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We find the greatest value p and the least value q in (0, 1/2) such that the double inequalityH(pa+
(1 − p)b, pb + (1 − p)a) < I(a, b) < H(qa + (1 − q)b, qb + (1 − q)a) holds for all a, b > 0 with a/= b.
Here, H(a, b), and I(a, b) denote the harmonic and identric means of two positive numbers a and
b, respectively.

1. Introduction

The classical harmonic meanH(a, b) and identric mean I(a, b) of two positive numbers a and
b are defined by

H(a, b) =
2ab
a + b

, (1.1)

I(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

1
e

(
bb

aa

)1/(b−a)
, a /= b,

a, a = b,

(1.2)

respectively. Recently, both mean values have been the subject of intensive research. In
particular, many remarkable inequalities forH and I can be found in the literature [1–17].

Let Mp(a, b) = [(ap + bp)/2]1/p, L(a, b) = (a − b)/(loga − log b), G(a, b) =
√
ab,

A(a, b) = (a+b)/2, and P(a, b) = (a−b)/[4 arctan(
√
a/b)−π] be the pth power, logarithmic,
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geometric, arithmetic, and Seiffert means of two positive numbers a and b with a/= b,
respectively. Then it is well-known that

min{a, b} < H(a, b) = M−1(a, b) < G(a, b)

= M0(a, b) < L(a, b)

< P(a, b) < I(a, b) < A(a, b)

= M1(a, b) < max{a, b}

(1.3)

for all a, b > 0 with a/= b.
Long and Chu [18] answered the question: what are the greatest value p and the least

value q such thatMp(a, b) < Aα(a, b)Gβ(a, b)H1−α−β(a, b) < Mq(a, b) for all a, b > 0 with a/= b
and α, β > 0 with α + β < 1.

In [19], the authors proved that the double inequality

αA(a, b) + (1 − α)H(a, b) < P(a, b) < βA(a, b) +
(
1 − β

)
H(a, b) (1.4)

holds for all a, b > 0 with a/= b if and only if α ≤ 2/π and β ≥ 5/6.
The following sharp bounds for I, (LI)1/2, and (L + I)/2 in terms of power means are

presented in [20]:

M2/3(a, b) < I(a, b) < Mlog 2(a, b), M0(a, b) <
√

L(a, b)I(a, b) < M1/2(a, b),

Mlog 2/(1+log 2)(a, b) <
L(a, b) + I(a, b)

2
< M1/2(a, b)

(1.5)

for all a, b > 0 with a/= b.
Alzer and Qiu [21] proved that the inequalities

αA(a, b) + (1 − α)G(a, b) < I(a, b) < βA(a, b) +
(
1 − β

)
G(a, b) (1.6)

hold for all positive real numbers a and b with a/= b if and only if α ≤ 2/3 and β ≥ 2/e =
0.73575, and so forth.

For fixed a, b > 0 with a/= b and x ∈ [0, 1/2], let

f(x) = H(xa + (1 − x)b, xb + (1 − x)a). (1.7)

Then it is not difficult to verify that f(x) is continuous and strictly increasing in
[0, 1/2]. Note that f(0) = H(a, b) < I(a, b) and f(1/2) = A(a, b) > I(a, b). Therefore, it is
natural to ask what are the greatest value p and the least value q in (0, 1/2) such that the
double inequality H(pa + (1 − p)b, pb + (1 − p)a) < I(a, b) < H(qa + (1 − q)b, qb + (1 − q)a)
holds for all a, b > 0 with a/= b. The main purpose of this paper is to answer these questions.
Our main result is Theorem 1.1.
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Theorem 1.1. If p, q ∈ (0, 1/2), then the double inequality

H
(
pa +

(
1 − p

)
b, pb +

(
1 − p

)
a
)

< I(a, b)

< H
(
qa +

(
1 − q

)
b, qb +

(
1 − q

)
a
)

(1.8)

holds for all a, b > 0 with a/= b if and only if p ≤ (1 −
√
1 − 2/e)/2 and q ≥ (6 − √

6)/12.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. Let λ = (6 − √
6)/12 and μ = (1 −

√
1 − 2/e)/2. Then from the

monotonicity of the function f(x) = H(xa + (1 − x)b, xb + (1 − x)a) in [0, 1/2] we know
that to prove inequality (1.8)we only need to prove that inequalities

I(a, b) < H(λa + (1 − λ)b, λb + (1 − λ)a), (2.1)

I(a, b) > H
(
μa +

(
1 − μ

)
b, μb +

(
1 − μ

)
a
)
, (2.2)

hold for all a, b > 0 with a/= b.
Without loss of generality, we assume that a > b. Let t = a/b > 1 and r ∈ (0, 1/2), then

from (1.1) and (1.2) one has

logH(ra + (1 − r)b, rb + (1 − r)a) − log I(a, b)

= log
{
r(1 − r)t2 +

[
r2 + (1 − r)2

]
t + r(1 − r)

}

− log(t + 1) − t log t
t − 1

+ 1 + log 2.

