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We introduce a new modified Halpern iteration for a countable infinite family of nonexpansive
mappings {Tn} in convex metric spaces. We prove that the sequence {xn} generated by the pro-
posed iteration is an approximating fixed point sequence of a nonexpansive mapping when
{Tn} satisfies the AKTT-condition, and strong convergence theorems of the proposed iteration to
a common fixed point of a countable infinite family of nonexpansive mappings in CAT(0) spaces
are established under AKTT-condition and the SZ-condition. We also generalize the concept ofW-
mapping for a countable infinite family of nonexpansivemappings from a Banach space setting to a
convexmetric space and give some properties concerning the common fixed point set of this family
in convex metric spaces. Moreover, by using the concept of W-mappings, we give an example of a
sequence of nonexpansive mappings defined on a convex metric space which satisfies the AKTT-
condition. Our results generalize and refine many known results in the current literature.

1. Introduction

Let C be a nonempty closed convex subset of a metric space (X, d), and let T be a mapping
of C into itself. A mapping T is called nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C. The
set of all fixed points of T is denoted by F(T), that is, F(T) = {x ∈ C : x = Tx}.

In 1967, Halpern [1] introduced the following iterative scheme in Hilbert spaces which
was referred to as Halpern iteration for approximating a fixed point of T :

xn+1 = αnu + (1 − αn)Txn ∀n ∈ N, (1.1)
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where x1, u ∈ C are arbitrarily chosen, and {αn} is a sequence in [0, 1]. Wittmann [2] studied
the iterative scheme (1.1) in a Hilbert space and obtained the strong convergence of the it-
eration. Reich [3] and Shioji and Takahashi [4] extended Wittmann’s result to a real Banach
space.

The modified version of Halpern iteration was investigated widely by many mathe-
maticians. For instance, Kim and Xu [5] studied the sequence {xn} generated as follows:

yn = αnxn + (1 − αn)Txn,

xn+1 = βnu +
(
1 − βn

)
yn ∀n ∈ N,

(1.2)

where x1, u ∈ C are arbitrarily chosen and {αn}, {βn} are two sequences in [0, 1]. They proved
the strong convergence of iterative scheme (1.2) in the framework of a uniformly smooth
Banach space. In 2007, Aoyama et al. [6] introduced a Halpern iteration for finding a common
fixed point of a countable infinite family of nonexpansive mappings in a Banach space as
follows:

xn+1 = αnu + (1 − αn)Tnxn ∀n ∈ N, (1.3)

where x1, u ∈ C are arbitrarily chosen, {αn} is a sequence in [0, 1], and {Tn} is a sequence
of nonexpansive mappings with some conditions. They proved that the sequence {xn} gen-
erated by (1.3) converges strongly to a common fixed point of {Tn}. In 2010, Saejung [7] ex-
tended the results of Halpern [1], Wittmann [2], Reich [3], Shioji and Takahashi [4], and
Aoyama et al. [6] to the case of a CAT(0) space which is an example of a convex metric space.
Recently, Cuntavepanit and Panyanak [8] extended the result of Kim and Xu [5] to a CAT(0)
space.

Takahashi [9] introduced the concept of convex metric spaces by using the convex
structure as follows. Let (X, d) be a metric space. A mappingW : X×X×[0, 1] → X is said to
be a convex structure on X if for each x, y ∈ X and λ ∈ [0, 1],

d
(
z,W

(
x, y, λ

)) ≤ λd(z, x) + (1 − λ)d
(
z, y

)
, (1.4)

for all z ∈ X. Ametric space (X, d) together with a convex structureW is called a convex metric
space which will be denoted by (X, d,W). A nonempty subset C of X is said to be convex if
W(x, y, λ) ∈ C for all x, y ∈ C and λ ∈ [0, 1]. Clearly, a normed space and each of its convex
subsets are convex metric spaces, but the converse does not hold.

Motivated by the above results, we introduce a new iterative scheme for finding a
common fixed point of a countable infinite family of nonexpansive mappings {Tn} of C into
itself in a convex metric space as follows:

yn = W(u, Tnxn, αn),

xn+1 = W
(
yn, Tnyn, βn

) ∀n ∈ N,
(1.5)

where x1, u ∈ C are arbitrarily chosen, and {αn}, {βn} are two sequences in [0, 1]. The main
propose of this paper is to prove the convergence theorem of the sequence {xn} generated
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by (1.5) to a common fixed point of a countable infinite family of nonexpansive mappings in
convex metric spaces and CAT(0) spaces under certain suitable conditions.

2. Preliminaries

We recall some definitions and useful lemmas used in the main results.

Lemma 2.1 (see [9, 10]). Let (X, d,W) be a convex metric space. For each x, y ∈ X and λ, λ1, λ2 ∈
[0, 1], we have the following.

(i) W(x, x, λ) = x,W(x, y, 0) = y and W(x, y, 1) = x.

(ii) d(x,W(x, y, λ)) = (1 − λ)d(x, y) and d(y,W(x, y, λ)) = λd(x, y).

(iii) d(x, y) = d(x,W(x, y, λ)) + d(W(x, y, λ), y).

(iv) |λ1 − λ2|d(x, y) ≤ d(W(x, y, λ1),W(x, y, λ2)).

We say that a convex metric space (X, d,W) has the property:

(C) ifW(x, y, λ) = W(y, x, 1 − λ) for all x, y ∈ X and λ ∈ [0, 1],

(I) if d(W(x, y, λ1),W(x, y, λ2)) ≤ |λ1 − λ2|d(x, y) for all x, y ∈ X and λ1, λ2 ∈ [0, 1],

(H) if d(W(x, y, λ),W(x, z, λ)) ≤ (1 − λ)d(y, z) for all x, y, z ∈ X and λ ∈ [0, 1],

(S) if d(W(x, y, λ),W(z,w, λ)) ≤ λd(x, z) + (1 − λ)d(y,w) for all x, y, z,w ∈ X and
λ ∈ [0, 1].

