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We investigate the convergence rate of Euler-Maruyamamethod for a class of stochastic partial differential delay equations driven by
both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic
exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of
stochastic partial differential delay equations with jumps in infinite dimensions.

1. Introduction

The theory and application of stochastic differential equa-
tions have been widely investigated [1–7]. Liu [2] studied
the stability of infinite dimensional stochastic differential
equations. For the numerical analysis of stochastic partial
differential equations, Gyöngy and Krylov [8] discussed the
numerical approximations for linear stochastic partial differ-
ential equations in whole space. Jentzen et al. [9] studied the
numerical simulations of nonlinear parabolic stochastic par-
tial differential equations with additive noise. Kloeden et al.
[10] gave the error analysis for the pathwise approximation of
a general semilinear stochastic evolution equations.

By contrast, stochastic partial differential equations with
jumps have begun to gain attention [11–15]. Röckner and
Zhang [15] considered the existence, uniqueness, and large
deviation principles of stochastic evolution equation with
jump. In [12], the successive approximation of neutral SPDEs
was studied. There are few papers on the convergence
rate of numerical solutions for stochastic partial differential
equations with jump, although there are some papers on
the convergence rate of numerical solutions for stochastic
differential equations with jump in finite dimensions [16, 17].

Being motivated by the papers [16, 17], we will discuss
the convergence rate of Euler-Maruyama scheme for a class
of stochastic partial delay equations with jump, where the

numerical scheme is based on spatial discretization by
Galerkinmethod and timediscretization by using a stochastic
exponential integrator. In consequence, we generalize some
results of Bao et al. (2011) and Jacob et al. (2009) in finite
dimensions to a class of stochastic partial delay equations
with jump in infinite dimensions. The rest of this paper is
arranged as follows. We give some preliminary results of
Euler-Maruyama scheme in Section 2. The convergence rate
is discussed in Section 3.

2. Preliminary Results

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0

,P) be a complete
probability space with some filtration {F

𝑡
}
𝑡≥0

satisfying the
usual conditions (i.e., it is right continuous andF

0
contains

allP-null sets). Let (𝐻, ⟨⋅, ⋅⟩
𝐻
, ‖ ⋅ ‖
𝐻
) and (𝐾, ⟨⋅, ⋅⟩

𝐾
, ‖ ⋅ ‖
𝐾
) be

two real separable Hilbert spaces. We denote by (L(𝐾,𝐻),

‖ ⋅ ‖) the family of bounded linear operators. Let 𝜏 > 0 and
𝐷 ([−𝜏, 0],𝐻) denote the family of right-continuous function
and left-hand limits 𝜑 from [−𝜏, 0] to 𝐻 with the norm
‖𝜑‖
𝐷

= sup
−𝜏≤𝜃≤0

‖𝜑(𝜃)‖
𝐻
. 𝐷𝑏F0([−𝜏, 0],𝐻) denotes the fam-

ily of almost surely bounded,F
0
-measurable,𝐷 ([−𝜏, 0],𝐻)-

valued random variables. For all 𝑡 ≥ 0, 𝑋
𝑡
= {𝑋(𝑡 + 𝜃) : −𝜏 ≤

𝜃 ≤ 0} is regarded as𝐷([−𝜏, 0],𝐻)-valued stochastic process.
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Let 𝑇 be a positive constant. For given 𝜏 ≥ 0, consider the
following stochastic partial differential delay equations with
jumps:

𝑑𝑋 (𝑡) = [𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝑔 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) 𝑑𝑊 (𝑡)

+ ∫
Z

ℎ (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏) , 𝑢)𝑁 (𝑑𝑡, 𝑑𝑢)

(1)

on 𝑡 ∈ [0, 𝑇] with initial datum 𝑋(𝑡) = 𝜉(𝑡) ∈

𝐷𝑏F0
([−𝜏, 0],𝐻), −𝜏 ≤ 𝑡 ≤ 0. Here (𝐴,𝐷(𝐴)) is a self-adjoint

operator on 𝐻. {𝑊(𝑡), 𝑡 ≥ 0} is 𝐾-valued {F
𝑡
}
𝑡≥0

-Wiener
process defined on the probability space {Ω,F, {F

𝑡
}
𝑡≥0

,P}

with covariance operator 𝑄. We assume that −𝐴 and the
covariance operator 𝑄 of the Wiener process have the same
eigenbasis {𝑒

