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LetT be a time scale with 0, T ∈ T. We give a global description of the branches of positive solutions
to the nonlinear boundary value problem of second-order dynamic equation on a time scale T,
uΔΔ(t) + f(t, uσ(t)) = 0, t ∈ [0, T]

T
, u(0) = u(σ2(T)) = 0, which is not necessarily linearizable. Our

approaches are based on topological degree theory and global bifurcation techniques.

1. Introduction

Let T be a time scale with 0, T ∈ T, we consider the existence of positive solutions, in this
paper, for a nonlinear boundary value problem of second-order dynamic equation on a time
scale T as follows:

uΔΔ(t) + f(t, uσ(t)) = 0, t ∈ [0, T]
T
,

u(0) = u
(
σ2(T)

)
= 0.

(1.1)

Research for the existence of solutions to the dynamic boundary value problem is rapidly
growing in recent years. A great many existence results of positive solutions have been
established for problem (1.1), see [1–5] and the references therein. The main tool used by
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them is the fixed point theorem in cones, and the key conditions in these papers do not
depend on the first eigenvalue, λ1(a), of the following linear problem:

uΔΔ(t) + λa(t)uσ(t) = 0, t ∈ [0, T]
T
,

u(0) = u
(
σ2(T)

)
= 0,

(1.2)

and the corresponding existence conditions are not optimal.
In 2006, for 0, 1 ∈ T, σ(0) = 0, ρ(1) = 1, f̂ ∈ C(R) with sf̂(s) > 0 for s /= 0, Luo and Ma

[6] obtained the existence of at least one positive solution to problem:

uΔΔ(t) + f̂(uσ(t)) = 0, t ∈ [0, 1]
T
,

u(0) = u(1) = 0,
(1.3)

under the condition

(H) if either f̂0 < μ1 < f̂∞ or f̂∞ < μ1 < f̂0, where

f̂0 = lim
|s|→ 0

f̂(s)
s

, f̂∞ = lim
|s|→∞

f̂(s)
s

, (1.4)

and μ1 is the first eigenvalue of the linear problem:

uΔΔ(t) + μuσ(t) = 0, u(0) = u(1) = 0. (1.5)

The approaches adopted by Luo and Ma [6] are based on global bifurcation techniques.
They obtained the existence of at least one positive solution by considering the branches
of solutions, which bifurcate from one point. The key conditions in [6] depend on the first
eigenvalue of the corresponding linear problem and the condition (H) is optimal!

In this paper, we will use the following assumptions.

(A1) f : [0, σ(T)]
T
× [0,∞) → [0,∞) is continuous and there exist functions

a0(·), a0(·), b∞(·), b∞(·) ∈ C([0, σ(T)]
T
, (0,∞)), such that

a0(t)u − ξ1(t, u) ≤ f(t, u) ≤ a0(t)u + ξ2(t, u) (1.6)

for some functions ξi ∈ C([0, σ(T)]
T
× [0,∞),R) with limu→ 0+(ξi(t, u)/u) = 0 (i =

1, 2) uniformly for t ∈ [0, σ(T)]
T
, and

b∞(t)u − ζ1(t, u) ≤ f(t, u) ≤ b∞(t)u + ζ2(t, u) (1.7)

for some functions ζi ∈ C([0, σ(T)]
T
× [0,∞),R) with limu→+∞(ζi(t, u)/u) = 0 (i =

1, 2) uniformly for t ∈ [0, σ(T)]
T
.
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(A2) f(t, u) > 0 for (t, u) ∈ [0, σ(T)]
T
× (0,∞).

(A3) There exists a function c ∈ C([0, σ(T)]
T
, (0,∞)) such that

f(t, u) ≥ c(t)u, (t, u) ∈ [0, σ(T)]
T
× [0,∞). (1.8)

Obviously, (A1) means that f is not necessarily linearizable at 0 and +∞. We consider
the existence of positive solutions of problem (1.1) in this paper by using bifurcation
techniques. The difference from [6] is that the branches of positive solutions under
consideration now bifurcate from not one point, but an interval. Our main idea is from [7],
in which they considered positive solutions of fourth-order boundary value problems for
differential equations. The main tool we will use is the following global bifurcation theorem
for problems which is not necessarily linearizable.