From the above properties, it is obvious that the property (C) and (H) imply continuity
of a convex structure W : X × X × [0, 1] → X. Clearly, the property (S) implies the property
(H). In [10], Aoyama et al. showed that a convex metric space with the property (C) and (H)
has the property (S).

In 1996, Shimizu and Takahashi [11] introduced the concept of uniform convexity in
convex metric spaces and studied some properties of these spaces. A convex metric space
(X, d,W) is said to be uniformly convex if for any ε > 0, there exists δ = δ(ε) > 0 such that
for all r > 0 and x, y, z ∈ X with d(z, x) ≤ r, d(z, y) ≤ r and d(x, y) ≥ rε imply that
d(z,W(x, y, 1/2)) ≤ (1 − δ)r. Obviously, uniformly convex Banach spaces are uniformly
convex metric spaces. In fact, the property (I) holds in uniformly convex metric spaces, see
[12].

Lemma 2.2. Property (C) holds in uniformly convex metric spaces.

Proof. Suppose that (X, d,W) is a uniformly convexmetric space. Let x, y ∈ X and λ ∈ [0, 1]. It
is obvious that the conclusion holds if λ = 0 or λ = 1. So, suppose λ ∈ (0, 1). By Lemma 2.1(ii),
we have

d
(
x,W

(
x, y, λ

))
= (1 − λ)d

(
x, y

)
, d

(
y,W

(
x, y, λ

))
= λd

(
x, y

)
,

d
(
x,W

(
y, x, 1 − λ

))
= (1 − λ)d

(
x, y

)
, d

(
y,W

(
y, x, 1 − λ

))
= λd

(
x, y

)
.

(2.1)

We will show that W(x, y, λ) = W(y, x, 1 − λ). To show this, suppose not. Put
z1 = W(x, y, λ) and z2 = W(y, x, 1 − λ). Let r1 = (1 − λ)d(x, y) > 0, r2 = λd(x, y) > 0,
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ε1 = d(z1, z2)/r1, and ε2 = d(z1, z2)/r2. It is easy to see that ε1, ε2 > 0. Since (X, d,W) is
uniformly convex, we have

d

(
x,W

(
z1, z2,

1
2

))
≤ r1(1 − δ(ε1)), d

(
y,W

(
z1, z2,

1
2

))
≤ r2(1 − δ(ε2)). (2.2)

By λ ∈ (0, 1), we get x /=y. Since δ(ε1) > 0 and δ(ε2) > 0, then

d
(
x, y

) ≤ d

(
x,W

(
z1, z2,

1
2

))
+ d

(
y,W

(
z1, z2,

1
2

))

≤ r1(1 − δ(ε1)) + r2(1 − δ(ε2))

< r1 + r2

= d
(
x, y

)
.

(2.3)

This is a contradiction. Hence, W(x, y, λ) = W(y, x, 1 − λ).

By Lemma 2.2, it is clear that a uniformly convex metric space (X, d,W)with the prop-
erty (H) has the property (S), and the convex structure W is also continuous.

Next, we recall the special space of convex metric spaces, namely, CAT(0) spaces. Let
(X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more briefly, a geodesic
from x to y) is a map c from a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y
and d(c(t1), c(t2)) = |t1 − t2| for all t1, t2 ∈ [0, l]. In particular, c is an isometry and d(x, y) = l.
The image α of c is called a geodesic (or metric) segment joining x and y. When unique, this
geodesic is denoted [x, y]. The space (X, d) is said to be a geodesic metric space if every two
points ofX are joined by a geodesic, andX is said to be uniquely geodesic if there is exactly one
geodesic joining x and y for each x, y ∈ X. A subset Y of X is said to be convex if Y includes
every geodesic segment joining any two of its points.

A geodesic triangle� (x1, x2, x3) in a geodesic metric space (X, d) consists of three points
x1, x2, x3 in X (the vertices of �) and a geodesic segment between each pair of vertices (the
edges of �). A comparison triangle for geodesic triangle � (x1, x2, x3) in (X, d) is a triangle
�(x1, x2, x3) : =� (x1, x2, x3) in the Euclidean plane E

2 such that dE2(xi, xj) = d(xi, xj) for
i, j ∈ {1, 2, 3}.

A geodesic metric space is said to be a CAT(0) space if all geodesic triangles satisfy the
following comparison axiom. Let � be a geodesic triangle in X, and let � be a comparison
triangle for �. Then � is said to satisfy the CAT(0) inequality if for all x, y ∈ � and all com-
parison points x, y ∈ �, d(x, y) ≤ dE2(x, y).

If z, x, y are points in a CAT(0) space and if m is the midpoint of the segment [x, y],
then the CAT(0) inequality implies

d(z,m)2 ≤ 1
2
d(z, x)2 +

1
2
d
(
z, y

)2 − 1
4
d
(
x, y

)2
. (CN)

This is the (CN) inequality of Bruhat and Tits [13], which is equivalent to

d
(
z, λx ⊕ (1 − λ)y

)2 ≤ λd(z, x)2 + (1 − λ)d
(
z, y

)2 − λ(1 − λ)d
(
x, y

)2
, (CN∗)
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for any λ ∈ [0, 1], where λx⊕ (1−λ)y denotes the unique point in [x, y]. The (CN∗) inequality
has appeared in [14]. By using the (CN) inequality, it is easy to see that the CAT(0) spaces
are uniformly convex. In fact [15], a geodesic metric space is a CAT(0) space if and only if
it satisfies the (CN) inequality. Moreover, if X is CAT(0) space and x, y ∈ X, then for any
λ ∈ [0, 1], there exists a unique point λx ⊕ (1 − λ)y ∈ [x, y] such that

d
(
z, λx ⊕ (1 − λ)y

) ≤ λd(z, x) + (1 − λ)d
(
z, y

)
, (2.4)

for any z ∈ X. It follows that CAT(0) spaces have convex structureW(x, y, λ) = λx ⊕ (1− λ)y.
It is clear that the properties (C), (I), and (S) are satisfied for CAT(0) spaces, see [15, 16]. This
is also true for Banach spaces.

