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Sufficient conditions on a sequence {ak} of nonnegative numbers are obtained that ensures f(z) =∑∞
k=1 akz

k is starlike of nonnegative order in the unit disk. A result of Vietoris on trigonometric
sums is extended in this pursuit. Conditions for close to convexity and convexity in the direction
of the imaginary axis are also established. These results are applied to investigate the starlikeness
of functions involving the Gaussian hypergeometric functions.

1. Introduction

Let A denote the class of analytic functions f defined in the unit disk D = {z ∈ C : |z| < 1}
normalized by the conditions f(0) = 0 = f ′(0) − 1. Denote by S the subclass of A consisting
of functions univalent in D. A function f ∈ A is starlike if f(D) is starlike with respect to the
origin and convex if f(D) is a convex domain. These classes denoted byS∗ andC, respectively,
are subsets of S. The generalized classes S∗(μ) and C(μ) of starlike and convex functions of
order μ, μ < 1 are defined, respectively, by the analytic characterizations

f ∈ S∗(μ
) ⇐⇒ Re

(
zf ′(z)
f(z)

)

> μ, f ∈ C(μ) ⇐⇒ Re
(

1 +
zf ′′(z)
f ′(z)

)

> μ, (1.1)

with S∗ := S∗(0) and C := C(0).
An extension of starlike functions is the class of close-to-convex functions f ∈ A of

order μ defined analytically by

Re
(

eiη
zf ′(z)
g(z)

)

> μ, g ∈ S∗, (1.2)
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for some real η ∈ (−π/2, π/2). The family of close-to-convex functions of order μwith respect
to g ∈ S∗ is denoted by Kg(μ), with Kg := Kg(0). Exposition on the geometric properties of
functions in these classes can be found in [1, 2].

A function f satisfying (Im z) (Im f(z)) > 0 in D is said to be typically real, and f is
convex in the direction of the imaginary axis if every line parallel to the imaginary axis either
intersects f(D) in an interval or has an empty intersection. For f ∈ A with real coefficients,
Robertson [3] proved that being convex in the direction of the imaginary axis is equivalent to
zf ′ being typically real, which in turn is equivalent to Re(1−z2)f ′(z) > 0. For f ∈ A satisfying
f ′ is typically real and Re f ′(z) > 0 in D, Ruscheweyh [4] proved that it is necessarily starlike.
The latter result is extended in [5] to include starlike functions of a nonnegative order.

Lemma 1.1 (see [5]). For 0 ≤ α < 1, let f ∈ A satisfy f ′ and f ′ − αf/z be typically real in D. If
Re f ′(z) > max{0, αRe(f(z)/z)} in D, then f ∈ S∗(α).

Trigonometric series, in particular the cosine and sine series along with their partial
sums, have found widely important applications in many works, for example, those of [4–9].
Vietoris [10] (also see [11]) showed that if c2k = c2k+1 = (1/2)k/k!, k = 0, 1, . . ., then

n∑

k=0

ck cos kθ > 0,
n∑

k=1

ck sin kθ > 0, 0 < θ < π, (1.3)

for any positive integer n. Here the Pochhammer symbol (a)λ is defined by (a)0 = 1, and
(a)λ = (a + λ − 1)(a)λ−1, λ ∈ N. Using Abel’s partial summation formula

n∑

k=0

bkck =
n−1∑

k=0

⎛

⎝(bk − bk+1)
k∑

j=0

cj

⎞

⎠ + bn
n∑

k=0

ck, (1.4)

equation (1.3) yields the following classical result on the positivity of cosine and sine sums.

Theorem 1.2 (see [10]). Let {ak}∞k=0 be a decreasing sequence of nonnegative real numbers satisfying
a0 > 0 and (2k)a2k ≤ (2k − 1)a2k−1, k ≥ 1. Then

n∑

k=0

ak cos kθ > 0,
n∑

k=1

ak sin kθ > 0, 0 < θ < π, (1.5)

for any positive integer n.

