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We study totally umbilical hemi-slant submanifolds of a Kaehler manifold via curvature tensor.
We prove some classification theorems for totally umbilical hemi-slant submanifolds of a Kaehler
manifold and give an example.

1. Introduction

The notion of slant submanifolds of an almost Hermitian manifold was introduced by
Chen [1]. These submanifolds are the generalization of both holomorphic and totally real
submanifolds of an almost Hermitian manifold with an almost complex structure J . Recently,
Sahin [2] proved that every totally umbilical proper slant submanifold of a Kaehler manifold
is totally geodesic. Whereas the notion of semi-slant submanifolds of Kaehler manifolds
was initiated by Papaghiuc [3]. Bislant submanifolds of an almost Hermitian manifold
were introduced as a natural generalization of semi-slant submanifolds by Carriazo [4]. The
class of bislant submanifolds includes complex, totally real and CR submanifolds. One of
the important classes of bislant submanifolds is that of antislant submanifolds which are
studied by Carriazo, but the name antislant seems to refer that it has no slant factor, so Sahin
named these submanifolds as hemi-slant submanifolds and studied their warped product
in Kaehler setting [5]. In this paper, we study totally umbilical hemi-submanifolds of a
Kaehler manifold. In fact, we obtain some classification results for totally umbilical hemi-
slant submanifolds of a Kaehler manifold.
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2. Preliminaries

Let M be a Riemannian manifold with an almost complex structure J and Hermitian metric
g satisfying

(a) J2 = −I, (b) g(JX, JY ) = g(X,Y ) (2.1)

for any X,Y ∈ TM, where TM is the tangent bundle of M. If the almost complex structure J
satisfies

(
∇XJ

)
Y = 0 (2.2)

for any X,Y ∈ TxM, and x ∈ M, where ∇ is the Levi-Civita connection on TM, then M is
said to have a Kaehler structure and with the structure equation (2.2), an almost Hermitian
manifold M is called a Kaehler manifold.

Let M be a Kaehler manifold with almost complex structure J and let M be a Rie-
mannian manifold isometrically immersed in M. Then M is called holomorphic (or complex)
if J(TxM) ⊂ TxM, for any x ∈ M where TxM denotes the tangent space of M at the point
x ∈ M, and totally realy if J(TxM) ⊂ T⊥

xM, for every x ∈ M, where T⊥
xM denotes the normal

space of M at the point x ∈ M. There are three other important classes of submanifolds of
a Kaehler manifold determined by the behavior of the tangent bundle of the submanifold
under the action of the almost complex structure of the ambient manifold.

(i) A submanifold M is called CR submanifold [6] if there exists a differentiable
distribution D : x → Dx ⊂ TxM such that D is invariant with respect to J and
its orthogonal complementary distribution D⊥ is antiinvariant with respect to J .

(ii) A submanifold M is called slant [1] if for any nonzero vector X tangent to M the
angle θ(X) between JX and TxM is constant, that is, it does not depend on the
choice of x ∈ M and X ∈ TxM.

(iii) A submanifold M is called semi-slant [3] if it is endowed with a pair of orthogonal
distributionD andDθ such thatD is invariant with respect to J andDθ is slant, that
is, the angle between JX and Dθ

x is constant for any X ∈ Dθ
x.

It is clear that the holomorphic and totally real submanifolds are CR submanifolds
(respectively, slant submanifolds) with D⊥ = {0} (resp., θ = 0) and D = {0} (resp., θ = π/2),
respectively. Also, it is clear that CR submanifolds and slant submanifolds are semi slant
submanifolds with θ = π/2 and D = {0}, respectively.

For an arbitrary submanifold M of a Riemannian manifold M the Gauss and Weing-
arten formulae are, respectively, given by

∇XY = ∇XY + h(X,Y ),

∇XN = −ANX +∇⊥
XN

(2.3)

for any X,Y ∈ TM, where ∇ is the induced Riemannian connection on M, N is the vector
field normal to M, h is the second fundamental form of M, ∇⊥ is the normal connection
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in the normal bundle T⊥M, and AN is the shape operator of the second fundamental form.
Moreover, we have

g(ANX, Y ) = g(h(X,Y ),N), (2.4)

where g denotes the Riemannian metric onM as well as the metric induced onM. The mean
curvature vector H on M is given by

H =
1
n

n∑
i=1

h
(
ei, ej

)
, (2.5)

where n is the dimension ofM and {e1, e2, . . . , en} is a local orthonormal frame of vector fields
onM.