Theorem A (Rabinowitz, [8]). Let V be a real reflexive Banach space. Let F : R × V → V be
completely continuous such that F(λ, 0) = 0, for all λ ∈ R. Let a, b ∈ R (a < b) be such that u = 0 is
an isolated solution of the equation

u − F(λ, u) = 0, u ∈ V, (1.9)

for λ = a, and λ = b, where (a, 0), (b, 0) are not bifurcation points of (1.9). Furthermore, assuming
that

deg(I − F(a, ·), Br(0), 0)/= deg(I − F(b, ·), Br(0), 0), (1.10)

where Br(0) is an isolating neighborhood of the nontrivial solution, and deg(I − F, Br(0), 0) denote
the degree of I − F on Br(0) with respect to 0. Let

S = {(λ, u) : (λ, u) is a solution of (1.9) with u/= 0} ∪ ([a, b] × {0}). (1.11)

Then there exists a connected component C of S containing [a, b] × {0}, and either

(i) C is unbounded, or

(ii) C ∩ [(R \ [a, b]) × {0}]/= ∅.

The rest of the paper is organized as follows. In Section 2, we firstly introduce the
time scales concepts and notations that we will use in this paper. Next, Section 3 states
some notations and proves some necessary preliminary results, and Section 4 studies the
bifurcation from the trivial solution for a nonlinear problem which is not necessarily
linearizable and then establishes our main result.
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2. Introduction for Time Scales

A time scale T is a nonempty closed subset of R, assuming that T has the topology that it
inherits from the standard topology on R. Define the forward and backward jump operators
σ, ρ : T → T by

σ(t) = inf{τ > t | τ ∈ T}, ρ(t) = sup{τ < t | τ ∈ T}. (2.1)

Here, we put inf ∅ = supT, sup ∅ = infT. Let T
k which is derived from the time scale T be

T
k :=

{
t ∈ T : t is nonmaximal or ρ(t) = t

}
, (2.2)

and T
k2

:= T
kk. Define interval I on T by IT = I ∩ T.

Definition 2.1. If u : T → R is a function and t ∈ T
k, then the Δ-derivative of u at the point t is

defined to be the number uΔ(t) (provided that it exists)with the property that for each ε > 0,
there is a neighborhood U of t such that

∣∣∣u(σ(t)) − u(s) − uΔ(t)(σ(t) − s)
∣∣∣ � ε|σ(t) − s| (2.3)

for all s ∈ U. The function u is called Δ-differentiable on T if uΔ(t) exists for all t ∈ T
k.

The second Δ-derivative of u at t ∈ T
k2
, if it exists, is defined to be uΔ2

(t) = uΔΔ(t) :=
(uΔ)Δ(t). We also define the function uσ := u ◦ σ and uρ := u ◦ ρ.

Definition 2.2. IfUΔ = u holds on T
k, we define the Cauchy Δ-integral by

∫ t

s

u(τ)Δτ = U(t) −U(s), s, t ∈ T
k. (2.4)

Lemma 2.3 (see [2, Theorems 2.7 and 2.8]). Assume a, b ∈ T, then

∫b

a

fΔ(t)g(t)Δt = f(t)g(t)
∣∣b
a −

∫b

a

fσ(t)gΔ(t)Δt. (2.5)

Furthermore, if a ≤ b, f(t) is a continuous function on [a, b], then

∫b

a

f(t)Δt =
∫ρ(b)

a

f(t)Δt +
[
b − ρ(b)

]
f
(
ρ(b)

)
. (2.6)

Define the Banach space C(T,R) (denoted by C(T)) to be the set of continuous
functions u : T → R with the norm

‖u‖0 = sup{|u(t)| | t ∈ T}. (2.7)
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For i = 1, 2, we define the Banach space Ci(T) to be the set of the ith Δ-differential functions
u : T → R for which uΔi ∈ C(Tki

) with the norm

‖u‖i = sup
{
‖u‖∞,

∥∥∥uΔ
∥∥∥
0
, . . . ,

∥∥∥uΔi
∥∥∥
0

}
, (2.8)

where

∥∥∥uΔj
∥∥∥
0
= sup

{∣∣∣uΔj

(t)
∣∣∣ | t ∈ T

kj
}
, j = 0, 1, . . . , i. (2.9)

3. Preliminaries and Necessary Lemmas

Assuming that a ∈ C([0, σ2(T)]
T
, (0,∞)), then from [9, Theorem 2.9], linear problem

uΔΔ(t) + λa(t)uσ(t) = 0, t ∈ [0, T]
T
,

u(0) = u
(
σ2(T)

