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This paper presents the properties and behaviour of solutions to a class of n-dimensional functional
differential systems of neutral type. Sufficient conditions for solutions to be either oscillatory, or
limt→∞yi(t) = 0, or limt→∞|yi(t)| = ∞, i = 1, 2, . . . , n, are established. One example is given.

1. Introduction

The authors have investigated some properties of solutions to n-dimensional functional dif-
ferential systems

[
y1(t) − a(t)y1

(
g(t)

)]′ = p1(t)y2(t),

y′
i(t) = pi(t)yi+1(t), i = 2, 3, . . . , n − 1,

y′
n(t) = σpn(t)f

(
y1(h(t))

)
, t ≥ t0,

(1.1)

in [1]. We studied the properties of solutions presupposing that both functions a(t) and
y1(t) were bounded and there were presented theorems where sufficient conditions to
every solution with the first component of the solution y1(t) to be either oscillatory, or
limt→∞yi(t) = 0 for i = 1, 2, . . . , n.
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The goal of this paper is to enquire about the behaviour of the solution to n-dimen-
sional functional differential system of neutral type (1.1) under no restriction to a(t) and to
the first component y1(t) of solution y(t) . Results are given in theorems where sufficient
conditions are stated to every solution to have the next properties: a solution to be either
oscillatory, or limt→∞yi(t) = 0, or limt→∞|yi(t)| = ∞, i = 1, 2, . . . , n.

The system (1.1) is investigated under the assumptions σ ∈ {−1, 1}, n ≥ 3, and
throughout this paper, the next conditions are considered:

(a) a : [t0,∞) → (0,∞] is a continuous function;

(b) g : [t0,∞) → R is a continuous and increasing function, limt→∞g(t) = ∞;

(c) pi : [t0,∞) → [0,∞), i = 1, 2, . . . , n, are continuous functions; pn not identically
equal to zero in any neighbourhood of infinity,

∫∞
pj(t)dt = ∞, j = 1, 2, . . . , n − 1;

(d) h : [t0,∞) → R is a continuous and increasing function, limt→∞h(t) = ∞;

(e) f : R → R is a continuous function; moreover, for u/= 0, uf(u) > 0 and |f(u)| ≥ K|u|
hold, where K is a positive constant.

For a function y1(t),

z1(t) = y1(t) − a(t)y1
(
g(t)

)
(1.2)

is defined, and for t1 ≥ t0, we introduce

t̃1 = min
{
t1, g(t1), h(t1)

}
. (1.3)

A vector function y = (y1, . . . , yn) is a solution to the system (1.1) if there is a t1 ≥ t0 such that
y is continuous on [t̃1,∞); functions z1(t), yi(t), i = 2, 3, . . . , n are continuously differentiable
on [t1,∞) and y satisfies (1.1) on [t1,∞).

W denotes the set of all solutions y = (y1, . . . , yn) to the system (1.1) that exist on some
interval [Ty,∞) ⊂ [t0,∞) and satisfy the condition

sup

{
n∑

i=1

∣∣yi(t)
∣∣ : t ≥ T

}

> 0 for any T ≥ Ty. (1.4)

A solution y ∈ W is considered nonoscillatory if there exists a Ty ≥ t0 such that every
component is different from zero for t ≥ Ty. Otherwise a solution y ∈ W is said to be
oscillatory.

Properties of solutions to similar differential equations and systems like system (1.1)
have been studied in [1–6] and in the references cited therein. Problems of existence of
solutions to neutral differential systems were analysed, for example, in [7, 8].
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It will be useful to define two types of recursion formulae. Let ik ∈ {1, 2, . . . , n}, k =
1, 2, . . . , n, and t, u ∈ [t0,∞). One has

I0(u, t) ≡ 1,

Ik
(
u, t; pi1 , pi2 , . . . , pik

)
=
∫u

t

pi1(x)Ik−1
(
x, t; pi2 , pi3 , . . . , pik

)
dx,

(1.5)

J0(u, t) ≡ 1,

Jk
(
u, t; pi1 , pi2 , . . . , pik

)
=
∫u

t

pik(x)Jk−1
(
u, x; pi1 , pi2 , . . . , pik−1

)
dx.

(1.6)

It is easy to prove that the following identities hold:

Ik
(
u, t; pi1 , pi2 , . . . , pik

)
= Jk

(
u, t; pi1 , pi2 , . . . , pik

)
(1.7)

for k = 1, 2, . . . , n.
Functions g−1(t), h−1(t) denote the inverse functions to g(t), h(t).

2. Preliminaries

Lemma 2.1 (see [9, Lemma 1]). Let y ∈ W be a solution of (1.1) with y1(t)/= 0 on [t1,∞), t1 ≥ t0.
Then y is nonoscillatory and z1(t), y2(t), . . . , yn(t) are monotone on some ray [T,∞), T ≥ t1.