A submanifold M of a Riemannian manifold M is said to be totally umbilical if

h(X,Y ) = g(X,Y )H. (2.6)

If h(X,Y ) = 0 for any X,Y ∈ TM then M is said to be totally geodesic submanifold. If H = 0,
then it is called minimal submanifold.

For any X ∈ TM we write

JX = TX + FX, (2.7)

where TX and FX are the tangential and normal components of JX, respectively. Similarly,
for any vector field N normal toM, we put

JN = tN + fN, (2.8)

where tN and fN are the tangential and normal components of JN, respectively.
The covariant differentiation of J is defined as

(
∇XJ

)
Y = ∇XJY − J∇XY, (2.9)

for all X,Y ∈ TM. Similarly, the covariant derivatives of T, F, t and f are

(
∇XT

)
Y = ∇XTY − T∇XY, (2.10)

(
∇XF

)
Y = ∇⊥

XFY − F∇XY, (2.11)

(
∇Xt

)
N = ∇XtN − t∇⊥

XN,

(
∇Xf

)
N = ∇⊥

XfN − f∇⊥
XN

(2.12)

for any X,Y ∈ TM, and N ∈ T⊥M.
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On the other hand the covariant derivative of the second fundamental form h is
defined as

(
∇Xh

)
(Y,Z) = ∇⊥

Xh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ) (2.13)

for any X,Y,Z ∈ TM. Let R and R be the curvature tensors of the connections ∇ and ∇ onM
and M, respectively. Then the equations of Gauss and Codazzi are given by

R(X,Y,Z;W) = R(X,Y,Z;W) − g(h(X,Z), h(Y,W)) + g(h(X,W), h(Y,Z)),

[
R(X,Y )Z

]⊥
=
(
∇Xh

)
(Y,Z) −

(
∇Yh

)
(X,Z).

(2.14)

It is known that a submanifold M is slant if and only if

T2 = λI (2.15)

for some real number λ ∈ [−1, 0], where I is the Identity transformation of the tangent bundle
TM of the submanifold M. Moreover, if M is a slant submanifold and θ is the slant angle of
M, then λ = −cos2θ [1].

Hence, for a slant submanifold we have the following relations which are the
consequences of (2.15):

g(TX, TX) = cos2θg(X,Y ), (2.16)

g(FX, FY ) = sin2θg(X,Y ) (2.17)

for any X,Y ∈ TM.
Now, we define the hemi-slant submanifold of an almost Hermitian manifold as

follows.

Definition 2.1. A submanifoldM of an almost HermitianmanifoldM is said to be a hemi-slant
submanifold if there exist two orthogonal complementary distributionsDθ andD⊥ satisfying

(i) TM = Dθ ⊕D⊥,

(ii) Dθ is a slant distribution with slant angle θ /=π/2,

(iii) D⊥ is totally real, that is, JD⊥ ⊆ T⊥M.

It is clear that CR-submanifolds and slant submanifolds are hemi-slant submanifolds with
θ = π/2 and Dθ = {0}, respectively.

If μ is the invariant subspace under the almost complex structure J of the normal
bundle T⊥M, then in the case of pseudoslant submanifold, the normal bundle T⊥M can be
decomposed as follows:

T⊥M = μ ⊕ FDθ ⊕ FD⊥. (2.18)
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On a submanifold M of a Kaehler manifold M, by (2.2), (2.3), and (2.7)–(2.11), we
have

(
∇XT

)
Y = AFYX + th(X,Y ), (2.19)

(
∇XF

)
Y = fh(X,Y ) − h(X, TY ) (2.20)

for any X,Y ∈ TM.

3. Totally Umbilical Hemi-Slant Submanifolds

In this section, we study a special class of hemi-slant submanifolds which are totally
umbilical. Throughout the section we consider M as a totally umbilical hemi-slant
submanifold of a Kaehler manifold M. On a Kaehler manifold M, we have the following
relations [7]:

(a) R(JX, JY )Z = R(X,Y )Z (b) R(X,Y )JZ = JR(X,Y )Z (3.1)

for any X,Y,Z ∈ TM. The Gauss and Weigarten formulae for totally umbilical submanifold
of an almost Hermitian manifold are given by

∇XY = ∇XY + g(X,Y )H, (3.2)

∇XN = −Xg(H,N) +∇⊥
XN (3.3)

for any X,Y ∈ TM and N ∈ T⊥M, where H is the mean curvature vector on M. Also, the
Codazzi equation for a totally umbilical submanifold is given by

R(X,Y,Z,N) = g(Y,Z)g
(
∇⊥

XH,N
)
− g(X,Z)g

(
∇⊥

YH,N
)
. (3.4)

In the following thoeremwe considerM as a totally umbilical hemi-slant submanifold
with the slant distribution Dθ and totally real distribution D⊥.