Let μ be a continuous linear functional on l∞, the Banach space of bounded real se-
quences, and let (a1, a2, . . .) ∈ l∞. We write μn(an) instead of μ((a1, a2, . . .)). We call μ a Banach
limit if μ satisfies ‖μ‖ = μ(1, 1, . . .) = 1 and μn(an) = μn(an+1) for each (a1, a2, . . .) ∈ l∞. For a
Banach limit μ, we know that lim infn→∞an ≤ μn(an) ≤ lim supn→∞an for all (a1, a2, . . .) ∈ l∞.
So if (a1, a2, . . .) ∈ l∞ with limn→∞an = c, then μn(an) = c, see also [17].

Lemma 2.3 ([4], Proposition 2). Let (a1, a2, . . .) ∈ l∞ be such that μn(an) ≤ 0 for all Banach limit
μ. If lim supn→∞(an+1 − an) ≤ 0, then lim supn→∞an ≤ 0.

Lemma 2.4 ([6], Lemma 2.3). Let {sn} be a sequence of nonnegative real numbers, let {αn} be a se-
quence of real numbers in [0, 1]with

∑∞
n=1 αn = ∞, let {δn} be a sequence of nonnegative real numbers

with
∑∞

n=1 δn < ∞, and let {γn}be a sequence of real numbers with lim supn→∞γn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αnγn + δn ∀n ∈ N. (2.5)

Then limn→∞sn = 0.

Lemma 2.5 ([18], Lemma 1). Let (X, d,W) be a uniformly convex metric space with a continuous
convex structure W : X × X × [0, 1] → X. Then for arbitrary positive number ε and r, there exists
η = η(ε) > 0 such that

d
(
z,W

(
x, y, λ

)) ≤ r
(
1 − 2min{λ, 1 − λ}η), (2.6)

for all x, y, z ∈ X, d(z, x) ≤ r, d(z, y) ≤ r, d(x, y) ≥ rε, and λ ∈ [0, 1].

Remark 2.6. The above lemma also holds for a uniformly convex metric space with the prop-
erty (H).

3. Main Results

The following condition was introduced by Aoyama et al. [6]. Let C be a subset of a complete
convex metric space (X, d,W), and let {Tn} be a countable infinite family of mappings from
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C into itself. We say that {Tn} satisfies AKTT-condition if

∞∑

n=1

sup{d(Tn+1z, Tnz) : z ∈ B} < ∞, (3.1)

for each bounded subset B of C. If C is a closed subset and {Tn} satisfies AKTT-condition,
then we can define a mapping T : C → C such that Tx = limn→∞Tnx for all x ∈ C. In this
case, we also say that ({Tn}, T) satisfies AKTT-condition. By using the same argument as in
[6, Lemma 3.2], we have the following lemma.

Lemma 3.1. If ({Tn}, T) satisfies AKTT-condition, then limn→∞ sup{d(Tz, Tnz) : z ∈ B} = 0 for
all bounded subsets B of C.

Theorem 3.2. Let C be a nonempty closed convex subset of a complete convex metric space (X, d,W)
with the properties (I) and (S). Let {Tn} be a family of nonexpansive mappings ofC into itself such that⋂∞

n=1 F(Tn)/= ∅. Suppose that {xn} is a sequence of C generated by (1.5), and let {αn} and {βn} be
sequences in [0, 1] which satisfy the conditions:

(C1) 0 < αn < 1, limn→∞αn = 0,
∑∞

n=1 αn = ∞ and
∑∞

n=1 |αn+1 − αn| < ∞,

(C2) βn ∈ (b, 1] for some b ∈ (0, 1) and
∑∞

n=1 |βn+1 − βn| < ∞.

Suppose that ({Tn}, T) satisfies AKTT-condition. Then limn→∞d(xn+1, xn) = 0 and limn→∞d(Txn,
xn) = 0.

Proof. Let p ∈ ⋂∞
n=1 F(Tn). By the definition of {xn} and {yn}, we have

d
(
xn+1, p

)
= d

(
W

(
yn, Tnyn, βn

)
, p
)

≤ βnd
(
yn, p

)
+
(
1 − βn

)
d
(
Tnyn, p

)

≤ d
(
yn, p

)

= d
(
W(u, Tnxn, αn), p

)

≤ αnd
(
u, p

)
+ (1 − αn)d

(
Tnxn, p

)

≤ αnd
(
u, p

)
+ (1 − αn)d

(
xn, p

)

≤ max
{
d
(
u, p

)
, d

(
xn, p

)}
.

(3.2)

By induction on n, we obtain that d(xn, p) ≤ max{d(u, p), d(x1, p)} for all n ∈ N and all p ∈⋂∞
n=1 F(Tn). Hence, the sequence {xn} is bounded and so {yn}, {Tnxn}, {Tnyn} are bounded.

