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The theory of the diffraction Fresnel transform is extended to certain spaces of Schwartz
distributions. In the context of Boehmian spaces, the diffraction Fresnel transform is obtained as a
continuous function. Convergence with respect to δ and Δ is also defined.

1. Introduction

The integral transforms play important role in the various fields of optics. One of great im-
portance in many applications is the Fourier transform, where the kernel takes the form of
a complex exponential function. The generalization of the Fourier transform is known as
the fractional Fourier transform which was introduced by Namias in [1] and, has recently
attracted considerable attention in optics and the light propagation in gradient-index media;
see, for example, [2, 3], similarly in some lens systems see [4, 5]. Another well-known linear
transform is the Fresnel transform; see [4–7], where the complex version of kernel having a
quadratic combination of t and ξ in the exponent, see [8]. Recently, much attention has been
paid to the diffraction Fresnel transform

Fdf(ξ) =RK
(
α1, γ1, γ2, α2; ξ, t

)
f(t)dt, (1.1)

where

K
(
α1, γ1, γ2, α2; ξ, t

)
=

1
√
2πiγ1

exp
(

i

2γ1

(
α1t

2 − 2ξt + α2ξ2
))

(1.2)
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is the transform kernel with the real parameters and α1, γ1, and γ2 satisfy the following
relation:

α1α2 − γ1γ2 = 1 (1.3)

holds; see [9].
Many familiar transforms can be considered as special cases of the generalized Fresnel

transform. For example, if the parameters α1, γ1, γ2 and α2 satisfy the matrix

(
α1 γ1
γ2 α2

)
=

(
cos θ sin θ
− sin θ cos θ

)
(1.4)

then the generalized Fresnel transform becomes a fractional Fourier transform.
In particular, when θ = π/2, one obtains the standard Fourier transform. Further, if

α1 = α2 = 1, the generalized Fresnel transform reduces to the complex form of the Fresnel
transform.

In the present paper, we show that the diffraction Fresnel transform can be extended to
certain spaces generalized functions. In Section 2, we extend the diffraction Fresnel transform
to a space of tempered distributions and further, by the aid of the Parseval’s equation, to a
space of distributions of compact support. In Section 3, we define the diffraction Fresnel trans-
form of a Boehmian and discuss its continuity with respect to δ and Δ convergence.

2. The Distributional Diffraction Fresnel Transform

Let S denote the space of all complex valued functions φ(t) that are infinitely smooth and are
such that, as |t| → ∞, they and their partial derivatives decrease to zero faster than every
power of 1/|t|. When t is one dimensional, every function φ(t) in S satisfies the infinite set of
inequalities

∣∣∣tmφ(k)(t)
∣∣∣ ≤ Cm,k, where t ∈ R, (2.1)

wherem and k run through all nonnegative integers. The above expression can be interpreted
as

lim
|t|→∞

tmφ(k)(t) = 0. (2.2)

Members of S are the so-called testing functions of rapid descent, then S is naturally a
linear space. The dual space Ś of S is the space of distributions of slow growth (the space
of tempered distributions). See [2, 10, 11].

Theorem 2.1. If φ(t) is in S, then its diffraction Fresnel transform

Fd
(
φ
)
(ξ) =

1
√
2πiγ1

∫

R
φ(t) exp

(
i
(
α1t

2 − 2tξ + α2ξ2
)

2γ1

)

dt (2.3)

exists and further also in S.
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Proof. Let ξ be fixed. If φ(t) is in S, then its diffraction Fresnel transform certainly exists. More-
over, differentiating the right-hand side of (2.3) with respect to ξ, under the integral sign, k-
times, yields a sum of polynomials, pk(t + ξ), say of combinations of t and ξ. That is,

∣
∣
∣
∣
∣
dk

dtk
Fd

(
φ
)
(ξ)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
pk(t + ξ)φ(t) exp

(
i
(
α1t

2 − 2tξ + α2ξ2
)

2γ1

)∣
∣
∣
∣
∣
≤ ∣

∣pk(t + ξ)φ(t)
∣
∣, (2.4)

which is also in S, since φ in S and S is a linear space. Hence,

∣
∣
∣
∣
∣
ξm

dk

dtk
Fd

(
φ
)
(ξ)

∣
∣
∣
∣
∣
≤

∫

R

∣
∣ξmpk(t + ξ)φ(t)

∣
∣dt. (2.5)

Once again, since φ ∈ S, the integral on the right-hand side of (2.5) is bounded by a constant
Cm,k, for every pair of nonnegative integersm and k. Hence, we have the following theorem.