Using Theorem 1.2, Ruscheweyh [4] obtained sufficient coefficient conditions for
functions f ∈ A to be starlike which can readily be tested. This paper aims to extend
Ruscheweyh’s concise result. Specifically in the next section, sufficient conditions on a
sequence {ak} of nonnegative numbers are obtained that ensures f(z) =

∑∞
k=1 akz

k is
starlike of order (1 − 2μ)/(1 − μ), μ ∈ (0, 1/2] in the unit disk. Coefficient conditions for
fn(z) = z +

∑n
k=2 akz

k to be either close to convex or convex in the direction of the imaginary
axis are also derived. The final section is devoted to finding conditions on the triplets (a, b, c)
that will ensure a normalized Gaussian hypergeometric function z2F1(a, b; c; z) is starlike of
order (1 − 2μ)/(1 − μ), μ ∈ (0, 1/2].

The following extension of Theorem 1.2 will be required.



Abstract and Applied Analysis 3

Theorem 1.3 (see [12]). Let c2k = c2k+1 = (μ)k/k!, μ ∈ (0, 1). For any positive integer n and
0 < θ < π , then

(i)
∑n

k=0 ck cos kθ > 0 if and only if 0 < μ ≤ μ0,

(ii)
∑2n+1

k=1 ck sin kθ > 0 if and only if 0 < μ ≤ μ0,

(iii)
∑2n

k=1 ck sin kθ > 0 if 0 < μ ≤ 1/2.

Here μ0 = 0.691556 · · · is the unique root in (0, 1) of

∫3π/2

0

cos t
t1−μ

dt = 0. (1.6)

2. Main Results

For our purpose, it will be more expedient to allow the terms of the sequence in Theorem 1.3
to consist of nonnegative numbers. Thus as a prelude to the main results, Theorem 1.3 is first
appropriately adapted to yield the following two preliminary results.

Lemma 2.1. Let {bk} be a decreasing sequence of nonnegative numbers satisfying b0 > 0 and kb2k ≤
(k + μ − 1)b2k−1, k ≥ 1, μ ∈ (0, 1). For any positive integer n and 0 < θ < π , then

n∑

k=0

bk cos kθ > 0 iff 0 < μ ≤ μ0. (2.1)

Proof. Let the sequence {ck} be given by c2k = c2k+1 = (μ)k/k!. It is evident from Theorem
1.3(i) that

n∑

k=0

ck cos kθ > 0 iff 0 < μ ≤ μ0. (2.2)

Using (1.4), rewrite
∑n

k=0 bk cos kθ in the form

n∑

k=0

bk cos kθ =
n−1∑

k=0

(
bk
ck

− bk+1
ck+1

) k∑

j=0

cj cos
(
jθ
)
+
bn
cn

n∑

j=0

cj cos
(
jθ
)
. (2.3)

If bk > 0 for k = 1, . . . , n, then a computation gives

b2k−1
c2k−1

− b2k
c2k

=
(k − 1)!
(
μ
)
k

((
k + μ − 1

)
b2k−1 − kb2k

) ≥ 0. (2.4)

Similarly,

b2k
c2k

− b2k+1
c2k+1

=
(k)!
(
μ
)
k

(b2k − b2k+1) ≥ 0. (2.5)
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Thus

(
bk
ck

− bk+1
ck+1

)

≥ 0 (2.6)

for k = 0, . . . , n − 1. Together with (2.2), the latter implies that the expression on the right side
of (2.3) is positive.