Theorem 3.1. Let M be a totally umbilical hemi-slant submanifold of a Kaehler manifold M such
that the mean curvature vector H ∈ μ. Then one of the following statements is true:

(i) M is totally geodesic inM,

(ii) M is a CR submanifold of M,

(iii) M is a totally real submanifold of M.

Proof. For any N ∈ JD⊥ and X ∈ Dθ, we have

∇XJN = J∇XN. (3.5)
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Using (3.2) and (3.3), we obtain

∇XJN + g(X, JN)H = −JXg(H,N) + J∇⊥
XN. (3.6)

Then by orthogonality of two distributions and the fact that H ∈ μ, the above equation
becomes

∇XJN = J∇⊥
XN, (3.7)

which implies that ∇⊥
XN ∈ JD⊥, for any N ∈ JD⊥. Also, we have g(N,H) = 0, for N ∈ JD⊥,

then using this fact, we derive

g
(
∇⊥

XN,H
)
= −g

(
N,∇⊥

XH
)
= 0. (3.8)

Then (3.8), gives ∇⊥
XH ∈ μ ⊕ FDθ. Now, for any X ∈ Dθ, we have

∇XJH = J∇XH. (3.9)

Using (3.3), we obtain

−Xg(H, JH) +∇⊥
XJH = −JXg(H,H) + J∇⊥

XH. (3.10)

Since H and JH are orthogonal, then from (2.7), the above equation takes the form

∇⊥
XJH = g(H,H)TX + g(H,H)FX + J∇⊥

XH. (3.11)

Taking the product with FX ∈ FDθ and using (2.17), we obtain

g
(
∇⊥

XJH, FX
)
= sin2θ‖H‖2‖X‖2 + g

(
F∇⊥H,FX

)
. (3.12)

Then from (2.17), the last term of right hand side is identically zero using the fact that ∇⊥
XH

is normal vector and X ∈ Dθ. Thus, the above equation becomes

g
(
∇⊥

XJH, FX
)
− sin2θ‖H‖2‖X‖2 = 0. (3.13)

Therefore, (3.13) has a solution if either H = 0, that is, M is totally geodesic or the angle of
slant distribution Dθ is θ = 0, that is, M is CR-submanifold or ifH /= 0, then Dθ = {0}, that is,
M is a totally real submanifold.

Now, for any X,Y ∈ TM, by (2.19), we have

(
∇XT

)
Y = AFYX + th(X,Y ). (3.14)
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In particular, if Z ∈ D⊥, the above equation takes the from

−T∇ZZ = AFZZ + th(Z,Z). (3.15)

Then taking the product with W ∈ D⊥, we get

−g(T∇ZZ,W) = g(AFZZ,W) + g(th(Z,Z),W). (3.16)

AsM is a totally umbilical hemi-slant submanifold, then the above equation takes the form

g(Z,W)g(H,FZ) + g(tH,W)‖Z‖2. (3.17)

Thus, (3.17) has a solution if eitherH ∈ μ or dimD⊥ = 1 orD⊥ = {0}. IfH /∈ μ then dimD⊥ = 1
or D⊥ = {0}.

Remark 3.2. For a totally umbilical hemi-slant submanifold, if we take H /∈ μ and D⊥ = {0},
then the submanifold M is proper slant. Sahin [2] proved that for a totally umbilical proper
slant submanifold the mean curvature vectorH ∈ μ. Thus, in case of hemi-slant submanifold
we can not take H /∈ μ and D⊥ = 0, simultaneously.

Theorem 3.3. Let M be a totally umbilical hemi-slant submanifold of a Kaehler manifold M such
that the dimension of the slant distribution dimDθ ≥ 4 and F is parallel. Then

(i) eitherM is an extrinsic sphere,

(ii) orM is totally real.