)
= 0

(3.1)

has a unique principal eigenvalue λ1(a), with a corresponding positive eigenfunction.
Let E = C2[0, T]

T
, X = C [0, T]

T
, and

Y =
{
y ∈ C1

[
0, σ2(T)

]
T

| y(0) = y
(
σ2(T)

)
= 0

}
. (3.2)

We will work essentially in the Banach space Y with the norm

∥∥y∥∥ = max
{∥∥y∥∥0,

∥∥∥yΔ
∥∥∥
0

}
, (3.3)

where

∥∥y∥∥0 = sup
{∣∣y(t)∣∣ | t ∈

[
0, σ2(T)

]
T

}
,

∥∥∥yΔ
∥∥∥
0
= sup

{∣∣∣yΔ(t)
∣∣∣ | t ∈ [0, σ(T)]

T

}
. (3.4)

By a positive solution of problem (1.1), we mean u is a solution of (1.1)with u ≥ 0 in (0, σ2(T))
T

and u/≡ 0.

Lemma 3.1. For y ∈ Y , we have

∥∥y∥∥0 ≤ σ(T)
∥∥∥yΔ

∥∥∥
0
, max

{
1,

1
σ(T)

}∥∥y∥∥0 ≤
∥∥y∥∥ ≤ max{1, σ(T)}

∥∥∥yΔ
∥∥∥
0
. (3.5)

Proof. By y(0) = 0, we have that

y(t) =
∫ t

0
yΔ(s)Δs, t ∈ [0, σ(T)]

T
(3.6)
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and so

∥∥y∥∥0 ≤ σ(T)
∥∥∥yΔ

∥∥∥
0
. (3.7)

Therefore,

∥∥y∥∥ = max
{∥∥y∥∥0,

∥∥∥yΔ
∥∥∥
0

}
≤ max{1, σ(T)}

∥∥∥yΔ
∥∥∥
0
,

∥∥y∥∥ ≥ max
{∥∥y∥∥0,

1
σ(T)

∥∥y∥∥0

}
= max

{
1,

1
σ(T)

}∥∥y∥∥0.

(3.8)

Define the linear operator L : D(L) ⊂ E → X,

Lu = −uΔΔ, u ∈ D(L) (3.9)

with

D(L) =
{
u ∈ E | u(0) = u

(
σ2(T)

)
= 0

}
. (3.10)

Then L is a closed operator, and L−1 : X → Y is completely continuous, see [10, Lemma 3.7].
Let Σ ⊂ R

+ × Y be the closure of the set of positive solutions to the problem

Lu(t) = λf(t, uσ(t)), t ∈ [0, σ(T)]
T
. (3.11)

We extend the function f to a continuous function f defined on [0, σ(T)]
T
× R by

f(t, u) =

{
f(t, u), (t, u) ∈ [0, σ(T)]

T
× [0,∞),

f(t, 0), (t, u) ∈ [0, σ(T)]
T
× (−∞, 0).

(3.12)

Then f(t, u) ≥ 0 on [0, σ(T)]
T
×R. For λ ≥ 0, the arbitrary solution u to the eigenvalue problem

uΔΔ(t) + λf(t, uσ(t)) = 0, t ∈ [0, T]
T
,

u(0) = u
(
σ2(T)

)
= 0

(3.13)

satisfies that uΔΔ(t) ≤ 0 on [0, T]
T
, and consequently, the graph of u is concave down on

[0, σ2(T)]
T
. This together with the boundary conditions u(0) = u(σ2(T)) = 0 imply that

u(t) ≥ 0, t ∈
[
0, σ2(T)

]
T

. (3.14)

Thus, (3.14) implies that u is a nonnegative solution of problem (3.13), and the closure of the
set of nontrivial solutions (λ, u) of (3.13) in R

+ × Y is exactly Σ.
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Let g ∈ C([0, σ(T)]
T
× R,R), and let N̂ : Y → X be the Nemytskii operator associated

with the function g:

N̂(u)(t) = g(t, uσ(t)), u ∈ Y. (3.15)

Lemma 3.2. Let g(t, u) ≥ 0 on [0, σ(T)]
T
× R. Let u ∈ D(L) be such that Lu ≥ λN̂(u) in [0, T]

T
,

λ ≥ 0. Then

u(t) ≥ 0, t ∈
[
0, σ2(T)

]
T

. (3.16)

Moreover,

u(t) > 0, t ∈
(
0, σ2(T)

)
T

, (3.17)

whenever u/≡ 0.