Let y ∈ W be a non-oscillatory solution of (1.1). By (1.1) and (c), it follows that the
function z1(t) from (1.2) has to be eventually of constant sign, so that either

y1(t)z1(t) > 0 (2.1)

or

y1(t)z1(t) < 0 (2.2)

for sufficiently large t.
We mention for the comfort of proofs a classification of non-oscillatory solutions of the

system (1.1)which was introduced by the authors in [1].
Assume first that (2.1) holds.
By [9, Lemma 4], the statement in Lemma 2.2 follows.

Lemma 2.2. Let y = (y1, y2, . . . , yn) ∈ W be a non-oscillatory solution to (1.1) on [t1,∞), and
assume that (2.1) holds. Then there exists an integer l ∈ {1, 2, . . . , n} such that σ · (−1)n+l+1 = 1 or
l = n, and t2 ≥ t1 such that for t ≥ t2

yi(t)z1(t) > 0, i = 1, 2, . . . , l,

(−1)i+lyi(t)z1(t) > 0, i = l + 1, . . . , n.
(2.3)
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Denote byN+
l the set of non-oscillatory solutions to (1.1) satisfying (2.3). Now assume

that (2.2) holds.
By the aid of Kiguradze’s lemma, it is easy to prove Lemma 2.3.

Lemma 2.3. Let y = (y1, y2, . . . , yn) ∈ W be a non-oscillatory solution to (1.1) on [t1,∞), and
assume that (2.2) holds. Then there exists an integer l ∈ {1, 2, . . . , n} and σ · (−1)n+l = 1 or l = n, and
t2 ≥ t1 such that for t ≥ t2 either

y1(t)z1(t) < 0,

(−1)iyi(t)z1(t) < 0, i = 2, . . . , n,
(2.4)

or

y1(t)z1(t) < 0,

yi(t)z1(t) > 0, i = 2, 3, . . . , l,

(−1)i+lyi(t)z1(t) > 0, i = l + 1, . . . , n.

(2.5)

Denote by N−
1 the set of nonoscillatory solutions to (1.1) satisfying (2.4), and by N−

l
the set of non-oscillatory solutions to (1.1) satisfying (2.5). Denote by N the set of all non-
oscillatory solutions to (1.1). Obviously by Lemmas 2.2 and 2.3, we have the classification of
non-oscillatory solutions to the system (1.1):

n odd, σ = 1:

N = N+
2 ∪N+

4 ∪ · · · ∪N+
n−1 ∪N+

n ∪N−
1 ∪N−

3 ∪ · · · ∪N−
n , (2.6)

n odd, σ = −1:

N = N+
1 ∪N+

3 ∪ · · · ∪N+
n ∪N−

2 ∪N−
4 ∪ · · · ∪N−

n−1 ∪N−
n , (2.7)

n even, σ = 1:

N = N+
1 ∪N+

3 ∪ · · · ∪N+
n−1 ∪N+

n ∪N−
2 ∪N−

4 ∪ · · · ∪N−
n , (2.8)

n even, σ = −1:

N = N+
2 ∪N+

4 ∪ · · · ∪N+
n ∪N−

1 ∪N−
3 ∪ · · · ∪N−

n−1 ∪N−
n . (2.9)

The next lemma can be proved similarly as Lemma 2 in [9].
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Lemma 2.4. Let y = (y1, y2, . . . , yn) ∈ W be a non-oscillatory solution to (1.1) on [t1,∞), t1 ≥ t0,
and let limt→∞|z1(t)| = L1, limt→∞|yk(t)| = Lk, k = 2, . . . , n. Then

k ≥ 2, Lk > 0 =⇒ Li = ∞, i = 1, . . . , k − 1 ,

1 ≤ k < n, Lk < ∞ =⇒ Li = 0, i = k + 1, . . . , n.
(2.10)

Remark 2.5. If g(t) < t, and 0 < a(t) ≤ λ∗ < 1, (λ∗ is a constant), then from [9], we have
N−

k
= ∅, k ∈ {2, 3, . . . , n}.

Lemma 2.6 (see [10, Lemma 2.2]). In addition to conditions (a) and (b) suppose that

1 ≤ a(t), t ≥ t0. (2.11)

Let y1(t) be a continuous non-oscillatory solution to the functional inequality

y1(t)
[
y1(t) − a(t)y1

(
g(t)

)]
> 0 (2.12)

defined in a neighbourhood of infinity. Suppose that g(t) > t for t ≥ t0. Then y1(t) is bounded. If,
moreover,

1 < λ∗ ≤ a(t), t ≥ t0 (2.13)

for some positive constant λ∗, then limt→∞y1(t) = 0.