It follows by condition (C1) that

d
(
yn, Tnxn

)
= d(W(u, Tnxn, αn), Tnxn) = αnd(u, Tnxn) −→ 0. (3.3)
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By the definition of {xn} and {yn}, we have

d
(
yn, yn−1

)
= d(W(u, Tnxn, αn),W(u, Tn−1xn−1, αn−1))

≤ d(W(u, Tnxn, αn),W(u, Tnxn−1, αn))

+ d(W(u, Tnxn−1, αn),W(u, Tn−1xn−1, αn))

+ d(W(u, Tn−1xn−1, αn),W(u, Tn−1xn−1, αn−1))

≤ (1 − αn)d(Tnxn, Tnxn−1) + (1 − αn)d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1)

≤ (1 − αn)d(xn, xn−1) + (1 − αn)d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1)

≤ (1 − αn)d(xn, xn−1) + d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1),

d(xn+1, xn) = d
(
W

(
yn, Tnyn, βn

)
,W

(
yn−1, Tn−1yn−1, βn−1

))

≤ d
(
W

(
yn, Tnyn, βn

)
,W

(
yn−1, Tn−1yn−1, βn

))

+ d
(
W

(
yn−1, Tn−1yn−1, βn

)
,W

(
yn−1, Tn−1yn−1, βn−1

))

≤ βnd
(
yn, yn−1

)
+
(
1 − βn

)
d
(
Tnyn, Tn−1yn−1

)

+
∣∣βn − βn−1

∣∣d
(
yn−1, Tn−1yn−1

)

≤ βnd
(
yn, yn−1

)
+
(
1 − βn

)(
d
(
Tnyn, Tnyn−1

)
+ d

(
Tnyn−1, Tn−1yn−1

))

+
∣∣βn − βn−1

∣∣d
(
yn−1, Tn−1yn−1

)

≤ βnd
(
yn, yn−1

)
+
(
1 − βn

)(
d
(
yn, yn−1

)
+ d

(
Tnyn−1, Tn−1yn−1

))

+
∣∣βn − βn−1

∣∣d
(
yn−1, Tn−1yn−1

)

≤ d
(
yn, yn−1

)
+ d

(
Tnyn−1, Tn−1yn−1

)
+
∣∣βn − βn−1

∣∣d
(
yn−1, Tn−1yn−1

)

≤ (1 − αn)d(xn, xn−1) + d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1) + d
(
Tnyn−1, Tn−1yn−1

)

+
∣∣βn − βn−1

∣∣d
(
yn−1, Tn−1yn−1

)

≤ (1 − αn)d(xn, xn−1) +
(|αn − αn−1| +

∣∣βn − βn−1
∣∣)M

+ d(Tnxn−1, Tn−1xn−1) + d
(
Tnyn−1, Tn−1yn−1

)
,

(3.4)

where M = max{supnd(u, Tn−1xn−1), supnd(yn−1, Tn−1yn−1)}.
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Putting δn = (|αn − αn−1| + |βn − βn−1|)M + d(Tnxn−1, Tn−1xn−1) + d(Tnyn−1, Tn−1yn−1), we
have

∞∑

n=2

δn ≤ M
∞∑

n=2

(|αn − αn−1| +
∣
∣βn − βn−1

∣
∣) +

∞∑

n=2

sup{d(Tnz, Tn−1z) : z ∈ {xk}}

+
∞∑

n=2

sup
{
d(Tnz, Tn−1z) : z ∈ {

yk

}}
.

(3.5)

Hence, it follows from conditions (C1), (C2), AKTT-condition, and Lemma 2.4 that

lim
n→∞

d(xn+1, xn) = 0. (3.6)

Now, observe that

d
(
xn+1, yn

)
= d

(
W

(
yn, Tnyn, βn

)
, yn

)

=
(
1 − βn

)
d
(
yn, Tnyn

)

≤ (1 − b)
(
d
(
yn, Tnxn

)
+ d(Tnxn, Tnxn+1) + d

(
Tnxn+1, Tnyn

))

≤ (1 − b)
(
d
(
yn, Tnxn

)
+ d(xn, xn+1) + d

(
xn+1, yn

))
.

(3.7)

We obtain

d
(
xn+1, yn

) ≤ 1 − b

b

(
d
(
yn, Tnxn

)
+ d(xn, xn+1)

)
. (3.8)

This implies by (3.3) and (3.6) that limn→∞d(xn+1, yn) = 0. Therefore, we have

d
(
xn, yn

) ≤ d(xn, xn+1) + d
(
xn+1, yn

) −→ 0. (3.9)

Since

d(Tnxn, xn) ≤ d
(
Tnxn, yn

)
+ d

(
yn, xn

)
, (3.10)

it follows by (3.3) and (3.9) that

lim
n→∞

d(Tnxn, xn) = 0. (3.11)

By (3.11) and Lemma 3.1, we get

d(Txn, xn) ≤ d(Txn, Tnxn) + d(Tnxn, xn)

≤ sup{d(Tz, Tnz) : z ∈ {xk}} + d(Tnxn, xn) −→ 0.
(3.12)
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Next, we consider a convergence theorem in CAT(0) spaces. The following two lem-
mas obtained by Saejung [7] are useful for our main results.

Lemma 3.3. Let C be a closed convex subset of a complete CAT(0) space X, and let T : C → C be a
nonexpansive mapping. Let u ∈ C be fixed. For each t ∈ (0, 1), the mapping St : C → C defined by
Stx = tu ⊕ (1 − t)Tx for x ∈ C has a unique fixed point xt ∈ C, that is, xt = Stxt = tu ⊕ (1 − t)Txt.

Lemma 3.4. LetC, T be as the preceding lemma. Then F(T)/= ∅ if and only if {xt} remains bounded as
t → 0. In this case, the following statements hold:

(i) {xt} converges to the unique fixed point z of T which is nearest to u;

(ii) d(u, z)2 ≤ μnd(u, xn)
2 for all Banach limit μ and all bounded sequences {xn} with

limn→∞d(xn, Txn) = 0.