Let N : Y → X be the Nemytskii operator associated with the function f

N(u)(t) = f(t, uσ(t)), u ∈ Y. (3.18)

Then (3.13), with λ ≥ 0, is equivalent to the operator equation

u = λL−1N(u), u ∈ Y. (3.19)

In the following we will apply the Brouwer degree theory, mainly to the mapping Φλ : Y →
Y ,

Φλ(u) = u − λL−1N(u). (3.20)

For R > 0, let BR = {u ∈ Y : ‖u‖ < R}.

Lemma 3.3. Let Λ ⊂ R
+ be a compact interval with [λ1(a0), λ1(a0)] ∩ Λ = ∅. Then there exists a

number δ1 > 0 with the property

Φλ(u)/= 0, ∀u ∈ Y : 0 < ‖u‖ ≤ δ1, ∀λ ∈ Λ. (3.21)

Proof. Suppose to the contrary that there exist sequences {μn} in Λ and {un} in Y : μn → μ∗ ∈
Λ, ‖un‖ > 0 and un → 0 (n → ∞) in Y , such that Φμn(un) = 0 for all n ∈ N. By Lemma 3.2,
un(t) ≥ 0 for t ∈ [0, σ2(T)]

T
.

Set vn = un/‖un‖. Then from Lun = μnN(un), we have Lvn = μn‖un‖−1N(un). Since
‖un‖−1N(un) is bounded in X, we infer that {vn} is relatively compact in Y , hence (for a
subsequence) vn → v(n → ∞) with v ≥ 0 in Y , ‖v‖ = 1. Let Iσ : Crd[0, σ2(T)]

T
→

Crd[0, σ(T)]T
be defined as Iσ(y) = yσ . Then Iσ is linear. For u ∈ Y , ‖Iσu‖0 =

supt∈[0,σ(T)]
T

|uσ(t)| = ‖u‖0.
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Now, from condition (A1), we have that

a0(t)uσ
n(t) − ξ1(t, uσ

n(t)) ≤ f(t, uσ
n(t)) ≤ a0(t)uσ

n(t) + ξ2(t, uσ
n(t)). (3.22)

According to

uσ
n(t)
‖un‖ =

Iσ(un)
‖un‖ = Iσ

(
un

‖un‖
)

= Iσ(vn) = vσ
n , (3.23)

we get

μn

(
a0(t)vσ

n(t) −
ξ1(t, uσ

n(t))
‖un‖

)
≤ μn

f(t, uσ
n(t))

‖un‖ ≤ μn

(
a0(t)vσ

n(t) +
ξ2(t, uσ

n(t))
‖un‖

)
. (3.24)

Let ϕ0 and ϕ0 denote the eigenfunctions corresponding to λ1(a0) and λ1(a0), respec-
tively. Denote ξ1(y) := max(t,s)∈[0,σ(T)]

T
×[0,y]|ξ1(t, s)|. Then ξ1(y) is nondecreasing. From

limu→ 0+(ξ1(t, u)/u) = 0 uniformly for t ∈ [0, σ(T)]
T
, we have

lim
y→ 0+

ξ1
(
y
)

y
= 0. (3.25)

According to Lun = μnf(t, uσ
n(t)) and un(t) ≥ 0, we have from the first inequality in (3.24) that

∫σ(T)

0

[
μn

(
a0(t)vσ

n(t) −
ξ1(t, uσ

n(t))
‖un‖

)]
ϕσ
0 (t)Δt ≤

∫σ(T)

0

Lun(t)
‖un‖ ϕσ

0 (t)Δt =
∫σ(T)

0
Lvn(t)ϕσ

0 (t)Δt.