3. Main Results

Theorem 3.1. Suppose that

0 < a(t) ≤ λ∗ < 1, for some constant λ∗, t ≥ t0, (3.1)

g(t) < h(t) < t for t ≥ t0, (3.2)

α : [t0,∞) −→ R is a continuous function, α(t) < t, lim
t→∞

α(t) = ∞, (3.3)

∫∞
p1(x1)

∫∞

x1

p2(x2)
∫∞

x2

p3(x3) · · ·
∫∞

xn−2
pn−1(xn−1)

∫∞

xn−1
pn(xn)dxn · · ·dx1 = ∞, (3.4)

lim sup
t→∞

KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))

×
∫∞

h−1(t)
pn(xn)dxn > 1

(3.5)

for l = 3, 5, . . . , n − 2,

lim sup
t→∞

KIn−1
(
t, α(t); p1, p2, . . . , pn−1

)
∫∞

h−1(t)
pn(xn)dxn > 1. (3.6)
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If n is odd and σ = −1, then every solution y ∈ W to (1.1) is oscillatory or limt→∞yi(t) = 0,
i = 1, 2, . . . , n.

Proof. Let y ∈ W be a non-oscillatory solution to (1.1). The Expression (2.7) holds. Taking
into account Remark 2.5, one may write

N = N+
1 ∪N+

3 ∪ · · · ∪N+
n . (3.7)

Without loss of generality we may suppose that y1(t) is positive for t ≥ t2.
(I) Let y ∈ N+

1 on [t2,∞). In this case, we can write for t ≥ t2

y1(t) > 0, z1(t) > 0, y2(t) < 0, y3(t) > 0, . . . , yn(t) > 0, (3.8)

and limt→∞z1(t) = L1 ≥ 0. We claim that L1 = 0. Otherwise L1 > 0. Then

L1 ≤ z1(h(t)) ≤ y1(h(t)) for t ≥ t3, (3.9)

where t3 ≥ t2 is sufficiently large.
Integrating the last equation of (1.1) from xn−1 to x∗

n−1, we get for xn−1 ≥ t3

yn(xn−1) − yn

(
x∗
n−1

)
=
∫x∗

n−1

xn−1
pn(xn)f

(
y1(h(xn))

)
dxn. (3.10)

From (3.10) with regard to (e), (3.8), and (3.9), we have for x∗
n−1 → ∞

yn(xn−1) ≥ KL1

∫∞

xn−1
pn(xn)dxn, xn−1 ≥ t3. (3.11)

Multiplying (3.11) by pn−1(xn−1) and then using the (n− 1)th equation of the system (1.1), we
get for xn−1 ≥ t3

y′
n−1(xn−1) ≥ KL1pn−1(xn−1)

∫∞

xn−1
pn(xn)dxn. (3.12)

Integrating (3.12) from xn−2 to x∗
n−2 → ∞, and then using (3.8), we get for xn−2 ≥ t3

−yn−1(xn−2) ≥ KL1

∫∞

xn−2
pn−1(xn−1)

∫∞

xn−1
pn(xn)dxn dxn−1. (3.13)

Multiplying (3.13) by pn−2(xn−2) and then using the (n − 2)th equation of the system (1.1),
and the new inequality we integrate from xn−3 to x∗

n−3 → ∞ we employ (3.8) and for
xn−3 ≥ t3

yn−2(xn−3) ≥ KL1

∫∞

xn−3
pn−2(xn−2)

∫∞

xn−2
pn−1(xn−1)

∫∞

xn−1
pn(xn)dxn dxn−1 dxn−2. (3.14)
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Similarly for x1 ≥ t3, we have

−z′1(t) ≥ KL1p1(x1)
∫∞

x1

p2(x2)
∫∞

x2

p3(x3) · · · pn−1(xn−1)

×
∫∞

xn−1
pn(xn)dxndxn−1 · · ·dx2.

(3.15)

Integrating (3.15) from T to T ∗ → ∞ and then using (3.8), we get for T ≥ t3

z1(T) ≥ KL1

∫∞

T

p1(x1)
∫∞

x1

p2(x2) · · · pn−1(xn−1)
∫∞

xn−1
pn(xn)dxn dxn−1 · · ·dx1, (3.16)

which a contradiction to (3.4). Hence limt→∞z1(t) = 0.
Then z1(t) ≤ 1, t ≥ t4, where t4 ≥ t3 is sufficiently large and

y1(t) ≤ a(t)y1
(
g(t)

)
+ 1 ≤ λ∗y1

(
g(t)

)
+ 1, t ≥ t4. (3.17)

We prove that y1(t) is bounded indirectly. Let y1(t) be unbounded. Then there exists a
sequence {tn}∞n=1, tn ≥ t4, where n = 1, 2, . . . , tn → ∞ as n → ∞,

lim
n→∞

y1

(
tn
)
= ∞, y1

(
tn
)
= max

t4≤s≤tn
y1(s). (3.18)

It follows from (3.1), (3.2), and (3.17),

y1

(
tn
)
≤ λ∗y1

(
g
(
tn
))

+ 1 ≤ λ∗y1

(
tn
)
+ 1,

y1

(
tn
)
≤ 1

1 − λ∗
, n = 1, 2, . . . .

