
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 809626, 8 pages
doi:10.1155/2012/809626

Research Article
The Uniform Boundedness Theorem in
Asymmetric Normed Spaces

C. Alegre,1 S. Romaguera,1 and P. Veeramani2

1 Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de València,
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We obtain a uniform boundedness type theorem in the frame of asymmetric normed spaces. The
classical result for normed spaces follows as a particular case.

1. Introduction

Throughout this paper the letters R and R
+ will denote the set of real numbers and the set of

nonnegative real numbers, respectively.
The book of Aliprantis and Border [1] provides a good basic reference for functional

analysis in our context.
Let X be a real vector space. A function p : X → R

+ is said to be an asymmetric norm
on X [2, 3] if for all x, y ∈ X, and r ∈ R

+,

(i) p(x) = p(−x) = 0 if and only if x = 0;

(ii) p(rx) = rp(x);

(iii) p(x + y) ≤ p(x) + p(y).

The pair (X, p) is called an asymmetric normed space.
Asymmetric norms are also called quasinorms in [4–6], and nonsymmetric norms in

[7].
If p is an asymmetric norm onX, then the function p−1 defined onX by p−1(x) = p(−x)

is also an asymmetric norm on X, called the conjugate of p. The function ps defined on X by
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ps(x) = max{p(x), p−1(x)} is a norm on X. We say that (X, p) is a bi-Banach space if (X, ps) is
a Banach space [3]. The following is a simple instance of a biBanach space.

Example 1.1. Denote by u the function defined on R by u(x) = x ∨ 0 for all x ∈ R. Then u
is an asymmetric norm on R such that us is the Euclidean norm on R, that is, (R, us) is the
Euclidean normed space (R, | · |). Hence (R, u) is a biBanach space.

By a quasimetric on a nonempty set X we mean a function d : X × X → R
+ such that

for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y, and (ii) d(x, y) ≤ d(x, z) + d(z, y).
The function d−1 defined on X ×X by d−1(x, y) = d(y, x) is a quasi-metric on X called

the conjugate of d.
Each quasi-metric d on X induces a T0 topology T(d) on X which has as a base the

family of the balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈ X : d(x, y) < r}.
Each asymmetric norm p on a real vector spaceX induces a quasi-metric dp defined by

dp(x, y) = p(y−x), for all x, y ∈ X. We refer to the topology T(dp) as the topology induced by
p. The terms p-neighborhood, p-open, p-closed, and so forth will refer to the corresponding
topological concepts with respect to that topology. The ball Bdp(x, r) will be simply denoted
by Bp(x, r).

It was shown in [5] that for any normed lattice (X, ‖ · ‖), the function p defined on X
by p(x) = ‖x+‖, with x+ = x ∨ 0, is an asymmetric norm on X and the norm ps is equivalent
to the norm ‖ · ‖. Moreover, p determines both the topology and order of X. We will refer to p
as the asymmetric norm associated to(X, ‖ · ‖).

It seems interesting to point out that the recent development of the theory of
asymmetric normed spaces has been motivated, in great part, by their applications. In fact,
asymmetric norms (in particular, those that are associated to normed lattices) and other
related nonsymmetric structures from topological algebra and functional analysis have been
applied to construct suitable mathematical models in theoretical computer science [2, 8–10]
as well as to some questions in approximation theory [6, 7, 11, 12].

The asymmetric normed spaces share some properties with usual normed spaces but
there are also significant differences between them. In the last decade, several papers on
general topology and functional analysis have been published in order to extend well-known
results of the theory of normed spaces to the framework of asymmetric normed spaces (see,
e.g., [3, 4, 11, 13–17]).

In this sense, the recent book of Cobzas [18] collects in a unified way the most
interesting results obtained up to date in the context of nonsymmetric topology and
fuctional analysis. Furthermore, in this monograph, the author also presents new results that
significantly enrich the theory of asymmetric normed spaces. One of these new results which
appears in the book is the uniform boundedness theorem that extends the classical one for
normed spaces. In our terminology, this result is formulated as follows.