Now suppose there is an m, 1 ≤ m ≤ n, so that bm = 0 while bk > 0 for 0 ≤ k ≤ m − 1.
Then the conditions on {bk} would imply that bm = bm+1 = · · · = bn = 0. If b1 = 0, evidently
∑n

k=0 bk cos kθ = b0 > 0. Let m ≥ 2. It is shown above in (2.6) that (bk/ck − bk+1/ck+1) ≥ 0 for
k = 0, . . . , m − 2. The conditions bk ≥ bk+1 and kb2k ≤ (k + μ − 1)b2k−1 imply that

(
b0
c0

− b1
c1

)

c0 +
(
b1
c1

− b2
c2

)

(c0 + c1 cos θ) + · · · + bm−1
cm−1

m−1∑

j=0

cj cos jθ > 0, (2.7)

which yields the desired result.

The following result is readily obtained by using a similar argument used in
Lemma 2.1.

Lemma 2.2. Let {bk} be a decreasing sequence satisfying b1 > 0 and kb2k ≤ (k + μ − 1)b2k−1, k ≥
1, μ ∈ (0, 1). If 0 < μ ≤ 1/2, then

n∑

k=1

bk sin kθ > 0 (2.8)

for any positive integer n and 0 < θ < π .

The preceding lemmas will next be used to establish the following result on starlike-
ness.

Theorem 2.3. Let a1 = 1, ak ≥ 0 satisfy

((
1 − μ

)
k − 1 + 2μ

)
ak ≥ ((

1 − μ
)
k + μ

)
ak+1, (2.9)

(
k + μ − 1

)(
2
(
1 − μ

)
k − 1 + 2μ

)
a2k ≥ k

(
2
(
1 − μ

)
k + μ

)
a2k+1, (2.10)

k ≥ 1, 0 < μ ≤ 1/2. Then f(z) =
∑∞

k=1 akz
k is starlike of order (1 − 2μ)/(1 − μ). The result is sharp

as illustrated by the function f(z) = z + μz2.

Proof. Let fn(z) = z +
∑n

k=2 akz
k, α := (1 − 2μ)/(1 − μ), and bk = (k + 1 − α)ak+1, k ≥ 0. Then

f ′
n(z) − α

fn(z)
z

=
n−1∑

k=0

bkz
k. (2.11)
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With z = eiθ, 0 ≤ θ ≤ 2π in (2.11), it follows that

Re
(

f ′
n(z) − α

fn(z)
z

)

=
n−1∑

k=0

bk cos kθ. (2.12)

Now b0 > 0 and bk ≥ 0, k ≥ 1. Condition (2.9) shows that

bk−1 = (k − α)ak =
1

1 − μ

((
1 − μ

)
k − 1 + 2μ

)
ak

≥ 1
1 − μ

((
1 − μ

)
k + μ

)
ak+1

= (k + 1 − α)ak+1 = bk,

(2.13)

while inequality (2.10) yields

(
k + μ − 1

)
b2k−1 − kb2k

=
(
k + μ − 1

)
(2k − α)a2k − k(2k + 1 − α)a2k+1

=
1

1 − μ

((
k + μ − 1

)(
2
(
1 − μ

)
k − 1 + 2μ

)
a2k − k

(
2
(
1 − μ

)
k + μ

)
a2k+1

) ≥ 0.

(2.14)

Evidently {bk} satisfies the hypothesis of Lemma 2.1, and therefore

n−1∑

k=0

bk cos kθ ≥ 0, 0 ≤ θ ≤ π. (2.15)

The minimum principle for harmonic functions implies that Re(f ′
n(z) − αfn(z)/z) is either

identically zero or positive. Since Re(f ′
n(z) − αfn(z)/z) = 1 − α at z = 0, it follows that

Re(f ′
n(z) − αfn(z)/z) > 0 in D.
Similarly, taking z = eiθ in (2.11) results in

Im
(

f ′
n(z) − α

fn(z)
z

)

=
n−1∑

k=1

bk sin kθ, (2.16)

for z ∈ D ∩ {z : Im z > 0}. Now Lemma 2.2 implies that

n−1∑

k=1

bk sin kθ > 0 for 0 < θ < π. (2.17)

Since the coefficients bk are real, (2.17) shows that Im(f ′
n(z) − αfn(z)/z) ≥ 0 on ∂(D ∩ {z :

Im z > 0}). Again by the minimum principle, Im(f ′
n(z) − αfn(z)/z) is either identically zero

or positive in D ∩ {z : Im z > 0}. The former implies that fn(z) = z, which is starlike. In the
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latter case, the reflection principle yields Im(f ′
n(z) − αfn(z)/z) < 0 in D ∩ {z : Im z < 0}. Thus

f ′
n − αf/z is typically real.