(3.26)

Notice that

ξ1(t, uσ
n(t))

‖un‖ ≤ ξ1(‖Iσun‖0)
max{1, 1/σ(T)}‖un‖0

≤ ξ1(‖Iσun‖0)
‖Iσun‖0

−→ 0 (n −→ ∞) (3.27)

by Lemma 3.1. Let n → ∞, by integration by parts (2.5), we have

∫σ2(T)

0
μ∗a0(t)v

σ(t)ϕσ
0 (t)Δt ≤

∫σ2(T)

0
Lv(t)ϕσ

0 (t)Δt

=
∫σ2(T)

0
Lϕ0(t)v

σ(t)Δt

=
∫σ2(T)

0
λ1(a0)a0(t)ϕσ

0 (t)v
σ(t)Δt,

(3.28)
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and consequently

μ∗ ≤ λ1(a0). (3.29)

Similarly, we deduce from the second inequality in (3.24) that

λ1
(
a0
)
≤ μ∗. (3.30)

Thus, λ1(a0) ≤ μ∗ ≤ λ1(a0). This contradicts μ∗ ∈ Λ.

Remark 3.4. If σ(T) < σ2(T), then the value of σ2(T) do not contribute to the value of (3.28).
Thus we can discuss the integral from 0 to σ2(T). For Lv and Lϕ0 are not defined at σ(T), we
may define the values of (Lv)ϕσ

0 and (Lϕ0)v
σ to be zero at σ(T), since the functions ϕσ

0 and
vσ are zero at σ(T). The details of the discussion can be found in [9, Page 497].

Corollary 3.5. For λ ∈ (0, λ1(a0)) and δ ∈ (0, δ1), deg(Φλ, Bδ, 0) = 1.

Proof. Lemma 3.3, applied to the interval Λ = [0, λ], guarantees the existence of δ1 > 0 such
that for δ ∈ (0, δ1)

u − τλL−1N(u)/= 0, ∀u ∈ Y : 0 < ‖u‖ ≤ δ, τ ∈ [0, 1]. (3.31)

Hence, for any δ ∈ (0, δ1),

deg(Φλ, Bδ, 0) = deg(I, Bδ, 0) = 1, (3.32)

which implies the assertion.

On the other hand, we have the following.

Lemma 3.6. Suppose λ > λ1(a0). Then there exists δ2 > 0 such that for all u ∈ Y with 0 < ‖u‖ ≤ δ2,
for all τ ≥ 0,

Φλ(u)/= τϕ0, (3.33)

where ϕ0 is the positive eigenfunction corresponding to λ1(a0).

Proof. We assume again to the contrary that there exist τn ≥ 0 and a sequence {un} with
‖un‖ > 0 and un → 0 in Y such that Φλ(un) = τnϕ0 for all n ∈ N. As

Lun = λN(un) + τnλ1(a0)a0(t)ϕσ
0 (t) (3.34)

and τnλ1(a0)a0(t)ϕσ
0 (t) ≥ 0 in [0, T]

T
, we can conclude from Lemma 3.2 that un(t) ≥ 0 for

t ∈ [0, σ2(T)]
T
.
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Notice that un ∈ D(L) has a unique orthogonal decomposition

un = wn + snϕ0, (3.35)

with sn ∈ R. Since un ≥ 0 on [0, σ2(T)]
T
and ‖un‖ > 0, we have from (3.35) that sn > 0.

Choose σ > 0 such that

σ <
λ − λ1(a0)

λ
. (3.36)

By (A1), there exists r4 > 0, such that

f(t, u) ≥ (1 − σ)a0(t)u, ∀(t, u) ∈ [0, σ(T)]
T
× [0, r4]. (3.37)

Since ‖un‖ → 0, there exists N∗ > 0, such that

0 ≤ un ≤ r4, ∀n ≥ N∗, (3.38)

and consequently

f(t, uσ
n(t)) ≥ (1 − σ)a0(t)uσ

n(t), ∀n ≥ N∗. (3.39)

Applying (3.35) and (3.39), it follows that

snλ1(a0)
∫σ2(T)

0
a0(t)

[
ϕσ
0 (t)

]2Δt =
∫σ2(T)

0

[
wσ

n(t) + snφ
σ
0 (t)

]
Lϕ0(t)Δt

=
∫σ2(T)

0
uσ
n(t)Lϕ0(t)Δt

=
∫σ2(T)

0
ϕσ
0 (t)Lun(t)Δt

= λ

∫σ2(T)

0
N(un)ϕσ

0 (t)Δt + τnλ1(a0)
∫σ2(T)

0
a0(t)

[
ϕσ
0 (t)

]2Δt

≥ λ

∫σ2(T)

0
N(un)ϕσ

0 (t)Δt

≥ λ(1 − σ)
∫σ2(T)

0
a0(t)uσ

n(t)ϕ
σ
0 (t)Δt

= λ(1 − σ)sn

∫σ2(T)

0
a0(t)

[
ϕσ
0 (t)

]2Δt.