Theorem 2.2 (Parseval’s Equation for the diffraction transform). If f(x) and g(x) are absolute-
ly integrable, over x ∈ R, then

∫

R
f(x)Fdg(x)dx =

∫

R
Fdf(x)g(x)dx, (2.6)

where Fdf and Fdg are the corresponding diffraction Fresnel transforms of f and g, respectively.

Proof. The diffraction Fresnel transforms Fdf(ξ) and Fdg(ξ) are indeed bounded and continu-
ous for all ξ. This ensure the convergence of the integrals in (2.6). Moreover,

∫

R
f(x)Fdg(x)dx =

∫

R
dxRf(x)g

(
y
)
exp

(
i
(
α1y

2 − 2xy + α2x2)

2γ1

)

dy, α1α2 − γ1γ2 = 1.

(2.7)

Since the integral (2.7) is absolutely integrable over the entire (x, y)-plane, Fubini’s theorem
allows us to interchange the order of integration. Hence, (2.7) can be written as

∫

R
f(x)Rg

(
y
)
exp

(
i
(
α2x

2 − 2xy + α1y2)

2γ1

)

dy dx =
∫

R
Fdf

(
y
)
g
(
y
)
dy, (2.8)

where α2α1 − γ1γ2 = 1. This completes the proof of the theorem.

Parseval’s relation can be interpreted as

〈
Fdf, φ

〉
=

〈
f,Fdφ

〉
. (2.9)
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Therefore, from the above relation, we state the diffraction Fresnel transform of a distribution f
of slow growth (f ∈ Ś) as

〈
Fdf, φ

〉
=

〈
f,Fdφ

〉
, ∀φ ∈ S, (2.10)

and it is well defined by Theorem 2.1.

Theorem 2.3. If f is a distribution of slow growth, then its diffraction Fresnel transform Fdf is also
a distribution of slow growth.

Proof. Linearity of Fdf is obvious. To show continuity of Fdf , let (φn)
∞
n=1 → 0, in S, then also

(Fdφn)
∞
n=1 → 0 in S as n → ∞. Hence,

〈
Fdf, φn

〉
=

〈
f,Fdφn

〉 −→ 0 as n −→ ∞. (2.11)

Hence Fdf ∈ Ś. This completes the proof of the theorem.

Theorem 2.4. Let f be a distribution of compact support (f ∈ É). Then, we define the Fresnel trans-
form of f as

Fdf(ξ) =
1

√
2πiγ1

〈

f(t), exp

(
i
(
α1t

2 − 2tξ + α2ξ2
)

2γ1

)〉

. (2.12)

Proof. Let φ ∈ S(R) be arbitrary. From (2.10), we read

〈
Fdf(ξ), φ(ξ)

〉
=

〈
f(t),Fdφ(t)

〉

=
1

√
2πiγ1

〈

f(t),
∫

R
φ(ξ) exp

(
i
(
α1ξ

2 − 2tξ + α2t2
)

2γ1

)

dξ

〉

=
1

√
2πiγ1

∫

R

〈

f(t), exp

(
i
(
α2t

2 + −2tξ + α1ξ2
)

2γ1

)〉

φ(ξ)dξ

=
1

√
2πiγ1

〈〈

f(t), exp

(
i
(
α2t

2 + −2tξ + α1ξ2
)

2γ1

)〉

, φ(ξ)

〉

.

(2.13)

But since 〈f(t), exp(i(α2t2 + −2tξ + α1ξ2)/2γ1)〉 is an infinitely smooth function, we get

Fdf(ξ) =
1

√
2πiγ1

〈

f(t), exp

(
i
(
α2t

2 + −2tξ + α1ξ2
)

2γ1

)〉

. (2.14)

This completes the proof of the theorem.

