ξ)y(t, ξ)dξ +

1
2

∫p(t,x0)

−∞
eξ
(
u2(t, ξ) − u2

ξ(t, ξ)
)
ξ
dξ

= −
∫p(t,x0)

−∞
eξ
[
u2(t, ξ) +

1
2
u2
x(t, ξ)

]
dξ +

[
eξ
(
u(t, ξ)ux(t, ξ) − 1

2
u2
x(t, ξ)

)]
ξ=p(t,x0)

.

(2.33)

Using the inequality
∫x
−∞ eξ[u2(t, ξ) + 1/2u2

x(t, ξ)]dξ ≥ ex(u2(t, x)/2) (see [26]), we obtain

b

2
e−p(t,x0)

∫p(t,x0)

−∞
eξ
(
uyx + 2yux

)
(t, ξ)dξ

≤ −b
4
u2(t, p(t, x0)

) − b

4
u2
x

(
t, p(t, x0)

)
+
b

2
u
(
t, p(t, x0)

)
ux

(
t, p(t, x0)

)
.

(2.34)

Similarly, we have

− b

2
ep(t,x0)

∫p(t,x0)

−∞
e−ξ

(
uyx + 2yux

)
(t, ξ)dξ

≤ −b
4
u2(t, p(t, x0)

) − b

4
u2
x

(
t, p(t, x0)

) − b

2
u
(
t, p(t, x0)

)
ux

(
t, p(t, x0)

)
.

(2.35)

Now using the inequality (see [26])

u2
x(t, x) − u2(t, x) ≤

(
u2
x − u2

)(
t, p(t, x0)

)
, (2.36)
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we obtain

a − 2b
4

e−p(t,x0)
∫p(t,x0)

−∞
eξ
(
u2 − u2

ξ

)
ξ
(t, ξ)dξ ≤0. (2.37)

Similarly, we have

a − 2b
4

ep(t,x0)
∫∞

p(t,x0)
e−ξ

(
u2 − u2

x

)
(t, ξ)dξ ≥ 0. (2.38)

Combining all the above terms together, we have

d

dt
ux

(
t, p(t, x0)

) ≤ b

2
u2(t, p(t, x0)

) − b

2
u2
x

(
t, p(t, x0)

)
. (2.39)

Claim. ux(t, p(t, x0)) < 0 is decreasing and u2(t, p(t, x0)) < u2
x(t, p(t, x0)) for all t ≥ 0.

Suppose not that there exists a t0 such that u2(t, p(t, x0)) < u2
x(t, p(t, x0)) on [0, t0) and

u2(t0, p(t0, x0)) = u2
x(t0, p(t0, x0)). Now, let

I(t) =
1
2
e−p(t,x0)

∫p(t,x0)

−∞
eξy(t, ξ)dξ > 0,

II(t) =
1
2
ep(t,x0)

∫∞

p(t,x0)
e−ξy(t, ξ)dξ < 0.

(2.40)

Firstly, by the same trick as above, we obtain

dI(t)
dt

≥ b

4

(
u2
x − u2

)(
t, p(t, x0)

)
> 0,

dII(t)
dt

≤ −b
4

(
u2
x − u2

)(
t, p(t, x0)

)
< 0,

(
u2
x − u2

)(
t, p(t, x0)

)
= −4I(t)II(t) ≥ −4I(0)II(0) > 0.

(2.41)

This implies that t0 can be extended to infinity.
Moreover, due to the above inequality, we have

d

dt

(
u2
x − u2

)(
t, p(t, x0)

)
= 4

d

dt
I(t) · (−II(t)) + 4I(t) · d

dt
(−II(t))

≥ b
(
u2
x − u2

)(
t, p(t, x0)

)
[I(t) − II(t)]

= −bux

(
t, p(t, x0)

)(
u2
x − u2

)(
t, p(t, x0)

)
.

(2.42)
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Now substituting (2.39) in (2.42), we get

d

dt

(
u2
x − u2

)(
t, p(t, x0)

) ≥ b2

2

(
u2
x − u2

)(
t, p(t, x0)

)[∫ t

0

(
u2
x − u2

)(
τ, p(τ, x0)

)
dτ − 2

b
u0x(x0)

]
.

(2.43)

Now the theorem follows from Lemma 2.5 withΨ(t) =
∫ t
0(u

2
x−u2)(τ, p(τ, x0))dτ−(2/b)u0x(x0)

and C0 = b2/2. Then, we complete our proof.

The final goal for us is to establish a necessary and sufficient condition for guarantee-
ing singularity formation in finite time, which is in the opposite direction to global existence.
So if the necessary and sufficient condition can be found, then the problem can be solved
completely.

Now, let us try to find a condition for global existence. Unfortunately, when a/= 2b like
the Degasperis-Procesi equation [22] and the Holm-Staley b-family of equations [26], only
the following easy form can be proved at present.

Theorem 2.9. Suppose that u0 ∈ H3(R), y0(x) = (1 − ∂2x)u0 does not change sign. Then the corre-
sponding solution to (1.1) exists globally.

Proof. Without loss of generality we assume y0(x) ≥ 0. It is sufficient to prove that ux(t, x) is
bounded for all t.