𝑚
}
𝑚≥1

of𝐻; that is,

−𝐴𝑒
𝑚

= 𝜆
𝑚
𝑒
𝑚
,

𝑄𝑒
𝑚

= 𝛼
𝑚
𝑒
𝑚
, 𝑚 = 1, 2, 3, . . . ,

(2)

where {𝜆
𝑚
, 𝑚 ∈ N} are the discrete spectrum of −𝐴 and

0 ≤ 𝜆
1

≤ 𝜆
2
⋅ ⋅ ⋅ ≤ lim

𝑚→∞
𝜆
𝑚

= ∞, {𝛼
𝑚
, 𝑚 ∈ N} are the

eigenvalues of 𝑄. Then,𝑊(𝑡) is defined by

𝑊(𝑡) =

∞

∑
𝑛=1

√𝛼
𝑚
𝛽
𝑚
(𝑡) 𝑒
𝑚
, 𝑡 ≥ 0, (3)

where 𝛽
𝑚
(𝑡) (𝑚 = 1, 2, 3, . . .) is a sequence of real-valued

standard Brownian motions mutually independent of the
probability space (Ω,F, {F

𝑡
}
𝑡≥0

,P).
According to Da Prato and Zabczyk [1], we define

stochastic integrals with respect to the 𝑄-Wiener process
𝑊(𝑡). Let 𝐾

0
= 𝑄1/2(𝐾) be the subspace of 𝐾 with the

inner product ⟨𝑢, V⟩
𝐾0

= ⟨𝑄−1/2𝑢, 𝑄−1/2V⟩
𝐾
. Obviously, 𝐾

0

is a Hilbert space. Denote by L0
2

= L(𝐾
0
, 𝐻) the family

of Hilbert-Schmidt operators from 𝐾
0
into 𝐻 with the norm

‖Ψ‖
2

L0
2

= tr((Ψ𝑄1/2)(Ψ𝑄1/2)
∗

).
Let Φ : (0,∞) → L0

2
be a predictable, F

𝑡
-adapted

process such that

∫
𝑡

0

E‖Φ(𝑠)‖L0
2

𝑑𝑠 ≤ ∞, ∀𝑡 > 0. (4)

Then, the 𝐻-valued stochastic integral ∫
𝑡

0
Φ(𝑠)𝑑𝑊(𝑠) is a

continuous square martingale. Let 𝑁(𝑑𝑡, 𝑑𝑢) be the Poisson
measure which is independent of the𝑄-Wiener process𝑊(𝑡).
Denote the compensated or centered Poisson measure as

𝑁̃ (𝑑𝑡, 𝑑𝑢) = 𝑁 (𝑑𝑡, 𝑑𝑢) − 𝜌𝑑𝑡𝜋 (𝑑𝑢) , (5)

where 0 < 𝜌 < ∞ is known as the jump rate and 𝜋(⋅) is the
jumpdistribution (a probabilitymeasure). LetZ ∈ B(𝐾−{0})

be the measurable set. Denote byP2([0, 𝑇] ×Z, 𝐻) the space
of all predictable mappings ℎ : [0, 𝑇] × Z → 𝐻 for which

∫
𝑇

0

∫
Z

E‖ℎ (𝑡, 𝑢)‖
2

𝐻
𝑑𝑡𝜋 (𝑑𝑢) < ∞. (6)

Then, the𝐻-valued stochastic integral

∫
𝑇

0

∫
Z

ℎ (𝑡, 𝑢) 𝑁̃ (𝑑𝑡, 𝑑𝑢) (7)

is a centred square-integrable martingale.
We recall the definition of the mild solution to (1) as

follows.