Previously, we know that CAT(0) spaces have convex structure W(x, y, λ) = λx ⊕ (1 −
λ)y and also have the properties (C), (I), and (S). Thus, we have the following result.

Theorem 3.5. Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let {Tn} be
a family of nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn)/= ∅. Suppose that u, x1 ∈ C

are arbitrarily chosen and {xn} is a sequence of C generated by

yn = αnu ⊕ (1 − αn)Tnxn,

xn+1 = βnyn ⊕
(
1 − βn

)
Tnyn ∀n ∈ N,

(3.13)

where {αn} and {βn} are sequences in [0, 1] which satisfy the conditions (C1) and (C2) as in
Theorem 3.2. Suppose that ({Tn}, T) satisfies AKTT-condition. Then limn→∞d(xn+1, xn) = 0 and
limn→∞d(Txn, xn) = 0.

Theorem 3.6. Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let {Tn} be
a family of nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn)/= ∅. Suppose that {xn} is

a sequence of C generated by (3.13), and let {αn} and {βn} be sequences in [0, 1] which satisfy the
conditions (C1) and (C2) as in Theorem 3.2. Suppose that ({Tn}, T) satisfies AKTT-condition and
F(T) =

⋂∞
n=1 F(Tn). Then {xn} converges strongly to a common fixed point of {Tn} which is nearest

to u.

Proof. By Theorem 3.5, we have limn→∞d(Txn, xn) = 0. For each t ∈ (0, 1), let zt be a unique
point of C such that zt = tu ⊕ (1 − t)Tzt. It follows from Lemma 3.4 that {zt} converges to
a point z ∈ F(T)which is nearest to u, and

d(u, z)2 ≤ μnd(u, xn)2 for all Banach limits μ, (3.14)

that is, μn(d(u, z)
2 − d(u, xn)

2) ≤ 0. Moreover, by Theorem 3.5, we get limn→∞d(xn+1, xn) = 0.
It follows that

lim sup
n→∞

((
d(u, z)2 − d(u, xn+1)2

)
−
(
d(u, z)2 − d(u, xn)2

))
= 0. (3.15)
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By limn→∞d(Tnxn, xn) = 0 and Lemma 2.3, we obtain

lim sup
n→∞

(
d(u, z)2 − (1 − αn)d(u, Tnxn)2

)
= lim sup

n→∞

(
d(u, z)2 − d(u, xn)2

)
≤ 0. (3.16)

Finally, we show that limn→∞d(xn, z) = 0. By the definition of {xn} and {yn}, we have

d(xn+1, z)2 = d
(
βnyn ⊕

(
1 − βn

)
Tnyn, z

)2

≤ (
βnd

(
yn, z

)
+
(
1 − βn

)
d
(
Tnyn, z

))2

≤ d
(
yn, z

)2 = d(αnu ⊕ (1 − αn)Tnxn, z)2

≤ αnd(u, z)2 + (1 − αn)d(Tnxn, z)2 − αn(1 − αn)d(u, Tnxn)2

≤ αnd(u, z)2 + (1 − αn)d(xn, z)2 − αn(1 − αn)d(u, Tnxn)2

= (1 − αn)d(xn, z)2 + αn

(
d(u, z)2 − (1 − αn)d(u, Tnxn)2

)
.

(3.17)

This implies by
∑∞

n=1 αn = ∞, inequality (3.16), and Lemma 2.4 that limn→∞d(xn, z)
2 = 0.

Hence, {xn} converges to z ∈ F(T) =
⋂∞

n=1 F(Tn)which is nearest to u.

Corollary 3.7 (see [7], Theorem 8). Let C be a nonempty closed convex subset of a complete CAT(0)
space X. Let {Tn} be a family of nonexpansive mappings of C into itself such that

⋂∞
n=1 F(Tn)/= ∅.

Suppose that u, x1 ∈ C are arbitrarily chosen and {xn} is a sequence of C generated by

xn+1 = αnu ⊕ (1 − αn)Tnxn ∀n ∈ N, (3.18)

where {αn} is a sequence in [0, 1] which satisfies the condition (C1) as in Theorem 3.2. Suppose that
({Tn}, T) satisfies AKTT-condition and F(T) =

⋂∞
n=1 F(Tn). Then {xn} converges strongly to a com-

mon fixed point of {Tn} which is nearest to u.

Proof. By putting βn = 1 for all n ∈ N in Theorem 3.6, we obtain the desired result.

In 2009, Song and Zheng [19] introduced a condition in Banach spaces for a countable
infinite family of nonexpansive mappings which is different from AKTT-condition and also
give some examples of a family of mappings that satisfies this condition. Now, we state this
condition in CAT(0) spaces, and it is referred as SZ-condition as follows. LetC be a nonempty
closed convex subset of a complete CAT(0) space X. Suppose that {Tn} is a family of non-
expansive mappings from C into itself with

⋂∞
n=1 F(Tn)/= ∅. We say that {Tn} satisfies SZ-con-

dition if, for any bounded subset K of C, there exists a nonexpansive mapping T of C into
itself such that

lim
n→∞

sup{d(T(Tnx), Tnx) : x ∈ K} = 0, F(T) =
∞⋂

n=1

F(Tn). (3.19)

Theorem 3.8. Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let {Tn} be
a family of nonexpansive mappings ofC into itself such that

⋂∞
n=1 F(Tn)/= ∅ and satisfies SZ-condition.
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Suppose that {xn} is a sequence of C defined by (3.13) with limn→∞d(xn+1, xn) = 0. Let {αn} and
{βn} be sequences in [0, 1] which satisfy the following conditions:

(C3) 0 < αn < 1, limn→∞αn = 0, and
∑∞

n=1 αn = ∞,

(C4) limn→∞βn = 1.