(3.19)

That is a contradiction to limn→∞y1(tn) = ∞, and the function y1(t) is bounded.
We claim that limt→∞y1(t) = 0 and prove it indirectly. Let lim supt→∞y1(t) = s > 0. Let
{t∗n}∞n=1, t∗n ≥ t4, n = 1, 2, . . . , be such a kind of sequence, that t∗n → ∞ as n → ∞, and
lim supn→∞y1(t∗n) = s. Then lim supn→∞y1(g(t∗n)) ≤ s. From (1.2) and (3.1),

z1(t∗n) ≥ y1(t∗n) − λ∗y1
(
g(t∗n)

)
, n = 1, 2, . . . ,

y1
(
g(t∗n)

) ≥ y1(t∗n) − z1(t∗n)
λ∗

, n = 1, 2, . . .
(3.20)

follow.
From the last inequality, we have

s ≥ s

λ∗
, λ∗ ≥ 1. (3.21)
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That is a contradiction to condition (3.1) and lim supt→∞y1(t) = 0 = limt→∞y1(t). Since
limt→∞z1(t) = L1 = 0 and from Lemma 2.4, implie limt→∞yi(t) = 0, i = 2, 3, . . . , n.

(II) Let y ∈ N+
l
, for some l = 3, 5, . . . , n − 2, on [t2,∞). In this case, one can consider for

t ≥ t2

y1(t) > 0, z1(t) > 0, y2(t) > 0, . . . , yl(t) > 0, yl+1(t) < 0, . . . , yn(t) > 0. (3.22)

Integrating the first equation of the system (1.1) from α(t) to t and using (3.22) above,
we get

z1(t) ≥
∫ t

α(t)
p1(x1)y2(x1)dx1, t ≥ t3, (3.23)

where t3 ≥ t2 is sufficiently large. Integrating step by step 2nd, 3rd, . . . , (l − 1)th equations of
the system (1.1) and subsequently substituting into (3.23) for t ≥ t3, we obtain

z1(t) ≥
∫ t

α(t)
p1(x1)

∫x1

α(t)
p2(x2) · · ·

∫xl−2

α(t)
pl−1(xl−1)yl(xl−1)dxl−1 dxl−2 · · ·dx1. (3.24)

Integrating lth, (l + 1)th, . . . , (n− 1)th equation of the system (1.1) and using (3.22), we
have

yl(xl−1) ≥ −
∫xl−2

xl−1
pl(xl)yl+1(xl)dxl,

−yl+1(xl) ≥
∫xl−2

xl

pl+1(xl+1)yl+2(xl+1)dxl+1,

yl+2(xl+1) ≥ −
∫xl−2

xl+1

pl+2(xl+2)yl+3(xl+2)dxl+2,

...

−yn−1(xn−2) ≥
∫xl−2

xn−2
pn−1(xn−1)yn(xn−1)dxn−1.

(3.25)

Combining expressions (3.24) and (3.25) and using (3.22), we get for t ≥ t3

z1(t) ≥ yn(t)
∫ t

α(t)
p1(x1)

∫x1

α(t)
p2(x2) · · ·

∫xl−2

α(t)
pl−1(xl−1)

∫xl−2

xl−1
pl(xl)

×
∫xl−2

xl

pl+1(xl+1) · · ·
∫xl−2

xn−2
pn−1(xn−1)dxn−1dxn−2 · · ·dx1.

(3.26)

The formula above may be rewritten by (1.5) and (1.6) for t ≥ t3 to

z1(t) ≥ yn(t)Il−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))
, (3.27)
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Integrating the last equation of (1.1) from t → t∗ → ∞ and using (e), (1.2), and (3.22),
we obtain for t ≥ t4 where t4 ≥ t3 is sufficiently large,

yn(t) ≥ K

∫∞

t

pn(xn)z1(h(xn))dxn. (3.28)

From (3.2), (3.27), and (3.28) and the monotonicity of z1(h), we have

z1(t) ≥ KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))

×
∫∞

t

pn(xn)z1(h(xn))dxn

≥ z1(t)KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))

×
∫∞

h−1(t)
pn(xn)dxn,

1 ≥ KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))

×
∫∞

h−1(t)
pn(xn)dxn

(3.29)

for t ≥ t4, which is a contradiction to (3.5), and it gives

N+
3 ∪N+

5 ∪ · · · ∪N+
n−2 = ∅. (3.30)

(III) Let y ∈ N+
n on [t2,∞). In this case we consider for the components of solution y(t)

and for function z1

z1(t) > 0, yi(t) > 0, i = 1, 2, . . . , n, t ≥ t2. (3.31)

Analogically as in the previous part of the proof,

z1(t) ≥ yn(t)In−1
(
t, α(t); p1, p2, . . . , pn−1

)
, t ≥ t3, (3.32)

holds and also (3.28), and for t ≥ t3

1 ≥ KIn−1
(
t, α(t); p1, p2, . . . , pn−1

)
∫∞

h−1(t)
pn(xn)dxn, (3.33)

which is a contradiction to (3.6) and N+
n = ∅.
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Theorem 3.2. Suppose that (3.1)–(3.4) are employed and (3.5) holds for l = 3, 5, . . . , n − 1 and

∫∞

s

pn(xn)
∫h(xn)

h(s)
p1(x1)

∫x1

h(s)
p2(x2) · · ·

∫xn−2

h(s)
pn−1(xn−1)dxn−1 · · ·dx2dx1dxn = ∞ (3.34)

for s sufficiently large.
If n is even and σ = 1, then every solution y ∈ W to the system (1.1) is either oscillatory, or

limt→∞yi(t) = 0, i = 1, 2, . . . , n, or limt→∞|yi(t)| = ∞, i = 1, 2, . . . , n.