(2.3)

Let

g(t) = log
{
r(1 − r)t2 +

[
r2 + (1 − r)2

]
t + r(1 − r)

}

− log(t + 1) − t log t
t − 1

+ 1 + log 2.
(2.4)

Then simple computations lead to

g(1) = 0, (2.5)

lim
t→+∞

g(t) = log[r(1 − r)] + 1 + log 2, (2.6)

g ′(t) =
g1(t)

(t − 1)2
, (2.7)
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where

g1(t) = log t − (t − 1)
[(
2r2 − 2r + 1

)
t2 + 4r(1 − r)t + 2r2 − 2r + 1

]

(t + 1)[r(1 − r)t2 + (2r2 − 2r + 1)t + r(1 − r)]
, (2.8)

g1(1) = 0, (2.9)

lim
t→+∞

g1(t) = +∞, (2.10)

g ′
1(t) =

g2(t)

t(t + 1)2[r(1 − r)t2 + (2r2 − 2r + 1)t + r(1 − r)]2
, (2.11)

where

g2(t) = r2(1 − r)2t6 +
(
2r4 − 4r3 − 2r2 + 4r − 1

)
t5 − (17r4 − 34r3 + 25r2 − 8r + 1

)
t4

+4
(
7r4 − 14r3 + 13r2 − 6r + 1

)
t3 − (17r4 − 34r3 + 25r2 − 8r + 1

)
t2

+
(
2r4 − 4r3 − 2r2 + 4r − 1

)
t + r2(1 − r)2,

(2.12)

g2(1) = 0, (2.13)

lim
t→+∞

g2(t) = +∞, (2.14)

g ′
2(t) = 6r2(1 − r)2t5 + 5

(
2r4 − 4r3 − 2r2 + 4r − 1

)
t4 − 4

(
17r4 − 34r3 + 25r2 − 8r + 1

)
t3

+12
(
7r4 − 14r3 + 13r2 − 6r + 1

)
t2 − 2

(
17r4 − 34r3 + 25r2 − 8r + 1

)
t

+2r4 − 4r3 − 2r2 + 4r − 1,
(2.15)

g ′
2(1) = 0, (2.16)

lim
t→+∞

g ′
2(t) = +∞, (2.17)

g ′′
2(t) = 30r2(1 − r)2t4 + 20

(
2r4 − 4r3 − 2r2 + 4r − 1

)
t3 − 12

(
17r4 − 34r3 + 25r2 − 8r + 1

)
t2

+24
(
7r4 − 14r3 + 13r2 − 6r + 1

)
t − 2

(
17r4 − 34r3 + 25r2 − 8r + 1

)
,

(2.18)

g ′′
2(1) = −2

(
24r2 − 24r + 5

)
, (2.19)

lim
t→+∞

g ′′
2(t) = +∞, (2.20)

g ′′′
2 (t) = 120r2(1 − r)2t3 + 60

(
2r4 − 4r3 − 2r2 + 4r − 1

)
t2

−24(17r4 − 34r3 + 25r2 − 8r + 1
)
t + 24

(
7r4 − 14r3 + 13r2 − 6r + 1

)
,

(2.21)

g ′′′
2 (1) = −12

(
24r2 − 24r + 5

)
, (2.22)

lim
t→∞

g ′′′
2 (t) = ∞, (2.23)

g2
(4)(t) = 360r2(1 − r)2t2 + 120

(
2r4 − 4r3 − 2r2 + 4r − 1

)
t

−24(17r4 − 34r3 + 25r2 − 8r + 1
)
,

(2.24)
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g2
(4)(1) = 48

(
4r4 − 8r3 − 10r2 + 14r − 3

)
, (2.25)

lim
t→+∞

g2
(4)(t) = +∞, (2.26)

g2
(5)(t) = 720r2(1 − r)2t + 120

(
2r4 − 4r3 − 2r2 + 4r − 1

)
, (2.27)

g2
(5)(1) = 120

(
8r4 − 16r3 + 4r2 + 4r − 1

)
. (2.28)

We divide the proof into two cases.