Let (X, p) be a right K-complete asymmetric normed space, and let (Y, q) be an
asymmetric normed space. If F is a family of continuous linear operators from (X, p) to (Y, q)
such that for each x ∈ X, there exist bx > 0 and cx > 0 with q(f(x)) ≤ bx and q−1(f(x)) ≤ cx
for all f ∈ F, then there exist b > 0 and c > 0 such that

sup
{
q
(
f(x)

)
: p−1(x) ≤ 1

}
≤ b, sup

{
q−1

(
f(x)

)
: p(x) ≤ 1

}
≤ c, (1.1)

for all f ∈ F.
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The condition of right K-completeness for (X, p) leaves outside the scope of this
theorem an important class of asymmetric normed spaces, the asymmetric normed spaces
associated to normed lattices because these spaces are right K-complete only for the trivial
case [13]. In this paper, we give a uniform boundedness type theorem in the setting of
asymmetric normed spaces which extends the classical result for normed spaces and it is less
restrictive than Cobzas’ theorem. For this purpose we introduce the notion of quasi-metric
space of the half second category. These spaces play in our context a similar role that the
metric spaces of the second category have played in the realm of normed spaces.

2. The Results

The result for normed linear spaces usually called Uniform Boundedness or Banach-
Steinhauss theorem is formulated as follows.

Theorem 2.1 (see [1]). Let X be a Banach space and let Y be a normed space. If F is a family of
continuous linear operators fromX to Y such that for each x ∈ X there exists bx > 0with ‖f(x)‖ ≤ bx
for all f ∈ F, then there exists b > 0 such that ‖f‖ ≤ b for all f ∈ F.

A natural way of extending the preceding result to the context of asymmetric normed
spaces consists of replacing Banach space by biBanach asymmetric normed spaces. Thus one
may conjecture that the next result would be desirable.

Let X be a biBanach asymmetric normed space and let Y be an asymmetric normed
space. If F is a family of continuous linear operators from (X, p) to (Y, q) such that for each
x ∈ X there exists bx > 0 with q(f(x)) ≤ bx for all f ∈ F, then there exists b > 0 such that

sup
{
q
(
f(x)

)
: p(x) ≤ 1

} ≤ b, (2.1)

for all f ∈ F.
Nevertheless, the following example shows that such a result does not hold in our

context.

Example 2.2. Let Xk = {(xn) ∈ l1 : 2kx2k−1 + x2k = 0}. Since Xk is a closed linear subspace of l1
for every k ∈ N, the subspace

X =
∞⋂
k=1

Xk, (2.2)

is a closed linear subspace of l1. We consider the asymmetric normed space (l1, p), where

p(x) = ‖x+‖1 =
∞∑
n=1

x+
n. (2.3)

Since the norm ps is equivalent to the norm ‖ ·‖1 on l1, we have thatX is a closed linear
subspace of the Banach space (l1, ps) and then (X, ps) is a Banach space. Therefore (X, p) is a
biBanach space.
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Let fn : X → R be given by fn(x) = (2n + 1)x2n−1 for every n ∈ N. Since

fn(x) = (2n + 1)x2n−1 ≤ (2n + 1)x+
2n−1 ≤ (2n + 1)p(x), (2.4)

we have that fn is a continuous linear map from (X, p) to (R, u), for every n ∈ N.
If x ∈ X, then ‖x‖1 =

∑∞
n=1(2n + 1)|x2n−1|, so that

(2n + 1)x2n−1 ≤ (2n + 1)|x2n−1| ≤ ‖x‖1. (2.5)

Therefore, fn(x) = (2n + 1)x2n−1 ≤ ‖x‖1, for every n ∈ N.
Now, we will prove that sup{fn(x) : p(x) ≤ 1} = 2n + 1, for every n ∈ N. Indeed, if

p(x) ≤ 1, then fn(x) ≤ 2n + 1. If we consider x = (xn
i )

∞
i=1 such that xn

2n−1 = 1, xn
2n = −2n and

xn
i = 0 if i ∈ N − {2n − 1, 2n}, then x ∈ X, p(x) = 1 and fn(x) = 2n + 1. Hence,

sup
{
fn(x) : p(x) ≤ 1

}
= 2n + 1. (2.6)

Consequently,

sup
{
sup

{
fn(x) : p(x) ≤ 1

}
: n ∈ N

}
= ∞. (2.7)

Before introducing the notion of a quasi-metric space of the half second category we
recall some pertinent concepts in order to help the reader.