Now, for distributions f and g ∈ É(R), we define the convolution product as

〈(
f ∗ 9)(t), φ(t)〉 =

〈
f(t),

〈
g(τ), φ(t + τ)

〉〉
, (2.15)
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for every φ ∈ E(R). This definition makes sense, since 〈g(τ), φ(t+τ)〉 belongs to D, and hence
a member of E(R). With this definition, we are allowed to write the following theorem.

Theorem 2.5. For every f ∈ É(R), the function ψ(t) = 〈f(τ), φ(t+τ)〉 is infinitely smooth and sat-
isfies the relation

Dk
t ψ(t) =

〈
f(τ), Dk

t φ(t + τ)
〉
, (2.16)

for all k ∈ N.

Proof (see page 26 in [12]) . A direct result of the convolution product is the following theorem.

Theorem 2.6 (Convolution Theorem). Let f and g be distributions of compact support and
Fdf(ξ) = Fd(f(t); ξ),Fdg(ξ) = Fd(g(τ); ξ) their respective diffraction Fresnel transforms, then

Fd
((
f ∗ g)(t); ξ) =

√
2πiγ1 exp

(
i
(
2α1tτ − α2ξ2

)

2γ1

)

Fd
(
f(t); ξ

)
Fd

(
g(τ); ξ

)
. (2.17)

Proof. Let f, g ∈ É(R), then by using (2.12), we get

Fd
((
f ∗ g)(t); ξ) =

1
√
2πiγ1

〈
(
f ∗ g)(t), exp

(
i
(
α1t

2 − 2tξ + α2ξ2
)

2γ1

)〉

i.e. =
1

√
2πiγ1

〈

f(t),

〈

g(τ), exp

⎛

⎜
⎝
i
(
α1(t + τ)2 − (t + τ)ξ + α2ξ2

)

2γ1

⎞

⎟
⎠

〉〉

=
1

√
2πiγ1

〈

f(t),

〈

g(τ), exp

(
i
(
α1t

2 + α1τ2 + α1tτ − 2tξ − 2τξ + α2ξ2
)

2γ1

)〉〉

.

(2.18)

Properties of distributions together with simple calculations on the exponent yield

Fd
((
f ∗ g)(t); ξ) =

√
2πiγ1 exp

(
i
(
2α1tτ − α2ξ2

)

2γ1

)

Fd
(
f(t); ξ

)
Fd

(
g(τ); ξ

)
. (2.19)

This completes the proof of the theorem.

Corollary 2.7. Let f, g ∈ É(R), then

(1) Fd
(
f ∗ δn(t); ξ

)
=

√
2πiγ1 exp

(

−α2ξ
2

2γ1

)

Fd
(
f
)
(ξ),

(2) Fd
(
δn ∗ g(t); ξ

)
=

√
2πiγ1 exp

(

−α2ξ
2

2γ1

)

Fd
(
g
)
(ξ),

(2.20)

where Fdf(ξ) = Fd(f(t); ξ),Fdg(ξ) = Fd(g(τ); ξ).
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The following is a theorem which can be directly established from (2.12) and the fact that [11]

Dk(f ∗ g) = Dkf ∗ g = f ∗Dkg. (2.21)

Theorem 2.8. Let f and g be distributions of compact support and Fdf(ξ) = Fd(f(t); ξ),Fdg(ξ) =
Fd(g(τ); ξ) their respective diffraction Fresnel transforms, then

(1) Fd
(
Dk
t

(
f ∗ g)(t); ξ

)
=

√
2πiγ1 exp

(
i
(
2α1tτ − α2ξ2

)

2γ1

)

Fd
(
f (k)(t); ξ

)
Fdg(ξ),

(2) Fd
(
Dk
t

(
f ∗ g)(t); ξ

)
=

√
2πiγ1 exp

(
i
(
2α1tτ − α2ξ2

)

2γ1

)

Fdf(ξ)Fd
(
g(k)(τ); ξ

)
.