Proof. Let y ∈ W be a non-oscillatory solution to (1.1). Expression (2.8) holds. Taking into
account Remark 2.5,

N = N+
1 ∪N+

3 ∪ · · · ∪N+
n−1 ∪N+

n . (3.35)

Without loss of generality we may suppose that y1(t) is positive for t ≥ t2.
(I) Let y ∈ N+

1 on [t2,∞). In this case, for t ≥ t2

y1(t) > 0, z1(t) > 0, y2(t) < 0, y3(t) > 0, y4(t) < 0, . . . , yn(t) < 0. (3.36)

We may choose analogical approach as in Theorem 3.1 part (I). Equation (3.9) holds and we
replace (3.11) by inequality

−yn(xn−1) ≥ KL1

∫∞

xn−1
pn(xn)dxn, xn−1 ≥ t3. (3.37)

Moreover (3.15) holds and similarly as in the proof of Theorem 3.1 case (I). We prove
that limt→∞yi(t) = 0, i = 1, 2, . . . , n.

(II) Let y ∈ N+
l on [t2,∞), for some l = 3, 5, . . . , n − 1. In this case, for t ≥ t2,

y1(t) > 0, z1(t) > 0, y2(t) > 0, . . . , yl(t) > 0, yl+1(t) < 0, . . . , yn(t) < 0. (3.38)

The analogical approach as in Theorem 3.1 part (II) follows out.
Instead of inequality (3.27), we get for t ≥ t3

z1(t) ≥ −yn(t)Il−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))
(3.39)

and instead of (3.28) for t ≥ t4

−yn(t) ≥ K

∫∞

t

pn(xn)z1(h(xn))dxn, (3.40)

and in the end we gain the contradiction to (3.5).
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(III) Let y ∈ N+
n on [t2,∞). In this case (3.31) holds. Integrating the last equation of the

system (1.1) and on the basis of (3.31), (3.2), (e), and (1.2), we have

yn(t) ≥ K

∫ t

s

pn(xn)z1(h(xn))dxn, t ≥ s ≥ t3, (3.41)

where t3 ≥ t2 is sufficiently large.
Integrating the first equation of the system (1.1) from h(s) to h(xn) and employing

(3.31), we obtain

z1(h(xn)) ≥
∫h(xn)

h(s)
p1(x1)y2(x1)dx1, s ≥ t3. (3.42)

Combining (3.41) and (3.42), we have for t ≥ s ≥ t3

yn(t) ≥ K

∫ t

s

pn(xn)
∫h(t)

h(s)
p1(x1)y2(x1)dx1 dxn. (3.43)

Further consequently integrating the 2nd, 3 rd, . . . , (l − 1)th equations of the system
(1.1) and step by step substituting into (3.43), we get for t ≥ s ≥ t3

yn(t) ≥ K

∫ t

s

pn(xn)
∫h(xn)

h(s)
p1(x1)

∫x1

h(s)
p2(x2)

· · ·
∫xn−2

h(s)
pn−1(xn−1)yn(xn−1)dxn−1 dxn−2 · · · dx2 dx1 dxn.

(3.44)

On basis of (3.31), for xn−1 ≥ t3

yn(xn−1) ≥ C, 0 < C = const., for xn−1 ≥ t3, (3.45)

hold.
Combining (3.44) and (3.45) for t ≥ s ≥ t3, we have

yn(t) ≥ KC

∫ t

s

pn(xn)
∫h(xn)

h(s)
p1(x1)

∫x1

h(s)
p2(x2)

· · ·
∫xn−2

h(s)
pn−1(xn−1)dxn−1 dxn−2 · · ·dx2 dx1 dxn.

(3.46)

From the inequality above and relation (3.34), we obtain limt→∞yn(t) = ∞. Lemma 2.4 im-
plies limt→∞z1(t) = ∞ and limt→∞yi(t) = ∞, i = 2, 3, . . . , n − 1. Since z1(t) < y1(t) for t ≥ t2, so
limt→∞y1(t) = ∞ and the final conclusion is limt→∞|yi(t)| = ∞, i = 1, 2, . . . , n.