Definition 1. A stochastic process {𝑋(𝑡) : 𝑡 ∈ [0, 𝑇]} is called
a mild solution of (1) if

(i) 𝑋(𝑡) is adapted to F
𝑡
, 𝑡 ≥ 0, and has càdlàg path on

𝑡 ≥ 0 almost surely,

(ii) for arbitrary 𝑡 ∈ [0, 𝑇], P{𝑤 : ∫
𝑡

0
‖𝑋(𝑠)‖

2

𝐻
𝑑𝑠 < ∞} =

1, and almost surely

𝑋 (𝑡) = 𝑒
𝑡𝐴
𝜉 (0) + ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

(8)

for any𝑋(𝑡) = 𝜉(𝑡) ∈ 𝐷𝑏F0
([−𝜏, 0],𝐻), −𝜏 ≤ 𝑡 ≤ 0.

For the existence and uniqueness of the mild solution to
(1) (see [11]), we always make the following assumptions.

(H1) (𝐴,𝐷(𝐴)) is a self-adjoint operator on 𝐻 such that
−𝐴 has discrete spectrum 0 ≤ 𝜆

1
≤ 𝜆
2

≤ ⋅ ⋅ ⋅ ≤

lim
𝑚→∞

𝜆
𝑚

= ∞ with corresponding eigenbasis
{𝑒
𝑚
}
𝑚≥1

of 𝐻. In this case 𝐴 generates a compact 𝐶
0
-

semigroup 𝑒𝑡𝐴, 𝑡 ≥ 0, such that ‖𝑒𝑡𝐴‖ ≤ 𝑒−𝛼𝑡.
(H2) The mappings 𝑓 : 𝐻 × 𝐻 → 𝐻, 𝑔 : 𝐻 ×

𝐻 → L(𝐾,𝐻), and ℎ : 𝐻 × 𝐻 × Z → 𝐻 are
Borel measurable and satisfy the following Lipschitz
continuity condition for some constant 𝐿

1
> 0 and

arbitrary 𝑥, 𝑦, 𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
∈ 𝐻 and 𝑢 ∈ Z:

󵄩󵄩󵄩󵄩𝑓 (𝑥
1
, 𝑦
1
) − 𝑓 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩
2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
− 𝑔 (𝑥

2
, 𝑦
2
))
󵄩󵄩󵄩󵄩
2

L2
0

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩
2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ (𝑥
1
, 𝑦
1
, 𝑢) − ℎ (𝑥

2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩
2

𝐻
) .

(9)

This further implies the linear growth condition; that
is,

󵄩󵄩󵄩󵄩𝑓(𝑥, 𝑦)
󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩𝑔(𝑥, 𝑦)

󵄩󵄩󵄩󵄩
2

L0
2

≤ 𝐿
0
(1 + ‖𝑥‖

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
2

𝐻
) , (10)

where

𝐿
0
:= 2 (𝐿

2
∨
󵄩󵄩󵄩󵄩𝑓(0, 0)

󵄩󵄩󵄩󵄩
2

𝐻
∨
󵄩󵄩󵄩󵄩𝑔(0, 0)

󵄩󵄩󵄩󵄩
2

L0
2

) . (11)
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(H3) There exists 𝐿
2
> 0 satisfying

󵄩󵄩󵄩󵄩ℎ(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩
2

𝐻
≤ 𝐿
2
(‖𝑥‖
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
2

𝐻
) , (12)

for each 𝑥, 𝑦 ∈ 𝐻 and 𝑢 ∈ Z.