(2.22)

3. Diffraction Fresnel Transform of Boehmians

Let X be a linear space and I a subspace of X. To each pair of elements f ∈ X and φ ∈ I, we as-
sign a product f · g such that the following conditions are satisfied:

(i) if φ, ψ ∈ I, then φ · ψ ∈ I and φ · ψ = ψ · φ,
(ii) if f ∈ X and φ, ψ ∈ I, then (f · φ) · ψ = f · (φ · ψ),
(iii) if f, g ∈ X, φ ∈ I and λ ∈ R, then (f + g) · φ = f · φ + g · φ and λ(f · φ) = (λf) · φ. Let

Δ be a family of sequences from I such that

(a) if f, g ∈ X, (δn) ∈ Δ and f · δn = g · δn(n = 1, 2, . . .), then f = g,
(b) if (φn), (δn) ∈ Δ, then (φn · ψn) ∈ Δ.

Elements of Δwill be called delta sequences. Consider the class U of pair of sequences defined
by

U =
{((

fn
)
,
(
φn

))
:
(
fn

) ⊆ XN,
(
φn

) ∈ Δ
}
, (3.1)

for each n ∈ N. An element ((fn), (φn)) ∈ U is called a quotient of sequences, denoted by
fn/φn, or [fn/φn] if fi · φj = fj · φi, for all i, j ∈ N.

Similarly, two quotients of sequences fn/φn and gn/ψn are said to be equivalent,
fn/φn ∼ gn/ψn, if fi · ψj = gj · φi, for all i, j ∈ N. The relation ∼ is an equivalent relation
on U, and hence splits U into equivalence classes. The equivalence class containing fn/φn
is denoted by [fn/φn]. These equivalence classes are called Boehmians, and the space of all
Boehmians is denoted by B.

The sum of two Boehmians and multiplication by a scalar can be defined in a natural
way

[
fn
φn

]
+

[
gn
ψn

]
=

[((
fn · ψn

)
+

(
gn · φn

))

φn · ψn

]

,

α

[
fn
φn

]
=

[
αfn
φn

]
, α ∈ C.

(3.2)
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The operation · and the differentiation are defined by

[
fn
φn

]
·
[
gn
ψn

]
=

[ (
fn · gn

)

(
φn · ψn

)

]

,

Dα

[
fn
φn

]
=

[Dαfn
φn

]
.

(3.3)

The relationship between the notion of convergence and the product · are given by the
following:

(i) if fn → f as n → ∞ in X and, φ ∈ I is any fixed element, then fn · φ → f · φ in
X(as n → ∞),

(ii) if fn → f as n → ∞ in X and (δn) ∈ Δ, then fn · δn → f in X (as n → ∞).

The operation · can be extended to B × I by

If
[
fn
δn

]
∈ B and φ ∈ I, then

[
fn
δn

]
· φ =

[
fn · φ
δn

]
. (3.4)

In B, one can define two types of convergence as follows:

(i) (δ-convergence) a sequence (βn) in B is said to be δ-convergent to β in B, denoted by

βn
δ−→ β, if there exists a delta sequence (δn) such that (βn ·δn), (β ·δn) ∈ X, for all k, n ∈

N, and (βn · δk) → (β · δk) as n → ∞, in X, for every k ∈ N,

(ii) (Δ-convergence) a sequence (βn) in B is said to be Δ-convergent to β in B, denoted by

βn
Δ−→ β, if there exists a (δn) ∈ Δ such that (βn − β) · δn ∈ X, for all n ∈ N, and

(βn − β) · δn → 0 as n → ∞ in X.

For further analysis we refer, for example, to [10, 13–19]. Now we let L1 be the space of
Lebesgue integrable functions onR and BL1 the space of Lebesgue integrable Boehmians [17]
with the set Δ of all delta sequence (δn) from D (the test function space of compact support)
such that

(1)
∫
R δn = 1 for all n ∈ N,

(2)
∫
R |δn| < M for certain positive numberM and n ∈ N,

(3)
∫
|t|>ε |δn(t)|dt → 0 as n → ∞ for every ε > 0.