Proof. Since dimDθ ≥ 4, then we can choose a set of orthogonal vectors X,Y ∈ Dθ, such that
g(X,Y ) = 0. Now from (3.1)(b), we have

JR(X,Y )Z = R(X,Y )JZ. (3.18)

Replacing Z by TY , we obtain

JR(X,Y )TY = R(X,Y )JTY. (3.19)

Using (2.7) and (2.15), the above equation gives

JR(X,Y )TY = −cos2θR(X,Y )Y + R(X,Y )FTY. (3.20)

On the other hand, since F is parallel, then we have

R(X,Y )FTY = FR(X,Y )TY. (3.21)
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Then from (3.20) and (3.21), we obtain

JR(X,Y )TY = −cos2θR(X,Y )Y + FR(X,Y )TY. (3.22)

Taking the product in (3.22) withN ∈ T⊥M, we get

g
(
JR(X,Y )TY,N

)
= −cos2θR(X,Y, Y,N) + g

(
FR(X,Y )TY,N

)
. (3.23)

That is,

cos2θR(X,Y, Y,N) = 0. (3.24)

Then from (3.4), we derive

cos2θg(Y, Y )g
(
∇⊥

XH,N
)
− g(X,Y )g

(
∇⊥

YH,N
)
= 0. (3.25)

Since X and Y are orthogonal vectors, then the above equation gives

cos2θg
(
∇⊥

XH,N
)
‖Y‖2 = 0. (3.26)

Therefore, (3.26) gives either θ = π/2 that is,M is totally real or ∇⊥
XH = 0, for all X ∈ Dθ. On

the same line if we considerX ∈ D⊥, thenwe can deduce that either θ = π/2 or∇⊥
XH = 0. This

means that either M is totally real or ∇⊥
XH = 0 for all X ∈ TM, that is, the mean curvature

vector H is parallel to the submanifold, thus M is an extrinsic sphere.

In our further study, we need the following theorem proved by Yamaguchi et al. [8].

Theorem 3.4. A complete and simply connected extrinsic sphere Mn in a Kaehler manifold M
2m

is
one of the following:

(i) Mn is isometric to an ordinary sphere

(ii) Mn is homothetic to a Sasakian manifold

(iii) Mn is totally real submanifold and the f-structure is not parallel in the normal bundle.

Now, we are in position to prove our main theorem.

Theorem 3.5. Let M be a complete simply connected totally umbilical hemi-slant submanifold of a
Kaehler manifoldM. ThenM is one of the following:

(i) a totally real submanifold,

(ii) a totally geodesic,

(iii) a CR submanifold,

(iv) dimD⊥ = 1,

(v) D⊥ /= {0},
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(vi) M is isometric to an ordinary sphere,

(vii) M is homothetic to a Sasakian manifold.

The cases (vi) and (vii) hold when F is parallel on M and dimM is odd and ≥ 5.

Proof. IfH ∈ μ, then by Theorem 3.1, the parts (i), (ii), and (iii) hold. IfH /∈ μ, then (3.17) has
a solution if either dimD⊥ = 1 or D⊥ = {0} which is case (iv) and we cannot take D⊥ = {0}
andH /∈ μ, simultaneously for a totally umbilical hemi-slant submanifold due to Remark 3.2
which is case (v). Moreover, H /∈ μ and F is parallel on M, then by Theorems 3.3 and 3.4,
parts (vi) and (vii) hold. This completes the proof of the theorem.

Now, we construct an example of a hemi-slant submanifold in a Kaehler manifold.

Example 3.6. Consider a submanifold M of R
6 with its usual Kaehler structure as

x1 =
u

k
cos θ1, x2 =

u

k
sin θ1, x3 =

u

k
,

x4 = t, x5 = t, x6 = 0, u /= 0, k /= 0.
(3.27)

The tangent space TM is spanned by the vectors

e1 = −u
k
sin θ1

∂

∂x1
+
u

k
cos θ1

∂

∂x2
, e2 =

1
k
cos θ1

∂

∂x1
+
1
k
sin θ1

∂

∂x2
+
1
k

∂

∂x3
,

e3 =
∂

∂x4
+

∂

∂x5
.

(3.28)

Furthermore, we see that Je3 is orthogonal to TM. If we consider D⊥ and Dθ are the totally
real and slant distributions of M, respectively, then D⊥ = span{e3} and Dθ = span{e1, e2}.
Thus, M is a hemi-slant submanifold of R

6 with slant angle θ = cos−1(1/k).
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