Then {xn} converges strongly to a common fixed point of {Tn} which is nearest to u.

Proof. As in the proof of Theorem 3.2, we have that {xn} and {Tnxn} are bounded. Since
{Tn} satisfies SZ-condition, there exists a nonexpansive mapping T of C into itself such that
limn→∞sup{d(T(Tnx), Tnx) : x ∈ {xk}} = 0 and F(T) =

⋂∞
n=1 F(Tn). By the definition of {xn}

and {yn}, we have

d(xn+1, Tnxn) = d
(
βnyn ⊕

(
1 − βn

)
Tnyn, Tnxn

)

≤ βnd
(
yn, Tnxn

)
+
(
1 − βn

)
d
(
Tnyn, Tnxn

)

≤ βnd
(
yn, Tnxn

)
+
(
1 − βn

)
d
(
yn, xn

)

= βnd(αnu ⊕ (1 − αn)Tnxn, Tnxn) +
(
1 − βn

)
d(αnu ⊕ (1 − αn)Tnxn, xn)

≤ βnαnd(u, Tnxn) +
(
1 − βn

)
(αnd(u, xn) + (1 − αn)d(Tnxn, xn)).

(3.20)

It follows from condition (C3) and (C4) that

lim
n→∞

d(xn+1, Tnxn) = 0. (3.21)

Since

d(xn+1, Txn+1) ≤ d(xn+1, Tnxn) + d(Tnxn, T(Tnxn)) + d(T(Tnxn), Txn+1)

≤ 2d(xn+1, Tnxn) + sup{d(T(Tnx), Tnx) : x ∈ {xk}},
(3.22)

this implies by (3.21) and SZ-condition, we have

lim
n→∞

d(xn, Txn) = 0. (3.23)

From limn→∞d(xn+1, xn) = 0 and

d(xn, Tnxn) ≤ d(xn, xn+1) + d(xn+1, Tnxn), (3.24)

it follows that

lim
n→∞

d(xn, Tnxn) = 0. (3.25)

By using the same arguments and techniques as those of Theorem 3.6, we can show that {xn}
converges to a common fixed point of {Tn}which is nearest to u.
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Corollary 3.9. Let C be a nonempty closed convex subset of a complete CAT(0) space X. Let {Tn} be
a family of nonexpansive mappings ofC into itself such that

⋂∞
n=1 F(Tn)/= ∅ and satisfies SZ-condition.

Suppose that {xn} is a sequence of C defined by (3.18) with limn→∞d(xn+1, xn) = 0. Let {αn} be a se-
quence in [0, 1] which satisfies the condition (C3) as in Theorem 3.8. Then {xn} converges strongly
to a common fixed point of {Tn} which is nearest to u.

Proof. By putting βn = 1 for all n ∈ N in Theorem 3.8, we obtain the desired result.

4. W-Mapping in Convex Metric Spaces

In Theorems 3.2, 3.5, and 3.6 and Corollary 3.7, to obtain a convergence result, we have to as-
sume that ({Tn}, T) satisfies AKTT-condition. In general, one cannot apply these results for
a sequence of nonexpansive mappings. However, we give an example of a sequence {Tn} of
nonexpansive mappings satisfying AKTT-condition.

Let {Tn} be a family of nonexpansive mappings of C into itself, where C is a convex
subset of a convex metric space (X, d,W). We now define mappings Un;1, Un;2, . . . , Un;n and
Sn as follows. For {λn} a sequence in [0, 1] and x ∈ X,

Un;nx = W(Tnx, x, λn),

Un;n−1x = W(Tn−1Un;nx, x, λn−1),

Un;n−2x = W(Tn−2Un;n−1x, x, λn−2),

...

Un;kx = W(TkUn;k+1x, x, λk),

Un;k−1x = W(Tk−1Un;kx, x, λk−1),

...

Un;2x = W(T2Un;3x, x, λ2),

Snx = Un;1x = W(T1Un;2x, x, λ1).

(4.1)

Such a mapping Sn is called theW-mapping generated by T1, T2, . . . , Tn and λ1, λ2, . . . , λn.
In 2007, Shimizu [18] generalized W-mapping which was introduced by Takahashi

[20] from Banach spaces to convex metric spaces. Then, the following result is obtained by
using the same proof as in of [18, Lemma 2].

Lemma 4.1. Let C be a nonempty closed convex subset of a uniformly convex metric space (X, d,W)
with a continuous convex structure W : X × X × [0, 1] → X. Let T1, T2, . . . , TN be nonexpansive
mappings of C into itself such that

⋂N
n=1 F(Tn)/= ∅ and let λ1, λ2, . . . , λN be real numbers such that

0 < λn < 1 for every n = 1, 2, . . . ,N. Let SN be the W-mapping of C into itself generated by
T1, T2, . . . , TN and λ1, λ2, . . . , λN . Then F(SN) =

⋂N
n=1 F(Tn).

Next, we consider the W-mapping given by a countable infinite family of nonexpan-
sive mappings in a uniformly convex metric space.
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Lemma 4.2. Let C be a nonempty closed convex subset of a complete uniformly convex metric space
(X, d,W) with the property (H). Let {Tn} be a family of nonexpansive mappings of C into itself such
that

⋂∞
n=1 F(Tn)/= ∅, and let λ1, λ2, . . . be real numbers such that 0 < λn ≤ b < 1 for every n ∈ N. Then

for every x ∈ C, and k ∈ N, limn→∞Un;kx exists.