It remains to show that f ′
n is typically real satisfying Re f ′

n(z) > 0. Let ck = (k + 1)ak+1,
and thus

f ′
n(z) =

n−1∑

k=0

ckz
k. (2.18)

Inequality (2.9) yields

ck−1 − ck = kak − (k + 1)ak+1 ≥
1 − 2μ

(
1 − μ

)
k − 1 + 2μ

ak+1 ≥ 0, (2.19)

while (2.10) implies

(
k + μ − 1

)
c2k−1 − kc2k

=
(
k + μ − 1

)
2ka2k − k(2k + 1)a2k+1

≥ k

2
(
1 − μ

)
k − 1 + 2μ

(
2k

(
2
(
1 − μ

)
k + μ

) − (2k + 1)
(
2
(
1 − μ

)
k − 1 + 2μ

))
a2k+1

=
k

2
(
1 − μ

)
k − 1 + 2μ

(
4
(
1 − μ

)
k2 + 2μk − 4

(
1 − μ

)
k2

+2k
(
1 − 2μ

) − 2
(
1 − μ

)
k +

(
1 − 2μ

)
+ 2μk − 4

(
1 − μ

))
a2k+1

=
k
(
1 − 2μ

)

2
(
1 − μ

)
k − 1 + 2μ

a2k+1 ≥ 0.

(2.20)

Thus {ck} also satisfies the hypothesis of Lemmas 2.1 and 2.2, and following the same
arguments used earlier, f ′

n is deduced to be typically real with Re f ′
n(z) > 0.

Lemma 1.1 now implies that fn is starlike of order (1 − 2μ)/(1 − μ), μ ∈ (0, 1/2].
Since the class of starlike functions of a fixed order is a compact family, it is evident that
f = limn→∞fn is also starlike of order (1 − 2μ)/(1 − μ).

Finally note that when f(z) = z + μz2, then

Re
zf ′(z)
f(z)

= Re
1 + 2μz
1 + μz

−→ 1 − 2μ
1 − μ

as z −→ −1. (2.21)

Hence the order of starlikeness is sharp.

For μ = 1/2, Theorem 2.3 reduces to the following result of Ruscheweyh.
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Corollary 2.4 (see [4]). Let a1 = 1, ak ≥ 0 satisfy

kak ≥ (k + 1)ak+1, (2k − 1)a2k ≥ (2k + 1)a2k+1, k ≥ 1. (2.22)

Then f(z) =
∑∞

k=1 akz
k is starlike.

Using Lemma 2.1 and the minimum principle for harmonic functions, the following
sufficient condition for fn(z) = z +

∑n
k=2 akz

k to be close to convex of order 1 − μ/μ0 with
respect to the starlike function g(z) = z is obtained.

Theorem 2.5. Let a1 = 1, ak ≥ 0 satisfy

0 ≤ nan ≤ · · · ≤ (k + 1)ak+1 ≤ kak ≤ · · · ≤ 3a3 ≤ 2a2 ≤
μ

μ0
, μ ∈ (

0, μ0
]
, (2.23)

2
(
k + μ − 1

)
a2k ≥ (2k + 1)a2k+1, 1 ≤ k ≤ n − 1

2
. (2.24)

Then fn(z) = z +
∑n

k=2 akz
k satisfies Re f ′

n(z) > 1 − μ/μ0.