A topological space X is said to be of the first category if it is the union of a countable
collection of nowhere dense subsets. X is said to be of the second category if it is not of the
first category (see, e.g., [19, page 348]) From the characterization of nowhere dense subsets
given in Proposition 11.13 [19], it follows that a topological space X is of the second category
if and only if condition X =

⋃∞
n=1 En implies int(clEm)/= ∅ for some m ∈ N.

If (X, d) is a quasi-metric space andA is a subset of X, we denote by cld−1A the closure
of A in the topological space (X, T(d−1)) and by intdA the interior of A in the topological
space (X, T(d)). If (X, p) is an asymmetric normed space andA is a subset of X, we will write
clp−1A and intpA instead of cl(dp)

−1A and intdpA, respectively.

Definition 2.3. We say that a quasi-metric space (X, d) is of the half second category if X =⋃∞
n=1 En, implies intd(cld−1Em)/= ∅ for some m ∈ N.

Note that if d is a metric onX, the notion of space of the half second category coincides
with the classical notion of space of the second category.

The quasi-metric space (R, du) given in Example 1.1 is of the half second category.
Indeed, if R =

⋃∞
n=1 En, take m ∈ N with Em /= ∅. If Em = R, then cl(du)

−1(intduEm) = R.
Otherwise, since nonempty proper (du)

−1-closed subsets of R are of the form ] −∞, a], a ∈ R,
there exists am ∈ R such that cl(du)

−1Em =] −∞, am]. Therefore, intdu(cl(du)
−1Em) =] −∞, am[.

Note that (R, du) is not of the second category. Indeed, in Proposition 1 of [20] it is
proved that if (X, ‖ · ‖) is a normed lattice and p(x) = ‖x+‖, then (X, dp) is not of the second
category.
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Lemma 2.4 (uniform boundedness principle). If (X, d) is a quasi-metric space of the half second
category and F is a family of real valued lower semicontinuous functions on (X, d−1) such that for
each x ∈ X there exists bx > 0 such that f(x) ≤ bx for all f ∈ F, then there exist a nonempty open
setU in (X, d) and b > 0 such that f(x) ≤ b for all f ∈ F and x ∈ U.

Proof. For each n ∈ N let

En =
⋂
f∈F

f−1]−∞, n]. (2.8)

Then each En is closed in (X, d−1). Moreover X =
⋃∞

n=1 En. Indeed, by our hypothesis,
given x ∈ X there exists nx ∈ N such that f(x) ≤ nx for all f ∈ F, so x ∈ Enx .

Hence, there existsm ∈ N such thatU/= ∅, whereU = intd(cld−1Em) = intdEm. Then, for
each x ∈ U and f ∈ F we obtain f(x) ≤ m. This completes the proof.

Definition 2.5. We say that an asymmetric normed space (X, p) is of the half second category
if the quasi-metric space (X, dp) is of the half second category.