12 Abstract and Applied Analysis

Theorem 3.3. Suppose that (3.3) holds and

1 < λ∗ ≤ a(t) for some constant λ∗, t ≥ t0, (3.47)

t < g(t) < h(t) for t ≥ t0, (3.48)
∫∞

p1(x1)
∫∞

x1

p2(x2)
∫∞

x2

p3(x3) · · ·
∫∞

xn−2
pn−1(xn−1)

×
∞∫

xn−1

pn(xn)dxndxn−1 . . .dx1

a
(
g−1(h(xn))

) = ∞,

(3.49)

lim sup
t→∞

KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, pn−2, . . . , pl−1

))

×
∫∞

t

pnxndxn

a
(
g−1(h(xn))

) > 1,
(3.50)

for l = 3, 5, . . . , n − 2,

lim sup
t→∞

KIn−1
(
t, α(t); p1, p2, . . . , pn−1

)
∫∞

t

pn(xn)dxn

a
(
g−1(h(xn))

) > 1. (3.51)

If n is odd and σ = 1 then every solution y ∈ W to (1.1) is either oscillatory, or limt→∞yi(t) = 0,
i = 1, 2, . . . , n.

Proof. Let y ∈ W be a non-oscillatory solution to (1.1). Expression (2.6) holds. Without loss of
generality we may suppose that y1(t) is positive for t ≥ t2.

(I) Let y ∈ N+
2 ∪N+

4 ∪ · · · ∪N+
n−1 ∪N+

n on [t2,∞). Lemma 2.6 implies limt→∞y1(t) = 0.
In this case, for t ≥ t2,

0 < z1(t) < y1(t), (3.52)

and so limt→∞z1(t) = 0 which is a contradiction to the fact that the z1(t) is positive and a
nondecreasing function on the interval [t2,∞) and

N+
2 ∪N+

4 ∪ · · · ∪N+
n−1 ∪N+

n = ∅. (3.53)

(II) Let y ∈ N−
1 on [t2,∞). In this case, we can write for t ≥ t2

y1(t) > 0, z1(t) < 0, y2(t) > 0, y3(t) < 0, . . . , yn(t) < 0. (3.54)

We indirectly prove limt→∞z1(t) = 0.
Since z1(t) is nondecreasing limt→∞z1(t) = −L1, L1 > 0, L1 = const., and

z1(t) ≤ −L1 for t ≥ t2. (3.55)
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Because z1(t) > −a(t)y1(g(t)),

z1
(
g−1(h(t))

)
> −a

(
g−1(h(t))

)
y1(h(t)), (3.56)

−y1(h(t)) <
z1
(
g−1(h(t))

)

a
(
g−1(h(t))

) , t ≥ t2 (3.57)

follows.
From (3.55) and (3.57), we get

−L1 ≥ z1
(
g−1(h(xn))

)
≥ −a

(
g−1(h(xn))

)
y1(h(xn)), xn > t2. (3.58)

By (c), (e), the last equation of (1.1), and (3.58), we get for xn > t2

KL1pn(xn)
a
(
g−1(h(xn))

) ≤ Kpn(xn)y1(h(xn)) ≤ pn(xn)f
(
y1(h(xn))

)
= y′

n(xn). (3.59)

Integrating (3.59) from xn−1 to x∗
n−1 → ∞, we get

KL1

∫∞

xn−1

pn(xn)dxn

a
(
g−1(h(xn))

) ≤ −yn(xn−1) for xn−1 ≥ t2. (3.60)

Multiplying (3.60) by pn−1(xn−1) and then using the (n − 1)th equation of system (1.1),
we get for xn−1 ≥ t2

KL1pn−1(xn−1)
∫∞

xn−1

pn(xn)dxn

a
(
g−1(h(xn))

) ≤ −yn−1(xn−1). (3.61)

Integrating (3.61) from xn−2 to x∗
n−2 → ∞, we get for xn−2 ≥ t2

KL1

∫∞

xn−2
pn−1(xn−1)

∫∞

xn−1

pn(xn)dxndxn−1
a
(
g−1(h(xn))

) ≤ yn−1(xn−2). (3.62)

Similarly we continue by the same way until we derive for x1 ≥ t2

KL1p1(x1)
∫∞

x1

p2(x2)
∫∞

x2

p3(x3) · · ·
∫∞

xn−2
pn−1(xn−1)

×
∫∞

xn−1

pn(xn)dxndxn−1 · · ·dx2

a
(
g−1(h(xn))

) ≤ z′1(x1).

(3.63)
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Integrating (3.63) from T to T ∗ → ∞, we get for T ≥ t2

KL1

∫∞

T

p1(x1)
∫∞

x1

p2(x2)
∫∞

x2

p3(x3) · · ·
∫∞

xn−2
pn−1(xn−1)

×
∫∞

xn−1

pn(xn)dxndxn−1 · · ·dx2dx1

a
(
g−1(h(xn))

) ≤ −z1(T).
(3.64)

That contradicts (3.49), and consequently limt→∞z1(t) = 0 holds.
We prove that y1(t) is bounded and limt→∞y1(t) = 0. There is some positive constant

B > 0, z1(t) ≥ −B for t ≥ t2, and by (1.2) and (3.47), one has for t ≥ t2

y1(t) = a(t)y1
(
g(t)

)
+ z1(t) ≥ a(t)y1

(
g(t)

) − B ≥ λ∗y1
(
g(t)

) − B. (3.65)

We prove indirectly that y1(t) is bounded. Let us suppose that y1(t) is unbounded. Then
y1(g(t)) is unbounded, and there is a sequence

{
tn
}∞

n=1
, tn ≥ t2, n = 1, 2, . . . , tn −→ ∞ as n −→ ∞,

lim
n→∞

y1

(
tn
)
= ∞, y1

(
g
(
tn
))

= max
t2≤s≤g(tn)

y1(s).
(3.66)

By (3.65)

λ∗y1

(
g
(
tn
))

≤ y1

(
tn
)
+ B ≤ y1

(
g
(
tn
))

+ B,

y1

(
g
(
tn
))

≤ B

λ∗ − 1
, n = 1, 2, . . . .