(H4) For 𝜉 ∈ 𝐷𝑏F0
([−𝜏, 0],𝐻), there exists a constant𝐿

3
> 0

such that

E (
󵄨󵄨󵄨󵄨𝜉 (𝑠) − 𝜉 (𝑡)

󵄨󵄨󵄨󵄨
2

) ≤ 𝐿
3
|𝑡 − 𝑠|

2
, 𝑡, 𝑠 ∈ [−𝜏, 0] . (13)

We now describe our Euler-Maruyama scheme for the
approximation of (1). For any 𝑛 ≥ 1, let 𝜋

𝑛
: 𝐻 →

𝐻
𝑛
= span{𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} be the orthogonal projection; that is,

𝜋
𝑛
𝑥 = ∑

𝑛

𝑖=1
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
, 𝑥 ∈ 𝐻, 𝐴

𝑛
= 𝜋
𝑛
𝐴, 𝑓
𝑛
= 𝜋
𝑛
𝑓, 𝑔
𝑛
= 𝜋
𝑛
𝑔,

and ℎ
𝑛
= 𝜋
𝑛
ℎ.

Consider the following stochastic differential delay equa-
tions with jumps on𝐻

𝑛
:

𝑑𝑋
𝑛
(𝑡) = [𝐴

𝑛
𝑋
𝑛
(𝑡) + 𝑓

𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏))] 𝑑𝑡

+ 𝑔
𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏)) 𝑑𝑊 (𝑡)

+ ∫
Z

ℎ
𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏) , 𝑢)𝑁 (𝑑𝑡, 𝑑𝑢) ,

𝑋
𝑛
(𝜃) = 𝜋

𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] .

(14)

This spatial approximation (14) is called the Galerkin
approximation of (1). Due to the fact that 𝜋

𝑛
𝐴𝑥 =

𝜋
𝑛
𝐴(∑
𝑛

𝑖=1
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
) = −∑

𝑛

𝑖=1
𝜆
𝑖
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
, 𝑥 ∈ 𝐻

𝑛
, it follows

that for 𝑥 ∈ 𝐻
𝑛
, 𝐴
𝑛
𝑥 = 𝐴𝑥, 𝑒𝑡𝐴𝑛𝑥 = 𝑒𝑡𝐴𝑥.

By (H2) and (H3) and the property of the projection
operator, we have that

󵄩󵄩󵄩󵄩𝐴𝑛𝑥 − 𝐴
𝑛
𝑦
󵄩󵄩󵄩󵄩
2

𝐻
=

󵄩󵄩󵄩󵄩𝐴𝑛 (𝑥 − 𝑦)
󵄩󵄩󵄩󵄩
2

𝐻
≤ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻,

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑥1, 𝑦1) − 𝑓
𝑛
(𝑥
2
, 𝑦
2
)
󵄩󵄩󵄩󵄩
2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
) − 𝑔 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩
2

L0
2

=
󵄩󵄩󵄩󵄩𝑓 (𝑥
1
, 𝑦
1
) − 𝑓 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩
2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
) − 𝑔 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩
2

L0
2

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩
2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ𝑛 (𝑥1, 𝑦1, 𝑢) − ℎ
𝑛
(𝑥
2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩
2

𝐻

=
󵄩󵄩󵄩󵄩ℎ (𝑥
1
, 𝑦
1
, 𝑢) − ℎ (𝑥

2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩
2

𝐻

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩
2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ𝑛(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩
2

𝐻
=

󵄩󵄩󵄩󵄩ℎ(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩
2

𝐻
≤ 𝐿
2
(‖𝑥‖
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩
2

𝐻
)

(15)

for arbitrary 𝑥, 𝑦, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ 𝐻
𝑛
and 𝑢 ∈ Z. Hence, (14)

admits a unique solution𝑋𝑛(𝑡) on𝐻
𝑛
.

We introduce a time discretization scheme for (14) by
using a stochastic exponential integrator. For given𝑇 ≥ 0 and
𝜏 > 0, the time-step size Δ ∈ (0, 1) is defined by Δ := 𝜏/𝑁,

for some sufficiently large integer 𝑁 > 𝜏. For any integer
𝑘 ≥ 0, the time discretization scheme applied to (14) produces
approximations 𝑌 𝑛(𝑘Δ) ≈ 𝑋𝑛(𝑘Δ) by forming

𝑌
𝑛

((𝑘 + 1) Δ)