Proof. Let β := 1 − μ/μ0, b0 = 1, and bk := [(k + 1)/(1 − β)]ak+1, 1 ≤ k ≤ n − 1. Then

f ′
n(z) − β

1 − β
=

n−1∑

k=0

bkz
k. (2.25)

Letting z = eiθ, 0 ≤ θ ≤ 2π , in (2.25), it follows that

Re
f ′
n(z) − β

1 − β
=

n−1∑

k=0

bk cos kθ. (2.26)

Employing the same argument used in the proof of Theorem 2.3, it is sufficient to consider
only the interval 0 ≤ θ ≤ π .

Now ak ≥ 0 implies bk ≥ 0, and inequality (2.23) shows that

bk − bk+1 =
(k + 1)ak+1 − (k + 2)ak+2

1 − β
≥ 0, 1 ≤ k ≤ n − 2. (2.27)

Also, b0 ≥ b1 since a2 ≤ (1 − β)/2 = μ/(2μ0).
Inequality (2.24) also yields

(
k + μ − 1

)
b2k−1 − kb2k =

k
((
2k + 2μ − 2

)
a2k − (2k + 1)a2k+1

)

1 − β
≥ 0. (2.28)

Thus {bk} satisfies the hypothesis of Lemma 2.1. The minimum principle for harmonic
functions yields Re f ′

n(z) > β = 1 − μ/μ0.
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The next result gives a sufficient condition for fn to be convex in the direction of the
imaginary axis, which is equivalent to fn ∈ Kg with g(z) = z/(1 − z2).

Theorem 2.6. Let a1 = 1, ak ≥ 0 satisfy

kak ≥ (k + 1)ak+1, (k = 1, . . . , n − 1),

(
k + μ − 1

)
(2k − 1)a2k−1 ≥ 2k2a2k,

(
k = 1, . . . ,

n

2

)
,

(2.29)

μ ∈ (0, 1). Then fn(z) =
∑n

k=1 akz
k is convex in the direction of the imaginary axis whenever μ ∈

(0, 1/2].

Proof. Since the coefficients of fn are real, fn is convex in the direction of the imaginary axis if
and only if zf ′

n is typically real. Let bk = kak. Then

zf ′
n(z) =

n∑

k=1

bkz
k. (2.30)

Inequality (2.29) shows that the coefficients bk satisfy the hypothesis of Lemma 2.2. Hence by
taking z = eiθ, θ ∈ (0, π), in (2.30) and using Lemma 2.2, it follows that

Im zf ′
n(z) =

n∑

k=1

bk sin kθ > 0 (2.31)

for z ∈ D ∩ {z : Im z > 0}. A similar argument used in the proof of Theorem 2.3 now leads to
the conclusion that zf ′

n is typically real for 0 < μ ≤ 1/2.

Corollary 2.7. Let a1 = 1, ak ≥ 0 satisfy

kak ≥ (k + 1)ak+1,
(
k + μ − 1

)
(2k − 1)a2k−1 ≥ 2k2a2k, (2.32)

0 < μ ≤ 1/2. Then f(z) =
∑∞

k=1 akz
k is convex in the direction of the imaginary axis.

Proof. It is evident from Theorem 2.6 that fn is convex in the direction of the imaginary axis
for any positive integer n. The result now follows in light of the compactness of the class of
functions convex in the direction of the imaginary axis.

The choice of μ = 1/2 in Corollary 2.7 reduces to a result of Acharya [6].