Proof. Let x ∈ C and p ∈ ⋂∞
n=1 F(Tn). Fix k ∈ N. Then for any n ∈ N with n > k, we have

d(Un+1;kx,Un;kx) = d(W(TkUn+1;k+1x, x, λk),W(TkUn;k+1x, x, λk))

≤ λkd(TkUn+1;k+1x, TkUn;k+1x)

≤ λkd(Un+1;k+1x,Un;k+1x)

= λkd(W(Tk+1Un+1;k+2x, x, λk+1),W(Tk+1Un;k+2x, x, λk+1))

≤ λkλk+1d(Un+1;k+2x,Un;k+2x)

...

≤ λkλk+1 · · ·λn−1d(Un+1;nx,Un;nx)

= λkλk+1 · · ·λn−1d(W(TnUn+1;n+1x, x, λn),W(Tnx, x, λn))

≤ λkλk+1 · · ·λnd(TnUn+1;n+1x, Tnx)

≤ λkλk+1 · · ·λnd(Un+1;n+1x, x)

= λkλk+1 · · ·λnd(W(Tn+1x, x, λn+1), x)

= λkλk+1 · · ·λn+1d(Tn+1x, x)
≤ λkλk+1 · · ·λn+1

(
d
(
Tn+1x, p

)
+ d

(
p, x

))

≤ 2d
(
p, x

)
bn−k+2.

(4.2)

Thus for m > n,

d(Um;kx,Un;kx) ≤ d(Um;kx,Um−1;kx) + d(Um−1;kx,Um−2;kx) + · · · + d(Un+1;kx,Un;kx)

≤ 2d
(
p, x

)
b(m−1)−k+2 + 2d

(
p, x

)
b(m−2)−k+2 + · · · + 2d

(
p, x

)
bn−k+2

= 2d
(
p, x

)m−1∑

j=n

bj−k+2.

(4.3)

It follows that {Un;kx} is a Cauchy sequence. Hence, limn→∞Un;kx exists.

Using the above lemma, one can define mappings U∞;k and S of C into itself as

U∞;kx = lim
n→∞

Un;kx, Sx = lim
n→∞

Snx = lim
n→∞

Un;1x, (4.4)
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for every x ∈ C. Such a mapping S is called the W-mapping generated by T1, T2, . . . and
λ1, λ2, . . ..

Lemma 4.3. Let C be a nonempty closed convex subset of a complete uniformly convex metric space
(X, d,W) with the property (H). Let {Tn} be a family of nonexpansive mappings of C into itself such
that

⋂∞
n=1 F(Tn)/= ∅, and let λ1, λ2, . . . be real numbers such that 0 < λn ≤ b < 1 for every n ∈ N. Let

S be the W-mapping generated by T1, T2, . . . and λ1, λ2, . . .. Then, S is a nonexpansive mapping and
F(S) =

⋂∞
n=1 F(Tn).

Proof. First, we show that S is a nonexpansive mapping. For x, y ∈ C, we have

d
(
Snx, Sny

)
= d

(
W(T1Un;2x, x, λ1),W

(
T1Un;2y, y, λ1

))

≤ λ1d
(
T1Un;2x, T1Un;2y

)
+ (1 − λ1)d

(
x, y

)

≤ λ1d
(
Un;2x,Un;2y

)
+ (1 − λ1)d

(
x, y

)

...

≤ λ1λ2 · · ·λn−1d
(
Un;nx,Un;ny

)
+ (1 − λ1λ2 · · ·λn−1)d

(
x, y

)

= λ1λ2 · · ·λn−1d
(
W(Tnx, x, λn),W

(
Tny, y, λn

))
+ (1 − λ1λ2 · · ·λn−1)d

(
x, y

)

≤ λ1λ2 · · ·λn−1λnd
(
Tnx, Tny

)
+ λ1λ2 · · ·λn−1(1 − λn)d

(
x, y

)

+ (1 − λ1λ2 · · ·λn−1)d
(
x, y

)

≤ d
(
x, y

)
.

(4.5)

This implies that Sn is a nonexpansive mapping, and we have d(Sx, Sy) = limn→∞d(Snx,
Sny) ≤ d(x, y). Thus, S is also a nonexpansive mapping.

Finally, we show that F(S) =
⋂∞

n=1 F(Tn). Let p ∈ ⋂∞
n=1 F(Tn). Then, it is obvious that

Un;kp = p for all n, k ∈ N with n > k. So we have U∞;kp = p for all k ∈ N. Therefore, we have
Sp = U∞;1p = p, and hence,

⋂∞
n=1 F(Tn) ⊆ F(S). We now show that F(S) ⊆ ⋂∞

n=1 F(Tn). Let
x ∈ F(S) and let p ∈ ⋂∞

n=1 F(Tn). Then we have

d
(
Snp, Snx

)
= d

(
Un;1p,Un;1x

)

= d
(
p,W(T1Un;2x, x, λ1)

)

≤ λ1d
(
p, T1Un;2x

)
+ (1 − λ1)d

(
p, x

)

≤ λ1d
(
p,Un;2x

)
+ (1 − λ1)d

(
p, x

)

...

≤ λ1λ2 · · ·λk−1d
(
p,Un;kx

)
+ (1 − λ1λ2 · · ·λk−1)d

(
p, x

)

= λ1λ2 · · ·λk−1d
(
p,W(TkUn;k+1x, x, λk)

)
+ (1 − λ1λ2 · · ·λk−1)d

(
p, x

)

≤ λ1λ2 · · ·λk−1λkd
(
p, TkUn;k+1x

)
+ λ1λ2 · · ·λk−1(1 − λk)d

(
p, x

)
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+ (1 − λ1λ2 · · ·λk−1)d
(
p, x

)

= λ1λ2 · · ·λkd
(
p, TkUn;k+1x

)
+ (1 − λ1λ2 · · ·λk)d

(
p, x

)

≤ λ1λ2 · · ·λkd
(
p,Un;k+1x

)
+ (1 − λ1λ2 · · ·λk)d

(
p, x

)

...