Case 1 (r = λ = (6 − √
6)/12). Then (2.19), (2.22), (2.25), and (2.28) lead to

g ′′
2(1) = 0, (2.29)

g ′′′
2 (1) = 0, (2.30)

g2
(4)(1) =

13
3

> 0, (2.31)

g2
(5)(1) =

65
3

> 0. (2.32)

From (2.27) we clearly see that g2(5)(t) is strictly increasing in [1,+∞), then inequality
(2.32) leads to the conclusion that g2

(5)(t) > 0 for t ∈ [1,+∞), hence g2
(4)(t) is strictly

increasing in [1,+∞).
It follows from inequality (2.31) and the monotonicity of g2(4)(t) that g ′′′

2 (t) is strictly
increasing in [1,+∞). Then (2.30) implies that g ′′′

2 (t) > 0 for t ∈ [1,+∞), so g ′′
2(t) is strictly

increasing in [1,+∞).
From (2.29) and the monotonicity of g ′′

2(t)we clearly see that g ′
2(t) is strictly increasing

in [1,+∞).
From (2.5), (2.7), (2.9), (2.11), (2.13), (2.16), and the monotonicity of g ′

2(t)we conclude
that

g(t) > 0 (2.33)

for t ∈ (1,+∞).
Therefore, inequality (2.1) follows from (2.3) and (2.4) together with inequality (2.33).

Case 2 (r = μ = (1 −
√
1 − 2/e)/2). Then (2.19), (2.22), (2.25), and (2.28) lead to

g ′′
2(1) = −2

e
(5e − 12) < 0, (2.34)

g ′′′
2 (1) = −12

e
(5e − 12) < 0, (2.35)

g2
(4)(1) = −48

e2

(
3e2 − 7e − 1

)
< 0, (2.36)

g2
(5)(1) =

120
e2

(
2 + 2e − e2

)
> 0. (2.37)
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From (2.27) and (2.37) we know that g2(4)(t) is strictly increasing in [1,+∞). Then (2.26) and
(2.36) lead to the conclusion that there exists t1 > 1 such that g2(4)(t) < 0 for t ∈ [1, t1) and
g2

(4)(t) > 0 for t ∈ (t1,+∞), hence g ′′′
2 (t) is strictly decreasing in [1, t1] and strictly increasing

in [t1,+∞).
It follows from (2.23) and (2.35) together with the piecewise monotonicity of g ′′′

2 (t) that
there exists t2 > t1 > 1 such that g ′′

2(t) is strictly decreasing in [1, t2] and strictly increasing in
[t2,+∞). Then (2.20) and (2.34) lead to the conclusion that there exists t3 > t2 > 1 such that
g ′
2(t) is strictly decreasing in [1, t3] and strictly increasing in [t3,+∞).

From (2.16) and (2.17) together with the piecewise monotonicity of g ′
2(t) we clearly

see that there exists t4 > t3 > 1 such that g ′
2(t) < 0 for t ∈ (1, t4) and g ′

2(t) > 0 for t ∈ (t4,+∞).
Therefore, g2(t) is strictly decreasing in [1, t4] and strictly increasing in [t4,+∞). Then (2.11)–
(2.14) lead to the conclusion that there exists t5 > t4 > 1 such that g1(t) is strictly decreasing
in [1, t5] and strictly increasing in [t5,+∞).

It follows from (2.7)–(2.10) and the piecewise monotonicity of g1(t) that there exists
t6 > t5 > 1 such that g(t) is strictly decreasing in [1, t6] and strictly increasingin [t6,+∞).

Note that (2.6) becomes

lim
t→+∞

g(t) = log[r(1 − r)] + 1 + log 2 = 0 (2.38)

for r = μ = (1 −
√
1 − 2/e)/2.

From (2.5) and (2.38) together with the piecewise monotonicity of g(t) we clearly see
that

g(t) < 0 (2.39)

for t ∈ (1,+∞).
Therefore, inequality (2.2) follows from (2.3) and (2.4) together with inequality (2.39).
Next, we prove that the parameter λ = (6 − √

6)/12 is the best possible parameter in
(0, 1/2) such that inequality (2.1) holds for all a, b > 0 with a/= b. In fact, if r < λ = (6−√6)/12,
then (2.19) leads to g ′′

2(1) = −2(24r2 − 24r + 5) < 0. From the continuity of g ′′
2(t)we know that

there exists δ > 0 such that

g ′′
2(t) < 0 (2.40)

for t ∈ (1, 1 + δ).
It follows from (2.3)–(2.5), (2.7), (2.9), (2.11), (2.13), and (2.16) that I(a, b) > H(ra +

(1 − r)b, rb + (1 − r)a) for a/b ∈ (1, 1 + δ).
Finally, we prove that the parameter μ = (1 −

√
1 − 2/e)/2 is the best possible

parameter in (0, 1/2) such that inequality (2.2) holds for all a, b > 0 with a/= b. In fact, if
(1 −

√
1 − 2/e)/2 = μ < r < 1/2, then (2.6) leads to limt→+∞g(t) > 0. Hence, there exists T > 1

such that

g(t) > 0 (2.41)

for t ∈ (T,+∞).
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Therefore,H(ra+ (1− r)b, rb + (1− r)a) > I(a, b) for a/b ∈ (T,+∞), follows from (2.3)
and (2.4) together with inequality (2.41).
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