In fact,

ux(t, x) = −1
2
e−x

∫x

−∞
eξy(t, ξ)dξ +

1
2
ex

∫∞

x

e−ξy(t, ξ)dξ

≥ −1
2
e−x

∫x

−∞
eξy(t, ξ)dξ

≥ −1
2

∫x

−∞
y(t, ξ)dξ

≥ −1
2

∫+∞

−∞
y(t, ξ)dξ

= −1
2

∫+∞

−∞
y0(ξ)dξ,

(2.44)

while we can also obtain

ux(t, x) = −1
2
e−x

∫x

−∞
eξy(t, ξ)dξ +

1
2
ex

∫∞

x

e−ξy(t, ξ)dξ

≤ 1
2
ex

∫∞

x

e−ξy(t, ξ)dξ

≤ 1
2

∫+∞

−∞
y0(ξ)dξ.

(2.45)
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Combining the above terms together, we have

|ux(t, x)| ≤ 1
2

∣∣∣∣
∫+∞

−∞
y0(ξ)dξ

∣∣∣∣. (2.46)

Then, we complete our proof.

3. Propagation Speed

The purpose of this section is to give a detailed description of the corresponding strong
solution u(t, x) in its lifespan with u0 being compactly supported. The analogous results were
obtained in [6] for the Camassa-Holm equation and in the papers [28, 29] for the Degasperis-
Procesi equation. The main theorem reads as follows.

Theorem 3.1. Let a > 0 and 3b − a > 0. Assume that the initial datum u0 ∈ H3(R) is compactly
supported in [c, d]. Then, the corresponding solution of (1.1) has the following property: for 0 < t < T

u(t, x) = L(t)e−x as x > p(t, d), u(t, x) = l(t)ex as x < p(t, c), (3.1)

with L(t) > 0 and l(t) < 0, respectively, where p(t, x) is defined by (2.1) and T is its lifespan.
Furthermore, L(t) and l(t) denote continuous nonvanishing functions, with L(t) > 0 and l(t) < 0 for
t ∈ (0, T]. And L(t) is a strictly increasing function, while l(t) is a strictly decreasing function.

Proof. Since u0(x) has a compact support, y0(x) = (1−∂2x)u0(x) also does. From (2.4), it follows
that y(t, x) = (1 − ∂2x)u(t, x) is compactly supported in [p(t, c), p(t, d)] in its lifespan. Hence
the following functions are well defined:

E(t) =
∫

R

exy(t, x)dx, F(t) =
∫

R

e−xy(t, x)dx (3.2)

with E(0) = 0 = F(0). For x > p(t, d), we have

u(t, x) =
1
2
e−|x| ∗ y(t, x) = 1

2
e−x

∫p(t,d)

p(t,c)
e−ξy(t, ξ)dξ =

1
2
e−xE(t), (3.3)

and, for x < p(t, c), we have

u(t, x) =
1
2
e−|x| ∗ y(t, x) = 1

2
ex

∫p(t,d)

p(t,c)
e−ξy(t, ξ)dξ =

1
2
exF(t). (3.4)

Hence, as consequence of (3.3) and (3.4), we have

u(t, x) = −ux(t, x) = uxx(t, x) =
1
2
e−xE(t), for x > p(t, d),

u(t, x) = ux(t, x) = uxx(t, x) =
1
2
exF(t), for x < p(t, c).

(3.5)



Abstract and Applied Analysis 13

On the other hand,

dE(t)
dt

=
∫

R

exyt(t, x)dx. (3.6)

Differentiating (1.1) twice, we get

0 = uxxt + b(uux)xx + Λ−2∂3x

(
a

2
u2 +

3b − a

2
u2
x

)

= uxxt + b(uux)xx + Λ−2∂x

(
a

2
u2 +

3b − a

2
u2
x

)
−Λ−2

(
1 − ∂2x

)
∂x

(
a

2
u2 +

3b − a

2
u2
x

)

= uxxt + b(uux)xx + Λ−2∂x

(
a

2
u2 +

3b − a

2
u2
x

)
− ∂x

(
a

2
u2 +

3b − a

2
u2
x

)
.

(3.7)

Combining (1.1) and (3.7), we obtain

yt = −buux + b(uux)xx − ∂x

(
a

2
u2 +

3b − a

2
u2
x

)
. (3.8)

Substituting the identity (3.8) into dE(t)/dt and using (3.5), we obtain

dE(t)
dt

= −b
∫

R

exuuxdx + b

∫
R

ex(uux)xxdx −
∫

R

ex∂x

(
a

2
u2 +

3b − a

2
u2
x

)
dx

=
∫

R

ex
(
a

2
u2 +

3b − a

2
u2
x

)
dx.

(3.9)

Therefore, in the lifespan of the solution, we have

E(t) =
∫ t

0

∫
R

ex
(
a

2
u2 +

3b − a

2
u2
x

)
dx > 0. (3.10)

By the same argument, one can check that the following identity for F(t) is true:

F(t) = −
∫ t

0

∫
R

e−x
(
a

2
u2 +

3b − a

2
u2
x

)
dx < 0. (3.11)

In order to complete the proof, it is sufficient to let L(t) = (1/2)E(t) and l(t) = (1/2)F(t),
respectively.
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