(3.40)
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Thus,

λ1(a0) ≥ λ(1 − σ). (3.41)

This contradicts (3.36).

Corollary 3.7. For λ > λ1(a0) and δ ∈ (0, δ2), deg (Φλ, Bδ, 0) = 0.

Proof. Let 0 < ε ≤ δ2, where δ2 is the number asserted in Lemma 3.6. As Φλ is bounded in Bε,
there exists c > 0 such that Φλ(u)/= cϕ0, for all u ∈ Bε. By Lemma 3.6,

Φλ(u)/= tcϕ0, u ∈ ∂Bε, t ∈ [0, 1]. (3.42)

Hence,

deg(Φλ, Bε, 0) = deg
(
Φλ − cϕ0, Bε, 0

)
= 0. (3.43)

Now, using Theorem A, we may prove the following.

Lemma 3.8. [λ1(a0), λ1(a0)] is a bifurcation interval from the trivial solution for (3.19). There
exists an unbounded component C of positive solutions of (3.19) which meets [λ1(a0), λ1(a0)] × {0}.
Moreover,

C ∩
[(

R \
[
λ1
(
a0
)
, λ1(a0)

])
× {0}

]
= ∅. (3.44)

Proof. For fixed n ∈ N with λ1(a0)−1/n > 0, set an = λ1(a0)−1/n < λ1(a0), bn = λ1(a0)+1/n >

λ1(a0) and δ̂ = min{δ1, δ2}. It is easy to check that for 0 < δ < δ̂, all of the conditions of
Theorem A are satisfied. So there exists a connected component Cn of solutions of (3.19)
containing [an, bn] × {0}, and either

(i) Cn is unbounded, or

(ii) Cn ∩ [(R \ [an, bn]) × {0}]/= ∅.
By Lemma 3.3, the case (ii) cannot occur. Thus, Cn is unbounded bifurcated from [an, bn]×{0}
in R×Y . Furthermore, we have also from Lemma 3.3 that for any closed interval I ⊂ [an, bn]\
[λ1(a0), λ1(a0)], if u ∈ {y ∈ Y | (λ, y) ∈ Cn, λ ∈ I}, then the fact that ‖u‖ → 0 in Y is
impossible. So Cn must be bifurcated from [λ1(a0), λ1(a0)] × {0} in R × Y .

4. The Main Result

We obtain the following main result in this paper.

Theorem 4.1. Let (A1), (A2), and (A3) hold. Assuming that either

λ1(b∞) < 1 < λ1
(
a0
)

(4.1)



12 Abstract and Applied Analysis

or

λ1(a0) < 1 < λ1(b∞). (4.2)

Then problem (1.1) has at least one positive solution.

Proof. It is clear that any solution to (3.19) of the form (1, u) yields a solution u of problem
(1.1). We will show that C crosses the hyperplane {1} × Y in R × Y . To do this, it is enough to
show that C joins [λ1(a0), λ1(a0)] × {0} to [λ1(b∞), λ1(b∞)] × {∞}. Let (ηn, yn) ∈ C satisfy

ηn +
∥∥yn

∥∥ −→ ∞. (4.3)

We note that ηn > 0 for all n ∈ N since (0, 0) is the only solution to (3.19) for λ = 0, and
C ∩ ({0} × Y ) = ∅.
Case 1 (λ1(b∞) < 1 < λ1(a0)). In this case, we show that the interval

(
λ1(b∞), λ1

(
a0
))

⊆ {λ ∈ R | (λ, u) ∈ C}. (4.4)

We divide the proof into two steps.
Step 1. We show that {ηn} is bounded.

Since (ηn, yn) ∈ C, Lyn = ηnf(t, yσ
n(t)). From (A3), we have

Lyn ≥ ηnc(t)yσ
n(t). (4.5)

Let ϕ denote the nonnegative eigenfunction corresponding to λ1(c). From (4.5), by
integration by parts formula (2.5), we have

λ1(c)
∫σ2(T)

0
yσ
n(t)c(t)ϕ

σ(t)Δt =
∫σ2(T)

0

(
Lϕ

)
(t)yσ

n(t)Δt

=
∫σ2(T)

0

(
Lyn

)
(t)ϕσ(t)Δt

≥ ηn

∫σ2(T)

0
c(t)yσ

n(t)ϕ
σ(t)Δt.