≤ λ1λ2 · · ·λn−1d
(
p,Un;nx

)
+ (1 − λ1λ2 · · ·λn−1)d

(
p, x

)

= λ1λ2 · · ·λn−1d
(
p,W(Tnx, x, λn)

)
+ (1 − λ1λ2 · · ·λn−1)d

(
p, x

)

≤ λ1λ2 · · ·λn−1λnd
(
p, Tnx

)
+ λ1λ2 · · ·λn−1(1 − λn)d

(
p, x

)

+ (1 − λ1λ2 · · ·λn−1)d
(
p, x

)

= λ1λ2 · · ·λnd
(
p, Tnx

)
+ (1 − λ1λ2 · · ·λn)d

(
p, x

)

≤ d
(
p, x

)
.

(4.6)

Taking n → ∞, we obtain

d
(
Sp, Sx

) ≤ λ1λ2 · · ·λk−1d
(
p,W(TkU∞;k+1x, x, λk)

)
+ (1 − λ1λ2 · · ·λk−1)d

(
p, x

)

≤ λ1λ2 · · ·λk−1λkd
(
p, TkU∞;k+1x

)
+ λ1λ2 · · ·λk−1(1 − λk)d

(
p, x

)

+ (1 − λ1λ2 · · ·λk−1)d
(
p, x

)

= λ1λ2 · · ·λkd
(
p, TkU∞;k+1x

)
+ (1 − λ1λ2 · · ·λk)d

(
p, x

)

≤ d
(
p, x

)
.

(4.7)

Since p ∈ ⋂∞
n=1 F(Tn) ⊆ F(S), we have d(Sp, Sx) = d(p, x). Then, for λn ∈ (0, 1), n ∈ N, we

have

d
(
p, TkU∞;k+1x

)
= d

(
p, x

)
, d

(
p,W(TkU∞;k+1x, x, λk)

)
= d

(
p, x

)
, (4.8)

for every k ∈ N. Suppose that TkU∞;k+1x /=x. Then d(TkU∞;k+1x, x) > 0. It follows by
Lemma 2.5, we have

d
(
p,W(TkU∞;k+1x, x, λk)

)
< d

(
p, x

)
. (4.9)

This is a contradiction. Hence, TkU∞;k+1x = x. Since Un;k+1x = W(Tk+1Un;k+2x, x, λk+1), we
have

U∞;k+1x = lim
n→∞

Un;k+1x = W(Tk+1U∞;k+2x, x, λk+1) = x. (4.10)

So, we have x = TkU∞;k+1x = Tkx for every k ∈ N. This implies that x ∈ ⋂∞
n=1 F(Tn). Therefore,

we have F(S) ⊆ ⋂∞
n=1 F(Tn).
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Lemma 4.4. Suppose that X,C, {Tn}, {λn} are as in Lemma 4.3. Let Sn and S be the W-mappings
generated by T1, T2, . . . , Tn and λ1, λ2, . . . , λn, and T1, T2, . . . and λ1, λ2, . . ., respectively. Then ({Sn},
S) satisfies AKTT-condition, and F(S) =

⋂∞
n=1 F(Sn).

Proof. Let B be a bounded subset of C and x ∈ B. For p ∈ ⋂∞
n=1 F(Tn), we have

d(Sn+1x, Snx) = d(Un+1;1x,Un;1x)

= d(W(T1Un+1;2x, x, λ1),W(T1Un;2x, x, λ1))

≤ λ1d(T1Un+1;2x, T1Un;2x)

≤ λ1d(Un+1;2x,Un;2x)

...

≤ λ1λ2 · · ·λn−1d(Un+1;nx,Un;nx)

= λ1λ2 · · ·λn−1d(W(TnUn+1;n+1x, x, λn),W(Tnx, x, λn))

≤ λ1λ2 · · ·λnd(Un+1;n+1x, x)

= λ1λ2 · · ·λnd(W(Tn+1x, x, λn+1), x)

≤ λ1λ2 · · ·λn+1d(Tn+1x, x)
≤ λ1λ2 · · ·λn+1

(
d
(
Tn+1x, p

)
+ d

(
p, x

))

≤ 2λ1λ2 · · ·λn+1d
(
p, x

)

≤ 2bn+1d
(
p, x

)
.

(4.11)

This implies

∞∑

n=1

sup{d(Sn+1x, Snx) : x ∈ B} < ∞. (4.12)

Thus, ({Sn}, S) satisfies AKTT-condition. Moreover, from Lemmas 4.1–4.3, we obtain that
F(S) =

⋂∞
n=1 F(Sn).

Remark 4.5. Lemmas 4.2 and 4.3 were proved in Banach spaces by Shimoji and Takahashi
[21], and Lemma 4.4 was proved in Banach spaces by Peng and Yao [22].

Remark 4.6. Suppose that X,C, {Tn}, {λn} are as in Lemma 4.3. Let Sn and S be the W-map-
pings generated by T1, T2, . . . , Tn and λ1, λ2, . . . , λn, and T1, T2, . . . and λ1, λ2, . . ., respectively. By
Lemma 4.4, we know that ({Sn}, S) satisfies the AKTT-condition and F(S) =

⋂∞
n=1 F(Sn).

Therefore, in Theorems 3.2, 3.5, and 3.6 and Corollary 3.7, themapping Tn can be also replaced
by Sn without assuming the AKTT-condition and F(S) =

⋂∞
n=1 F(Sn).
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