Then, BL1 is a convolution algebra with the pointwise operations

(i) λ[fn/δn] = [λfn/δn],

(ii) [fn/δn] + [gn/φn] = [(fn ∗ φn + gn ∗ δn)/(δn ∗ φn)],
(iii) and the convolution

[
fn
δn

]
∗
[
gn
φn

]
=

[
fn ∗ gn
δn ∗ φn

]
. (3.5)



8 Abstract and Applied Analysis

Lemma 3.1. Let [fn/δn] ∈ BL1 , then the sequence

Fd
(
fn(t); ξ

)
=

1
√
2πiγ1

∫

R
fn(t) exp

(
i

2γ1

(
α1t

2 − 2tξ + α2ξ2
))

dt (3.6)

converges uniformly on each compact set K in R.

Proof. Let f̃n = Fdf . For each compact set K, δ̃n(δ̃n = Fdδn) converges uniformly to the fun-
ction exp(−(iα2/2γ1)ξ2). Hence, by Corollary 2.7,

Fd
(
fn(t); ξ

)
= f̃n

δ̃k

δ̃k
=
e(iα2/2γ1)ξ

2

√
2πiγ1

Fd
(
fn ∗ δk

)

δ̃k
. (3.7)

Using the choice fn/δn that is quotient of sequences and upon employing Corollary 2.7, we
have

Fd
(
fn(t); ξ

)
=
e(iα2/2γ1)ξ

2

√
2πiγ1

Fd
(
fk ∗ δn

)

δ̃k
=
f̃k

δ̃k
δ̃n =

f̃k

δ̃k

√
2πiγ1e−(iα2/2γ1)ξ

2
. (3.8)

This completes the proof of the Lemma.

By using this Lemma, we are able to define the diffractional Fresnel transform of a
Boehmian as follows: [fn/δn] in BL1 as

R
[
fn
δn

]
= lim

n→∞
f̃n, (3.9)

where the limit ranges over compact subsets of R. Now, let [Xn/δn] = [Yn/γn] in BL1 , then

Xn ∗ γm = Ym ∗ δn, for every m,n ∈ N. (3.10)

Hence, employing the Fresnel transform to both sides of above equation implies

Fd
(
Xn ∗ γm

)
= Fd(Ym ∗ δn) = Fd(Yn ∗ δm). (3.11)
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Thus, using Theorem 2.6 and the fact that

δ̃n and δ̃m −→
√
2πiγ1e−(iα2/2γ1)ξ

2
, (3.12)

on compact subsets of R, we get

lim
n→∞

FdXn = lim
n→∞

FdYn. (3.13)

Hence,

R
[
Xn

δn

]
= R

[
Yn
γn

]
. (3.14)

The definition is therefore well defined.

Theorem 3.2. Let B1 and B2 be in BL1 and α ∈ C, then

(i) R(αB1) = αRB1,

(ii) R(B1 + B2) = RB1 + RB2,

(iii) R(B1 ∗ δn) =
√
2πiγ1e−(iα2/2γ1)ξ

2RB1 = R(δn ∗ B1),

(iv) if RB1 = 0, then B1 = 0,

(v) if Bn
Δ−→ B as n → ∞ in BL1 , then RBn Δ−→ RB as n → ∞ in BL1 on compact subsets.

Proof. The proof of (i), (ii), and (iv) follows from the corresponding properties of the distri-
butional Fresnel transform. Since each f ∈ É has a representative

f −→
[
f ∗ φn
φn

]
, (3.15)

in the space BL1 , Part (iii) follows from Corollary 2.7. Finally, the proof of Part (v) is analo-
gous to that employed for the proof of Part (f) of [17, Theorem 2]. This completes the proof
of the theorem.

Theorem 3.3. The Fresnel transform R is continuous with respect to the δ-convergence.

Proof. Let Bn
δ−→ B in BL1 as n → ∞, then we show that RBn δ−→ RB as n → ∞. Using [17,

Theorem 2.6], we find [fn,k/δk] = Bn and [fk/δk] = B such that fn,k → fk as n → ∞, k ∈ N.
Applying the Fresnel transform for both sides implies f̃n,k → f̃k in the space of continuous
functions. Therefore, considering limits, we get

R
[
fn,k
δk

]
−→ R

[
fk
δk

]
. (3.16)

This completes the proof of the theorem.
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Theorem 3.4. The diffraction Fresnel transform R is continuous with respect to the Δ-convergence.