Corollary 2.8 (see [6, Theorem 2.3.5, page 33]). Let a1 = 1, ak ≥ 0 satisfy

kak ≥ (k + 1)ak+1, (2k − 1)2a2k−1 ≥ (2k)2a2k, k ≥ 1. (2.33)

Then f(z) =
∑∞

k=1 akz
k is convex in the direction of the imaginary axis.
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3. Starlikeness of the Gaussian Hypergeometric Functions

For complex numbers a, b, and c with c /= 0,−1,−2, . . ., the Gaussian hypergeometric function
2F1(a, b; c; z) is defined by the series

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)kk!

zk. (3.1)

When a = −m or b = −m, 2F1(a, b; c; z) reduces to a hypergeometric polynomial of degree
m. Properties on the hypergeometric functions are treated in [13]. The geometry of close to
convexity, starlikeness, and convexity of z 2F1(a, b; c; z) has been studied in various works,
for example, those of [6, 14–19]. Notwithstanding these works, the exact range of the triplets
(a, b, c) for starlikeness as well as for the other geometric structures of normalized Gaussian
hypergeometric functions remains a formidable challenge.

In this section, conditions on the triplets (a, b, c) are determined that will ensure the
function z 2F1(a, b; c; z) is starlike of a certain order in D. Several examples are presented
to compare the range obtained with some of those earlier works. Sufficient conditions for
starlikeness of the odd Gaussian hypergeometric functions z 2F1(a, b; c; z2) are also obtained.

Theorem 3.1. Let μ ∈ (0, 1/2] and a, b ≤ μ − 1 satisfy (a)k(b)k ≥ 0 for k ≥ 2. If μc ≥ ab, then
z 2F1(a, b; c; z) is starlike of order (1 − 2μ)/(1 − μ).

Proof. The function z 2F1(a, b; c; z) can be expressed as

z 2F1(a, b; c; z) =
∞∑

k=1

(a)k−1(b)k−1
(c)k−1(k − 1)!

zk =
∞∑

k=1

akz
k, (3.2)

where a1 = 1 and

ak+1 =
(a + k − 1)(b + k − 1)

k(c + k − 1)
ak, k ≥ 1. (3.3)

The sequence {ak} is first shown to satisfy conditions (2.9) and (2.10) in Theorem 2.3.
Now consider

((
1 − μ

)
k − 1 + 2μ

)
ak −

((
1 − μ

)
k + μ

)
ak+1

=
((
1 − μ

)
k − 1 + 2μ

)
ak −

((
1 − μ

)
k + μ

)(a + k − 1)(b + k − 1)
k(c + k − 1)

ak

=
ak

k(c + k − 1)
(
k
((
1 − μ

)
k − 1 + 2μ

)
(c + k − 1) − ((

1 − μ
)
k + μ

)
(a + k − 1)(b + k − 1)

)

=
ak

k(c + k − 1)

(
A1(k − 1)2 +A2(k − 1) +A3

)
,

(3.4)
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with

A1 = (c − a − b)
(
1 − μ

)
,

A2 =
(−a − b + μ + abμ

)
+ (c − ab),

A3 = μc − ab.

(3.5)

The conditions a, b ≤ μ − 1 ≤ −1/2 and μc ≥ ab > 0 show that A1 > 0, A3 ≥ 0, and A2 >
c − ab ≥ (1/μ − 1)ab > 0. Thus

A1(k − 1)2 +A2(k − 1) +A3 ≥ 0, k ≥ 1, (3.6)

and inequality (2.9) holds.
To verify inequality (2.10), consider

(
k + μ − 1

)(
2
(
1 − μ

)
k − 1 + 2μ

)
a2k − k

(
2
(
1 − μ

)
k + μ

)
a2k+1

=
a2k

2k(c + 2k − 1)
(
2k

(
2
(
1 − μ

)
k + μ

)(
k + μ − 1

)
(c + 2k − 1)

−k(2(1 − μ
)
k + μ

)
(a + 2k − 1)(b + 2k − 1)

)

=
a2k

2(c + 2k − 1)

(
B1(k − 1)2 + B2(k − 1) + B3

)
,

(3.7)

with

B1 = 4
(
−2 − (a + b)

(
1 − μ

)
+ 4μ − 2μ2

)
+ 4c

(
1 − μ

)
,

B2 = 2
(
−4 − (a + b)

(
3 − 2μ

)
+ 7μ − 2μ2

)
+ 2c

(
1 + 2μ − 2μ2

)
+ 2abμ,

B3 =
(−2 − (a + b)

(
2 − μ

)
+ 3μ

)
+ 2

(
cμ − ab

)
+ abμ.