Theorem 2.6 (uniform boundedness theorem). Let (X, p) and (Y, q) be two asymmetric normed
spaces such that (X, p) is of the half second category. If F is a family of continuous linear operators
from (X, p) to (Y, q) such that for each x ∈ X there exists bx > 0 with q(f(x)) ≤ bx for all f ∈ F,
then there exists b > 0 such that

sup
{
q
(
f(x)

)
: p(x) ≤ 1

} ≤ b, (2.9)

for all f ∈ F.
Proof. For each g ∈ F define a function hg by hg(x) = q(g(x)) for all x ∈ X. We first show that
hg is lower semicontinuous on (X, (dp)

−1). Indeed, let x ∈ X and {xn}n∈N
be a sequence in X

such that (dp)
−1(x, xn) → 0. Then p(x−xn) → 0. By the linear continuity of g we deduce that

q(g(x) − g(xn)) → 0. From the fact that q(g(x)) − q(g(xn)) ≤ q(g(x) − g(xn)) for all n ∈ N, it
follows that for each ε > 0 there is n0 ∈ N such that hg(x)− hg(xn) < ε. Since x is arbitrary, we
conclude that hg is lower semicontinuous on (X, (dp)

−1).
Put H = {hg : g ∈ F}. Since for each x ∈ X, hg(x) = q(g(x)) ≤ bx for all g ∈ F, we can

apply Lemma 2.4 and thus there exists a nonempty p-open subset U of X and a δ > 0 such
that hg(x) ≤ δ for all g ∈ F and x ∈ U.

Fix z ∈ U. Then, there exists r > 0 such that Bp(z, r) ⊂ U. Take an ε ∈]0, r[. Then,
Bp(z, ε) ⊂ U, where Bp(z, ε) = {y ∈ X : p(y − z) ≤ ε}. Put b = (δ + b−z)/ε, and let x ∈ X
such that p(x) ≤ 1. We will prove that q(f(x)) ≤ b for all f ∈ F. Indeed, first note that
p(εx + z − z) = εp(x) ≤ ε, so εx + z ∈ U.

Now take f ∈ F. Then

q
(
f(x)

)
=

1
ε
q
(
f(εx)

)
=

1
ε
q
(
f(εx + z − z)

)
=

1
ε
q
(
f(εx + z) + f(−z))

≤ 1
ε

[
q
(
f(εx + z)

)
+ q

(
f(−z))] = 1

ε

[
hf(εx + z) + hf(−z)

]

≤ 1
ε
(δ + b−z) = b.

(2.10)
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Since the Banach spaces are of the second category, the classical result for normed
space is a corollary of this theorem.

Corollary 2.7. Let X be a Banach space and let Y be a normed space. If F is a family of continuous
linear operators from X to Y such that for each x ∈ X there exists bx > 0 with ‖f(x)‖ ≤ bx for all
f ∈ F, then there exists b > 0 such that ‖f‖ ≤ b for all f ∈ F.

In the remainder of this section we give examples of asymmetric normed spaces of the
half second category.

Definition 2.8. Let (X, p) be an asymmetric normed space. (X, p) is right bounded if there is
r > 0 such that rBp(0, 1) ⊂ Bps(0, 1) + θ(0), being θ(0) = {y ∈ X : p(y) = 0}.

This definition is equivalent to Definition 16 of [16].

Remark 2.9. The class of right bounded asymmetric normed spaces contains the asymmetric
normed spaces given by normed lattices. Indeed, in Lemma 1 of [14] it is proved that if
(X, ‖ · ‖) is a normed lattice and p(x) = ‖x+‖, then the asymmetric normed space (X, p) is
right-bounded with constant r = 1.

Lemma 2.10. Let (X, p) be an asymmetric normed space and let θ(0) = {y ∈ X : p(y) = 0}.
(1) If G is a p-open subset of X, then G + θ(0) ⊂ G.

(2) If G is p−1-open subset of X, then G − θ(0) ⊂ G.

(3) If F is a p−1-closed subset of X, then F + θ(0) ⊂ F

(4) If (X, p) right bounded, then for all a ∈ X and for all δ > 0, there is k > 0 such that
Bp(a, k) ⊂ Bps(a, δ) + θ(0).

Proof. (1) Let y ∈ G + θ(0). There exists x ∈ G such that y − x ∈ θ(0). Since G is p-open,
there is ε > 0 such that Bp(x, ε) ⊂ G. Since p(y − x) = 0, we have that (y − x) ∈ Bp(0, ε), then
y ∈ x + Bp(0, ε) = Bp(x, ε) ⊂ G.