= 𝑒
Δ𝐴𝑛 {𝑌

𝑛

(𝑘Δ) + 𝑓
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏)) Δ

+ 𝑔
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏)) Δ𝑊
𝑘

+∫
Z

ℎ
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏) , 𝑢) Δ𝑁
𝑘
(𝑢)} ,

𝑌
𝑛

(𝜃) = 𝜋
𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(16)

where Δ𝑊
𝑘

= 𝑊((𝑘 + 1)Δ) − 𝑊(𝑘Δ) and Δ𝑁
𝑘
(𝑑𝑢) =

𝑁((0, (𝑘 + 1)Δ], 𝑑𝑢) − 𝑁((0, 𝑘Δ], 𝑑𝑢).
The continuous-time version of this scheme associated

with (14) is defined by

𝑌
𝑛
(𝑡)

= 𝑒
𝑡𝐴𝑛𝑌
𝑛
(0) + ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴𝑛𝑓

𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴𝑛𝑔

𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

∫
Z

𝑒
(𝑡−⌊𝑠⌋)𝐴𝑛ℎ

𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)

× 𝑁 (𝑑𝑠, 𝑑𝑢) ,

𝑌
𝑛
(𝜃) = 𝜋

𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(17)

where ⌊𝑡⌋ = [𝑡/Δ]Δ with [𝑡/Δ] denotes the integer of 𝑡/Δ.
From (16) and (17), we have 𝑌𝑛(𝑘Δ) = 𝑌

𝑛

(𝑘Δ) for
every 𝑘 ≥ 0. That is, the discrete-time and continuous-time
schemes coincide at the grid points.

3. Convergence Rate

In this section, we shall investigate the convergence rate of the
Euler-Maruyama method. In what follows, 𝐶 > 0 is a generic
constant whose values may change from line to line.

Lemma2. Let (H1)–(H4) hold; then there is a positive constant
𝐶 > 0which depends on𝑇, 𝜉, 𝐿

1
, 𝐿
2
, and 𝐿

3
but is independent

of Δ, such that

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

∨ sup
0≤𝑡≤𝑇

(E
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶. (18)
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Proof. Due to the fact that (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, we have

from (8) that

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ (E
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴𝑛𝜉 (0)

󵄩󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

=

4

∑
𝑖=1

𝐼
𝑖
(𝑡) .

(19)

Recall the property of the operator 𝐴 (see [18]):

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛿1𝑒
𝐴𝑡󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑡
−𝛿1 ,

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛿2 (1 − 𝑒

𝐴𝑡
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑡
𝛿2 , 𝛿

1
≥ 0, 𝛿

2
∈ [0, 1] ,

(−𝐴)
𝛼+𝛽

𝑥 = (−𝐴)
𝛼
(−𝐴)
𝛽
𝑥, 𝑥 ∈ 𝐷 ((−𝐴)

𝑟
) ,

(20)

for 𝛼, 𝛽 ∈ R, where 𝑟 = max{𝛼, 𝛽, 𝛼 + 𝛽}.
By (H1) and (H2), together with the Minkowski integral

inequality, we derive that

𝐼
2
(𝑡) ≤ ∫

𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

𝑑𝑠

≤ 𝐶∫
𝑡

0

{1 + (E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

+(E‖𝑋 (𝑠 − 𝜏)‖
2

𝐻
)
1/2

} 𝑑𝑠

≤ 𝐶 + 𝐶∫
𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

𝑑𝑠.

(21)

By (H1), (H2), and (H3) and using the Itô isometry, we have

𝐼
3
(𝑡) + 𝐼

4
(𝑡)

≤ (∫
𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝑁̃ (𝑑𝑠, 𝑑𝑢)

+ 𝜌∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫
𝑡

0

𝐿
0
(1 + E‖𝑋 (𝑠)‖

2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝑁̃ (𝑑𝑠, 𝑑𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ 𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

.