Proof. Let Bn
Δ−→ B as n → ∞ in n → ∞, then there is fn ∈ L1 and δn ∈ Δ such that

(Bn − B) ∗ δn =
[
fn ∗ δn
δk

]
, fn → 0 as n → ∞. (3.17)

Thus

R((Bn − B) ∗ δn) = R
[
fn ∗ δn
δk

]

−→ Fd
(
fn ∗ δn

)
as n → ∞

−→
√
2πiγ1e−(iα2/2γ1)ξ

2
Fdfn as n −→ ∞ by Corollary 2.7

−→ 0 by the linearity of Fdfn.

(3.18)

Therefore, R(Bn − B) → 0 as n → ∞. Thus, RBn Δ−→ RB as n → ∞. This completes the
proof.

Lemma 3.5. Let [fn/φn] ∈ BL1 and φ ∈ D(R), then

R
([

fn
φn

]
∗ φ

)
=

√
2πiγ1ei(2α1tτ−α2ξ

2)/2γ1R
[
fn
φn

]
∗ Fdφ. (3.19)

Proof. Let [fn/φn] ∈ BL1 , then using (3.9), we have

R
([

fn
φn

]
∗ φ

)
= R

[
fn ∗ φ
φn

]
= lim

n→∞
Fd

(
fn ∗ φ

)
, (3.20)

on compact subsets of R. By applying Theorem 2.6, it yields

R
([

fn
φn

]
∗ φ

)
=

√
2πiγ1ei(2α1tτ−α2ξ

2)/2γ1 lim
n→∞

Fd
(
f(t); ξ

)
Fd

(
φ(τ); ξ

)
. (3.21)

Hence, R([fn/φn] ∗ φ) =
√
2πiγ1ei(2α1tτ−α2ξ

2)/2γ1R[fn/φn]Fd(φ(τ); ξ). This completes the proof
of the lemma.
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[7] A. Kılıçman and B. Fisher, “On the fresnel integrals and the convolution,” International Journal of
Mathematics and Mathematical Sciences, vol. 2003, no. 41, pp. 2635–2643, 2003.

[8] L. Mertz, Transformations in Optics, Wiley, New York, NY, USA, 1965.
[9] H. Y. Fan and H. L. Lu, “Wave-function transformations by general SU(1, 1) single-mode squeezing

and analogy to fresnel transformations in wave optics,” Optics Communications, vol. 258, no. 1, pp.
51–58, 2006.

[10] S. K. Q. Al-Omari, D. Loonker, P. K. Banerji, and S. L. Kalla, “Fourier sine (cosine) transform for
ultradistributions and their extensions to tempered and ultraBoehmian spaces,” Integral Transforms
and Special Functions, vol. 19, no. 6, pp. 453–462, 2008.

[11] R. S. Pathak, Integral Transforms of Generalized Functions and Their Applications, Gordon and Breach Sci-
ence Publishers, Amsterdam, The Netherlands, 1997.

[12] A. H. Zemanian, Generalized Integral Transformations, Dover Publications, New York, NY, USA, 2nd
edition, 1987.

[13] S. K. Q. Al-Omari, “The generalized stieltjes and Fourier transforms of certain spaces of generalized
functions,” Jordan Journal of Mathematics and Statistics, vol. 2, no. 2, pp. 55–66, 2009.

[14] S. K. Q. Al-Omari, “On the distributional Mellin transformation and its extension to Boehmian
spaces,” International Journal of Contemporary Mathematical Sciences, vol. 6, no. 17, pp. 801–810, 2011.

[15] S. K. Q. Al-Omari, “A Mellin transform for a space of lebesgue integrable Boehmians,” International
Journal of Contemporary Mathematical Sciences, vol. 6, no. 32, pp. 1597–1606, 2011.

[16] T. K. Boehme, “The support ofMikusinski operators,” Transactions of the AmericanMathematical Society,
vol. 176, pp. 319–334, 1973.
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