(2) Let y ∈ G − θ(0). There exists x ∈ G such that y − x ∈ −θ(0), that is, x − y ∈ θ(0).
Since G is p−1-open, there is ε > 0 such that Bp−1(x, ε) ⊂ G. Since p−1(y − x) = p(x − y) = 0, we
have that (y − x) ∈ Bp−1(0, ε), then y ∈ x + Bp−1(0, ε) = Bp−1(x, ε) ⊂ G.

(3) Suppose that y ∈ F + θ(0). Then, y = x + z with x ∈ F and z ∈ θ(0). Suppose
that y /∈ F. Since X \ F is p−1-open, by (2) we have that y − z = x ∈ X \ F and this yields a
contradiction.

(4) Since X is right-bounded there is r > 0 such that Bp(0, r) ⊂ Bps(0, 1) + θ(0), then
δBp(0, r) ⊂ δ(Bps(0, 1) + θ(0)) ⊂ Bps(0, δ) + θ(0). Thus, if k = rδ then

Bp(a, k) = a + Bp(0, k) ⊂ a + Bps(0, δ) + θ(0) = Bps(a, δ) + θ(0). (2.11)

Theorem 2.11. If (X, p) is a biBanach right-bounded asymmetric normed space, then (X, p) is of the
half second category.

Proof. Suppose X =
⋃∞

n=1 Fn. Then X =
⋃∞

n=1 clp−1Fn. Since clp−1Fn is ps-closed, for all n ∈ N,
and (X, ps) is of the second category, because it is a Banach space, there is n0 ∈ N such that
intpsclp−1Fn0 /= ∅. Therefore, there exist a ∈ clp−1Fn0 and t > 0 such that Bps(a, t) ⊂ clp−1Fn0 .
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Since X is right bounded, by (4) of Lemma 2.10, there exists k > 0 such that Bp(a, k) ⊂
Bps(a, t) + θ(0). Therefore, by (3) of Lemma 2.10, we have that

Bp(a, k) ⊂ Bps(a, t) + θ(0) ⊂ clp−1Fn0 + θ(0) ⊂ clp−1Fn0 . (2.12)

The following result is immediate by Remark 2.9.

Corollary 2.12. If (X, ‖ · ‖) is a Banach lattice and p(x) = ‖x+‖, then (X, p) is of the half second
category.

Lemma 2.13. Let (X, p) be a right-bounded asymmetric normed space such that θ(0) has a nonempty
ps-interior. If F is p−1-closed, then the p-interior of F is nonempty.

Proof. Since intpsθ(0)/= ∅, there exist a ∈ θ(0) and δ > 0 such that the ball Bps(a, δ) ⊂ θ(0).
Since (X, p) is right-bounded, by (4) of Lemma 2.10, there is r > 0 such that Bp(a, r) ⊂
Bps(a, 1) + θ(0). Then

Bp(a, r) ⊂
(
1
δ

)
Bps(a, δ) + θ(0) ⊂ θ(0) + θ(0) = θ(0). (2.13)

If x ∈ F, by (3) of Lemma 2.10, x + θ(0) ⊂ F, and so

x + Bp(a, r) ⊂ x + θ(0) ⊂ F. (2.14)

Hence, intpF /= ∅.
The following proposition is an immediate consequence of Lemma 2.13.

Proposition 2.14. Let (X, p) be a right-bounded asymmetric normed space. If θ(0) has a nonempty
ps-interior, then (X, p) is of the half second category.

Note that in the class of right-bounded asymmetric normed spaces there are spaces
with empty ps-interior of θ(0). In fact, if (X, ‖ · ‖) is an AL-space (Banach normed lattice
where ‖x ∨ y‖ = ‖x‖ ∨ ‖y‖), then its positive cone P = {x ∈ X : x ≥ 0} has empty interior (see
[1, page 357]). If we consider the canonical asymmetric normed space (X, p), then θ(0) = −P
and so θ(0) has empty ps-interior since the norm ps is equivalent to the original norm of X.
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