(22)

Using Hölder inequality and (H3), for the last term of (22),
we have

𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ 𝐶(E∫
𝑡

0

∫
𝑍

‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ 𝐶√𝐿
2
(∫
𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶√𝐿
2
√𝜏E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻 + 𝑝𝐶√2𝐿

2
(∫
𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(23)

Moreover, by using the Itô isometry and (H3), we obtain that

(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝑁̃ (𝑑𝑠, 𝑑𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫
𝑡

0

∫
Z

E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ √𝐿
2
(∫
𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ √𝐿
2
√𝜏E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻 + √2𝐿

2
(∫
𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(24)

Substituting (23) and (24) into (22), it follows that

𝐼
3
(𝑡) + 𝐼

4
(𝑡) ≤ 𝐶 + 𝐶E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻 + 𝐶(∫

𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(25)

Hence,

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ 𝐶 + 𝐶E
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩𝐻 + 𝐶(∫
𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(26)



Abstract and Applied Analysis 5

Applying the Gronwall inequality, we have

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ 𝐶. (27)

Using the similar argument, the second assertion of (18)
follows.

Lemma 3. Let (H1)–(H4) hold; for sufficiently small Δ,

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤ 𝐶Δ
1/2

, (28)

where 𝐶 > 0 is constant dependent on 𝑇, 𝜉, 𝐿
1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
,

while being independent of Δ.

Proof. For any 𝑡 ∈ [0, 𝑇], we have from (8) that

𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)

= 𝑒
⌊𝑡⌋𝐴

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝜉 (0)

+ ∫
⌊𝑡⌋

0

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫
𝑡

⌊𝑡⌋

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫
⌊𝑡⌋

0

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫
⌊𝑡⌋

0

∫
Z

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴

× ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫
𝑡

⌊𝑡⌋

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫
𝑡

⌊𝑡⌋

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

=

7

∑
𝑖=1

𝐽
𝑖
(𝑡) .

(29)

Since (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, it follows that

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤

7

∑
𝑖=1

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

. (30)

Recalling the fundamental inequality 1 − 𝑒−𝑦 ≤ 𝑦, 𝑦 > 0, we
get from (H1) that

󵄩󵄩󵄩󵄩󵄩
(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑥󵄩󵄩󵄩󵄩󵄩
2

𝐻

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑖=1

(𝑒
−𝜆𝑖(𝑡−⌊𝑡⌋) − 1) ⟨𝑥, 𝑒

𝑖
⟩ 𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

≤ (1 − 𝑒
−𝜆1(𝑡−⌊𝑡⌋))

2

‖𝑥‖
2

𝐻

≤ 𝜆
2

1
Δ
2
‖𝑥‖
2

𝐻
.

(31)

Therefore,

(E
󵄩󵄩󵄩󵄩𝐽1 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

= (E
󵄩󵄩󵄩󵄩󵄩
𝑒
⌊𝑡⌋𝐴

{𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1} 𝜉 (0)󵄩󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝜆
1
(E

󵄩󵄩󵄩󵄩𝜉 (0)
󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

Δ.

(32)

By (H1), (H2), and the Minkowski integral inequality, we
obtain that

3

∑
𝑖=2

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ ∫
⌊𝑡⌋

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

× (E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

𝑑𝑠

+ ∫
𝑡

⌊𝑡⌋

(E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

𝑑𝑠.

(33)

Together with (31), we arrive at
3

∑
𝑖=2

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ (𝜆
1
Δ∫
⌊𝑡⌋

0

𝑑𝑠 + Δ)𝐶 sup
0≤𝑡≤𝑇

(E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ.

(34)

Following the argument of (22), we derive that
7

∑
𝑖=4

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ (∫
⌊𝑡⌋

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1
󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E
󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩
2

L0
2

𝑑𝑠)

1/2

+ 𝐶(∫
⌊𝑡⌋

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1
󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠−𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

+(∫
𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

E
󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩
2

L0
2

𝑑𝑠)

1/2

+ 𝐶(∫
𝑡

⌊𝑡⌋

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠−𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ
1/2

.

(35)
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Substituting (32), (34), and (35) into (30), we arrive at

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ
1/2

.

(36)

Therefore, by Lemma 2, the required assertion (28) follows.

Now, we state our main result in this paper as follows.