(3.8)

Again from the conditions a, b ≤ μ − 1 ≤ −1/2 and μc ≥ ab > 0, computations show that

B1 > 4
(
−2 − 2

(
μ − 1

)(
1 − μ

)
+ 4μ − 2μ2

)
= 0,

B2 > 2
(
−4 − 2

(
μ − 1

)(
3 − 2μ

)
+ 7μ − 2μ2

)
= 2

(
2 − 3μ + 2μ2

)
> 0,

B3 > − 2 − 2
(
μ − 1

)(
2 − μ

)
+ 3μ = 2 − 3μ + 2μ2 > 0.

(3.9)

Hence inequality (2.10) also holds. The desired result now readily follows from Theorem 2.3.

Choosing a = b = μ − n and a = b = −μ − n, respectively, in Theorem 3.1 yields the
following result.



Abstract and Applied Analysis 11

Corollary 3.2. Let μ ∈ (0, 1/2] and n be a fixed integer.

(i) If μc ≥ (μ − n)2, then z 2F1(μ − n, μ − n; c; z) is starlike of order (1 − 2μ)/(1 − μ). In
particular, f(z) = z

√
1 − z + z

√
z arcsin(

√
z) is starlike.

(ii) If μc ≥ (μ + n)2, then z 2F1(−μ − n,−μ − n; c; z) is starlike of order (1 − 2μ)/(1 − μ).

Observe that the starlikeness of

z 2F1

(

−1
2
,−1

2
;
1
2
; z
)

= z
√
1 − z + z

√
z arcsin

(√
z
)

(3.10)

follows from (i) by taking n = 1, μ = 1/2, and c = 1/2.
For μ = 1/2, Theorem 3.1 leads to the following result.

Corollary 3.3. Let a, b ≤ −1/2 satisfy (a)k(b)k ≥ 0 for k ≥ 2. If c ≥ 2ab, then z 2F1(a, b; c; z) is
starlike.

Remark 3.4. Sufficient conditions for starlikeness (of order 0) for z 2F1(a, b; c; z) are also
obtained in [6, Theorem 4.3.1, page 60]. The result in Theorem 3.1 however investigated
conditions for z 2F1(a, b; c; z) to be starlike of a certain order.

Corollary 3.5. Let μ ∈ (0, 1/2] and a, b ≤ μ − 2 satisfy (a + 1)k(b + 1)k ≥ 0, k ≥ 2. If μ(c + 1) ≥
(a + 1)(b + 1), then the function (c/ab) [2F1(a, b; c; z) − 1] is convex of order (1 − 2μ)/(1 − μ).

Proof. If f is starlike of a certain order, then Alexander’s transformation
∫z
0 f(t)/t dt yields

a function convex of the same order. Under the given hypothesis and using Theorem 3.1,
it is clear that z 2F1(a + 1, b + 1; c + 1; z) is starlike of order (1 − 2μ)/(1 − μ). The Gaussian
hypergeometric function satisfies the identity

ab 2F1(a + 1, b + 1; c + 1; z) = c 2F
′
1(a, b; c; z). (3.11)

Thus

c

ab
[2F1(a, b; c; z) − 1] =

∫z

0

t 2F1(a + 1, b + 1; c + 1; t)
t

dt (3.12)

is convex of order (1 − 2μ)/(1 − μ).

We state the following recent result by Hästö et al. [14] related to the starlikeness of
z 2F1(a, b; c; z).