(3.67)

That is a contradiction to limn→∞y1(g(tn)) = ∞, and the function y1(t) is bounded.We claim
that limt→∞y1(t) = 0, and we will prove it indirectly.

Let lim supt→∞y1(g(t)) = s, 0 < s, s = const. Then lim supt→∞y1(t) = s.
Let {t∗n}∞n=1, t∗n ≥ t2, n = 1, 2, . . . , be such a kind of sequence that limn→∞t∗n = ∞ and

lim supn→∞y1(g(t∗n)) = s.
Then, lim supn→∞y1(t∗n) ≤ s.
By (1.2) and (3.47),

z1(t∗n) ≤ y1(t∗n) − λ∗y1
(
g(t∗n)

)
, n = 1, 2, . . . ,

y1
(
g(t∗n)

) ≤ y1(t∗n) − z1(t∗n)
λ∗

, n = 1, 2, . . . ,
(3.68)

follows.
By the last inequality, we have

s = lim sup
t→∞

y1
(
g(t∗n)

) ≤ lim supt→∞y1(t∗n)
λ∗

≤ s

λ∗
. (3.69)
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1 ≥ λ∗ holds. That is a contradiction to (3.47). It means lim supt→∞y1(g(t)) = 0 and also
lim supt→∞y1(t) = 0. Moreover, y1(t) > 0 holds, so lim inft→∞ limt→∞y1(t) = 0 and this
leads to limt→∞y1(t) = 0.

By Lemma 2.4 it follows that

lim
t→∞

yi(t) = 0, i = 2, 3, . . . , n. (3.70)

(III) Let y ∈ N−
l
, l = 3, 5, . . . , n − 2, on [t2,∞). In this case for, t ≥ t2,

y1(t) > 0, z1(t) < 0, y2(t) < 0, . . . , yl(t) < 0, yl+1(t) > 0, . . . , yn(t) < 0. (3.71)

Integrating the first equation of (1.1) from α(t) to t and using (3.71), we get

z1(t) ≥
∫ t

α(t)
p1(x1)y2(x1)dx1, t ≥ t3, (3.72)

where t3 ≥ t2 is sufficiently large.
Integrating the 2nd, 3 rd, . . . , (l − 1)th equations of the system (1.1), and substituting

into (3.72), we get for t ≥ t3

z1(t) ≤
∫ t

α(t)
p1(x1)

∫x1

α(t)
p2(x2) · · ·

∫xl−2

α(t)
pl−1(xl−1)yl(xl−1)dxl−1 dxl−2 · · ·dx1. (3.73)

Integrating lth, (l + 1)th, . . . , (n − 1)th equations of the system (1.1)we gain the syste

yl(xl−1) ≤ −
∫xl−2

xl−1
pl(xl)yl+1(xl)dxl,

−yl+1(xl) ≤
∫xl−2

xl

pl+1(xl+1)yl+2(xl+1)dxl+1,

yl+2(xl+1) ≤ −
∫xl−2

xl+1

pl+2(xl+2)yl+3(xl+2)dxl+2,

...

−yn−1(xn−2) ≤
∫xl−2

xn−2
pn−1(xn−1)yn(xn−1)dxn−1.

(3.74)
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We combine the formulae (3.73) and (3.74), and with regard to (3.71), we get for t ≥ t3

z1(t) ≤ yn(t)
∫ t

α(t)
p1(x1)

∫x1

α(t)
p2(x2) · · ·

∫xl−2

α(t)
pl−1(xl−1)

∫xl−2

xl−1
pl(xl)

×
∫xl−2

xl

pl+1(xl+1) · · ·
∫xl−2

xn−2
pl−1(xl−1)dxn−1dxn−2 · · ·dx1.