Theorem 4. Let (H1)–(H4) hold, and

√𝐿
1
(2𝛼
−1

+ (𝜌 + 3) (2𝛼)
−1/2

) < 1. (37)

Then,

sup
0≤t≤𝑇

(E
󵄩󵄩󵄩󵄩𝑋 (𝑡) − 𝑌

𝑛
(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶 {𝜆
−1/2

𝑛
+ Δ
1/2

} , (38)

where 𝐶 > 0 is a constant dependent on 𝑇, 𝜉, 𝐿
1
, 𝐿
2
, 𝐿
3
, and

𝐿
4
, while being independent of 𝑛 and Δ.

Proof. By (8) and (17), we obtain

𝑋 (𝑡) − 𝑌
𝑛
(𝑡)

= 𝑒
𝑡𝐴

(1 − 𝜋
𝑛
) 𝜉 (0)

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑓
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑓
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑔
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))

−𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))

−𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑔
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

) 𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑠

+ ∫
𝑡

0

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)

× 𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)

−ℎ
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)

−ℎ
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋−𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏) , 𝑢) − ℎ

𝑛

× (𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫
𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

) ℎ
𝑛

× (𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

=

13

∑
𝑖=1

𝐾
𝑖
(𝑡) .

(39)

Noting that (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, we have

(E
󵄩󵄩󵄩󵄩𝑋 (𝑡) − 𝑌

𝑛
(𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤

13

∑
𝑖=1

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

. (40)

By (H1) and the nondecreasing spectrum {𝜆
𝑚
}
𝑚≥1

, it easily
follows that

E
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴

(1 − 𝜋
𝑛
) 𝜉 (0)

󵄩󵄩󵄩󵄩󵄩𝐻

= E(
∞

∑
𝑚=𝑛+1

𝑒
−2𝜆𝑚𝑡⟨𝜉 (0) , 𝑒

𝑚
⟩
2

𝐻
)

1/2

= E(
∞

∑
𝑚=𝑛+1

𝑒−2𝜆𝑚𝑡

𝜆2
𝑚

𝜆
2

𝑚
⟨𝜉 (0) , 𝑒

𝑚
⟩
2

𝐻
)

1/2

≤
1

𝜆
𝑛

E
󵄩󵄩󵄩󵄩𝐴𝜉 (0)

󵄩󵄩󵄩󵄩𝐻.

(41)
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By (H2), theMinkowski integral inequality, and Lemma 2, we
have

(E
󵄩󵄩󵄩󵄩𝐾2 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ ∫
𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) 𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

𝑑𝑠

= ∫
𝑡

0

(E
∞

∑
𝑚=𝑛+1

𝑒
−2𝜆𝑚(𝑡−𝑠)⟨𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) , 𝑒

𝑚
⟩
2

𝐻
)

1/2

𝑑𝑠

≤ ∫
𝑡

0

𝑒
−𝜆𝑛(𝑡−𝑠)(E

∞

∑
𝑚=𝑛+1

⟨𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) , 𝑒
𝑚
⟩
2

𝐻
)

1/2

𝑑𝑠

≤ 𝐶∫
𝑡

0

𝑒
−𝜆𝑛(𝑡−𝑠)

× {1 + (E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

+ (E‖𝑋 (𝑠 − 𝜏)‖
2

𝐻
)
1/2

} 𝑑𝑠

≤ 𝐶𝜆
−1

𝑛
.

(42)

Applying (H1), (H2), and Lemma 3 and combining the
Minkowski integral inequality and the Itô isometry yield
6

∑
𝑖=3

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ √𝐿
1
∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

(E (‖𝑋 (𝑠) − 𝑋 (⌊𝑠⌋)‖
2

𝐻

+‖𝑋(𝑠 − 𝜏) − 𝑋 (⌊𝑠⌋ − 𝜏)‖
2

𝐻
))
1/2

𝑑𝑠

+ √𝐿
1
∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

(E (
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋) − 𝑌

𝑛
(⌊𝑠⌋)

󵄩󵄩󵄩󵄩
2

𝐻

+
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋ − 𝜏) − 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)