Theorem 3.6 (see [14]). Let a, b, and c be nonzero real numbers such that 2F1(a, b; c; z) has no zero
in D. Then z 2F1(a, b; c; z) is starlike of order (1 − 2μ)/(1 − μ), μ ∈ (0, 1/2], if

(1) c ≥ 1 + a + b − ab/μ̃,

(2) C + μ̃ ≥ 2A,

(3) (μ̃ + μ̃2)C + 2BD +D2 ≥ 0,

where μ̃ = μ/(1 − μ), A = μ̃2 − μ̃(a + b) + ab, B = μ̃(a + b) − 2μ̃2, C = μ̃c̃ + ab, D = μ̃c̃, and
c̃ = c − 1 − a − b.
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Next we provide some examples to show that Theorem 3.1 gives a better range of
triplets (a, b, c) than those obtained in earlier works.

Example 3.7. If a, b ∈ (−1,−2/3], then z 2F1(a, b; 3ab; z) is starlike of order 1/2. The latter fact
follows from Theorem 3.1 by taking μ = 1/3. This result cannot be obtained from Hästö et al.
[14, Corollary 1.7] since

max{1 + a + b − 2ab, 1 + 2ab, 1 + |a − b|} = 1 + 2ab > 3ab. (3.13)

Example 3.8. Let μ ∈ (0, 1/2] and −1 −√
(1 + μ)/(1 − μ) < a ≤ μ − 1. Then z 2F1(a, a;a2/μ; z)

belongs to S∗((1 − 2μ)/(1 − μ)), which follows from Theorem 3.1 with a = b and c = a2/μ.
Comparing with Theorem 3.6, note that

C + μ̃ − 2A = (c − 1 − a − b)μ̃ + ab + μ̃ − 2μ̃2 + 2μ̃(a + b) − 2ab

= cμ̃ − 2aμ̃ + a2 − 2μ̃2 + 4μ̃a − 2a2

=
a2

μ
μ̃ − a2 + 2aμ̃ − 2μ̃2

= μ̃
(
a2 + 2a − 2μ̃

)

= μ̃

(

(a + 1)2 − 1 + μ

1 − μ

)

< 0,

(3.14)

and so the second condition in Theorem 3.6 does not hold. Therefore, the range of the
parameters in Theorem 3.6 does not include the range in this example.

The next result gives conditions on triplets (a, b, c) for which the odd Gaussian
hypergeometric functions z 2F1(a, b; c; z2) are starlike of order (1 − 3μ)/(1 − μ).

Theorem 3.9. Let a, b ≤ μ − 1, μ ∈ (0, 1/3] satisfy (a)k(b)k ≥ 0, k ≥ 2. If μc ≥ ab, then
z 2F1(a, b; c; z2) is starlike of order (1 − 3μ)/(1 − μ).

Proof. Let f(z) = z 2F1(a, b; c; z) and zg(z) = f(z2). Then

zg ′(z)
g(z)

= 2
z2f ′(z2

)

f(z2)
− 1. (3.15)

Theorem 3.1 shows that f ∈ S∗((1 − 2μ)/(1 − μ)), and therefore

Re
zg ′(z)
g(z)

= 2Re
z2f ′(z2

)

f(z2)
− 1 >

1 − 3μ
1 − μ

, (3.16)

that is, g ∈ S∗((1 − 3μ)/(1 − μ)).

For μ = 1/3, Theorem 3.9 reduces to the following result.
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Corollary 3.10. Let a, b ≤ −2/3 satisfy (a)k(b)k ≥ 0, k ≥ 2. Then z 2F1(a, b; c; z2) is in S∗ for
c ≥ 3ab.

Note that when a, b ∈ (−1,−2/3], then max{1+a+ b− 2ab, 1+ 2ab, 1+ |a− b|} = 1+ 2ab
and a result in [14, Corollary 1.9] yields that z 2F1(a, b; c; z2) is starlike provided c ≥ 1 +
2ab. However for the given range of a and b above, evidently 1 + 2ab > 3ab, and hence
Corollary 3.10 gives a better range for c.
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