(3.75)

Employing (1.5) and (1.6) the equation above may be rewritten to

z1(t) ≤ yn(t)Il−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, . . . , pl−1

))
(3.76)

for t ≥ t3.
Integrating the last equation of (1.1) from t to t∗ → ∞ and using (e) and (3.71),

yn(t) ≤ −K
∫∞

t

pn(xn)y1(h(xn))dxn, t ≥ t3. (3.77)

From (3.2), (3.57) in regard to (3.76), (3.77) and monotonicity of z1(g−1(h)), we get for t ≥ t3

z1(t) ≤ KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, . . . , pl−1

))

×
∫∞

t

pn(xn)z1
(
g−1(h(xn))

)
dxn

a
(
g−1(h(xn))

)

≤ z1(t)KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, . . . , pl−1

))

×
∫∞

t

pn(xn)dxn

a
(
g−1(h(xn))

) ,

(3.78)

which means for t ≥ t3

1 ≥ KIl−2
(
t, α(t); p1, p2, . . . , pl−2(∗) × Jn−l+1

(
(∗), α(t); pn−1, . . . , pl−1

))

×
∫∞

t

pn(xn)dxn

a
(
g−1(h(xn))

) .
(3.79)

This is a contradiction to (3.50) and

N−
3 ∪N−

5 ∪ · · · ∪N−
n−2 = ∅. (3.80)

(IV) Let y ∈ N−
n , on [t2,∞).

In this case, we can write for t ≥ t2

y1(t) > 0, z1(t) < 0, yi(t) < 0, i = 2, 3, . . . , n. (3.81)
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We may lead the proof analogically as in the previous part of the proof and we will
prove that (3.77), (3.57), and

z1(t) ≤ yn(t)In−1
(
t, α(t); p1, p2, . . . , pn−1

)
(3.82)

hold and also

1 ≥ KIn−1
(
t, α(t); p1, p2, . . . , pn−1

)
∫∞

t

pn(xn)dxn

a
(
g−1(h(xn))

) , t ≥ t3 (3.83)

which is a contradiction to (3.51) and N−
n = ∅.

Theorem 3.4. Suppose that (3.3), (3.47)–(3.49) hold and condition (3.50) is fulfilled for l = 3, 5, . . . ,
n − 1, and

∫∞

s

pn(xn)
a
(
g−1(h(xn))

)
∫g−1(h(xn))

g−1(h(s))
p1(x1)

∫x1

g−1(h(s))
p2(x2)

· · ·
∫xn−2

g−1(h(s))
pn−1(xn−1)dxn−1dxn−2 · · ·dx1dxn = ∞

(3.84)

for s ≥ t0.
If n is even and σ = −1, then every solution y ∈ W to (1.1) is either oscillatory, or

limt→∞yi(t) = 0, i = 1, 2, . . . , n, or limt→∞|z1(t)| = ∞ and limt→∞|yi(t)| = ∞, i = 2, . . . , n.

Proof. Let y ∈ W be a non-oscillatory solution to (1.1). Expression (2.9) holds.
(I) Let y ∈ N+

2 ∪ N+
4 ∪ · · · ∪ N+

n . Analogically as in the proof of Theorem 3.3 (I), we
prove that

N+
2 ∪N+

4 ∪ · · · ∪N+
n = ∅. (3.85)

(II) Let y ∈ N−
1 on [t2,∞). Similarly to the proof of Theorem 3.3 (II), we prove

limt→∞yi(t) = 0, i = 1, 2, . . . , n.
(III) Let y ∈ N−

l
, for some l = 3, 5, . . . , n − 1, for t ∈ [t2,∞). Likewise as proof of

Theorem 3.3 (III), for setsN−
l we prove that N−

3 ∪N−
5 , . . . ,N

−
n−1 = ∅.

(IV) Let y ∈ N−
n for t ∈ [t2,∞). Analogically to the proof of case (III) of Theorem 3.2,

we claim limt→∞|z1(t)| = ∞, limt→∞|yi(t)| = ∞, i = 2, . . . , n.
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Example 3.5. We consider system (1.1) as follows:

(
y1(t) − 1

2
y1

(
t

4

))′
= e

t

2y2(t),

y′
2(t) =

1
2
e
t

4y3(t),

y′
3(t) =

1
2
e
t

8y4(t),

y′
4(t) =

1
16

(
e−3t/8 +

5
8
e−9t/8

)
y1

(
t

2

)
, t ≥ 1.

(3.86)

All assumptions of Theorem 3.2 are satisfied, and every solution y ∈ W to (3.86) is
either oscillatory or

lim
t→∞

yi(t) = 0, i = 1, 2, 3, 4, or lim
t→∞

∣∣yi(t)
∣∣ = ∞, i = 1, 2, 3, 4. (3.87)

One of the solutions has particular components as follows:

y1(t) = et, y2(t) = et/2 − 1
8
e−t/4,

y3(t) = et/4 +
1
16

e−t/2, y4(t) =
1
2

(
et/8 − 1

8
e−5t/8

)
, t ≥ 1,

(3.88)

and in this case

lim
t→∞

yi(t) = ∞, i = 1, 2, 3, 4. (3.89)
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194, University of Žilina, Slovakia, 1998.
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[9] P. Marušiak, “Oscillatory properties of functional-differential systems of neutral type,” Czechoslovak
Mathematical Journal, vol. 43, no. 4, pp. 649–662, 1993.

[10] J. Jaroš and T. Kusano, “On a class of first order nonlinear functional-differential equations of neutral
type,” Czechoslovak Mathematical Journal, vol. 40, no. 3, pp. 475–490, 1990.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