󵄩󵄩󵄩󵄩
2

𝐻
))
1/2

𝑑𝑠

+ √𝐿
1
(∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

(E (‖𝑋 (𝑠) − 𝑋 (⌊𝑠⌋)‖
2

𝐻

+
󵄩󵄩󵄩󵄩𝑋 (𝑠−𝜏) − 𝑌

𝑛
(⌊𝑠⌋−𝜏)

󵄩󵄩󵄩󵄩
2

𝐻
)) 𝑑𝑠)

1/2

+ √𝐿
1
(∫
𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

(E
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋) − 𝑌

𝑛
(⌊𝑠⌋)

󵄩󵄩󵄩󵄩
2

𝐻

+
󵄩󵄩󵄩󵄩𝑋(⌊𝑠⌋ − 𝜏) − 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)

󵄩󵄩󵄩󵄩
2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶Δ
1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

× ∫
𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝑑𝑠

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

(∫
𝑡

0

𝑒
−2𝛼(𝑡−𝑠)

𝑑𝑠)

1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

∫
𝑡−𝜏

−𝜏

𝑒
−𝛼(𝑡−𝑠−𝜏)

𝑑𝑠

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

(∫
𝑡−𝜏

−𝜏

𝑒
−2𝛼(𝑡−𝑠−𝜏)

𝑑𝑠)

1/2

≤ 𝐶Δ
1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

× (2𝛼
−1

+ 2(2𝛼)
−1/2

) .

(43)

By the Itô isometry and a similar argument to that of (42), we
deduce that

(E
󵄩󵄩󵄩󵄩𝐾7 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ (∫
𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) 𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

≤ 𝐶(∫
𝑡

0

𝑒
−2𝜆𝑛(𝑡−𝑠)E

󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩
2

L0
2

𝑑𝑠)

1/2

≤ 𝐶𝜆
−1/2

𝑛
.

(44)

Moreover, by (31), (H2), and Lemma 2 and combining the
Minkowski integral inequality and the Itô isometry, we have

9

∑
𝑖=8

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ ∫
𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)
󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑓𝑛(𝑌

𝑛
(⌊𝑠⌋), 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

𝑑𝑠

+ (∫
𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)
󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
𝑑𝑠)

1/2

≤ 𝐶Δ∫
𝑡

0

(E
󵄩󵄩󵄩󵄩𝑓𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

𝑑𝑠

+ 𝐶Δ(∫
𝑡

0

E
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩
2

L0
2

𝑑𝑠)

1/2

≤ 𝐶Δ.

(45)

By (31) and the Itô isometry, we obtain that

(E
󵄩󵄩󵄩󵄩𝐾10 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝑁̃ (𝑑𝑠, 𝑑𝑢)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ 𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫
𝑡

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

E

× ‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋(𝑑𝑢)𝑑𝑠)

1/2
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+ 𝜌(∫
𝑡

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋(𝑑𝑢)𝑑𝑠)

1/2

≤ 𝐶(∫
𝑡

0

𝑒
−2𝜆𝑛(𝑡−𝑠) (E‖𝑋 (𝑠)‖

2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶𝜆
−1/2

𝑛
.

(46)

Carrying out the similar arguments to those of (43) and (45),
we derive that

(E
󵄩󵄩󵄩󵄩𝐾11 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

+ (E
󵄩󵄩󵄩󵄩𝐾12 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶Δ
1/2

+ (2𝛼)
−1/2

(𝜌 + 1)

× √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

,

(E
󵄩󵄩󵄩󵄩𝐾13 (𝑡)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶Δ.

(47)

As a result, putting (41)–(47) into (40) gives that

sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

≤ 𝐶𝜆
−1/2

𝑛
+ 𝐶Δ
1/2

+ √𝐿
1
(2𝛼
−1

+ (𝜌 + 3) (2𝛼)
−1/2

)

× sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩
2

𝐻
)
1/2

,

(48)

and therefore the desired assertion follows.

Remark 5. For finite-dimensional Euler-Maruyama method,
the condition (37) can be deleted by the Gronwall inequality
[16, 17].
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