(4.6)

Thus,

ηn ≤ λ1(c). (4.7)

Step 2. We show that C joins [λ1(a0), λ1(a0)] × {0} to [λ1(b∞), λ1(b∞)] × {∞}.
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From (4.3) and (4.7), we have that ‖yn‖ → ∞. Notice that (3.19) is equivalent to the
equation

yn(t) = ηn

∫σ2(T)

0
H(t, s)f

(
s, yσ

n(s)
)
Δs, (4.8)

where H(t, s) is the Green’s function for problem −uΔΔ = 0, u(0) = u(σ2(T)) = 0. So we have
from (A1),

ηn

∫σ2(T)

0
H(t, s)

[
b∞(s)yσ

n(s) + ζ2
(
s, yσ

n(s)
)]
Δs

≥ yn(t)

≥ ηn

∫σ2(T)

0
H(t, s)

[
b∞(s)yσ

n(s) + ζ1
(
s, yσ

n(s)
)]
Δs.

(4.9)

We divide the both sides of (4.9) by ‖yn‖ and set vn = yn/‖yn‖. Since vn is bounded in Y ,
choosing a subsequence and relabelling if necessary, we see that vn → ṽ (n → ∞) for some
ṽ ∈ Y with ṽ ≥ 0 in Y , ‖ṽ‖ = 1 and ηn → η∗ (n → ∞). Similar to the proof of Lemma 3.3, we
have that

lim
n→∞

ζi
(
s, yσ

n(s)
)

∥∥yn

∥∥ = 0, i = 1, 2, (4.10)

and n → ∞, it is easy to verify that

η∗
∫σ2(T)

0
H(t, s)b∞(s)ṽσ(s)Δs ≥ ṽ(t) ≥ η∗

∫σ2(T)

0
H(t, s)b∞(s)ṽσ(s)Δs, (4.11)

which implies that

η∗b∞(t)ṽσ(t) ≤ Lṽ ≤ η∗b∞(t)ṽσ(t). (4.12)

Let ϕ∞ and ϕ∞ denote the nonnegative eigenfunctions corresponding to λ1(b∞) and
λ1(b∞), respectively. Then we have from the first inequality in (4.12) that

∫σ2(T)

0
η∗b∞(t)ṽσ(t)ϕσ

∞(t)Δt ≤
∫σ2(T)

0
Lṽ(t)ϕσ

∞(t)Δt. (4.13)
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By integration by parts formula (2.5), we obtain that

η∗
∫σ2(T)

0
b∞(t)ϕσ

∞(t)ṽ
σ(t)Δt ≤

∫σ2(T)

0
Lϕ∞(t)ṽσ(t)Δt

= λ1(b∞)
∫σ2(T)

0
b∞(t)ϕσ

∞(t)ṽ
σ(t)Δt,

(4.14)

and consequently

η∗ ≤ λ1(b∞). (4.15)

Similarly, we deduce from the second inequality in (4.12) that

λ1(b∞) ≤ η∗. (4.16)

Thus,

λ1(b∞) ≤ η∗ ≤ λ1(b∞). (4.17)

So C joins [λ1(a0), λ1(a0)] × {0} to [λ1(b∞), λ1(b∞)] × {∞}.
Case 2 (λ1(a0) < 1 < λ1(b∞)). In this case, if (ηn, yn) ∈ C is such that

lim
n→∞

(
ηn + yn

)
= ∞,

lim
n→∞

ηn = ∞,
(4.18)

then

(λ1(a0), λ1(b∞)) ⊆ {λ ∈ (0,∞) | (λ, u) ∈ C} (4.19)

and, moreover,

({1} × Y ) ∩ C/= ∅. (4.20)

Assuming that {ηn} is bounded, applying a similar argument to that used in Step 2 of
Case 1, after taking a subsequence and relabelling if necessary, it follows that

ηn −→ η∗ ∈ [λ1(a0), λ1(b∞)], yn −→ ∞, as n −→ ∞. (4.21)

Again C joins [λ1(a0), λ1(a0)] × {0} to [λ1(b∞), λ1(b∞)] × {∞} and the result follows.
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