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Abstract. We prove the existence of nontrivial critical points with non-
trivial critical groups for functionals with a local linking at 0. Applications
to elliptic boundary value problems are given.

1. Introduction

Let F be a real C1 function defined on a Banach space X. We say that
F has a local linking near the origin if X has a direct sum decomposition
X = X1 ⊕X2 with dimX1 < ∞, F (0) = 0, and, for some r > 0,




F (u) ≤ 0 for u ∈ X1, ‖u‖ ≤ r,

F (u) > 0 for u ∈ X2, 0 < ‖u‖ ≤ r.
(1)

Then it is clear that 0 is a critical point of F .
The notion of local linking was introduced by Li and Liu [7], [8], who

proved the existence of nontrivial critical points under various assumptions
on the behavior of F at infinity. These results were recently generalized by
Brézis and Nirenberg [3], Li and Willem [9], and several other authors.

In infinite dimensional Morse theory (see Chang [5] or Mawhin and
Willem [11]), the local behavior of F near an isolated critical point u0,
F (u0) = c, is described by the sequence of critical groups

Cq(F, u0) = Hq(Fc ∩ U, (Fc ∩ U)\{u0}) q ∈ Z

where Fc is the sublevel set {u ∈ X : F (u) ≤ c}, U is a neighborhood of u0
such that u0 is the only critical point of F in Fc ∩U , and H∗(·, ·) denote the
singular relative homology groups.
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It was proved in Liu [10] that if F has a local linking near the origin,
dimX1 = j, and 0 is an isolated critical point of F , then Cj(F, 0) �= 0.
In the present paper we use this fact to obtain a nontrivial critical point u
with either Cj+1(F, u) �= 0 or Cj−1(F, u) �= 0. When X is a Hilbert space
and F is C2, this yields Morse index estimates for u via the Shifting theorem.

When X is a Hilbert space and dF is Lipschitz in a neighborhood of the
origin, we extend the result of Liu [10] to the case where F satisfies the
“relaxed” local linking condition


F (u) ≤ 0 for u ∈ X1, ‖u‖ ≤ r,

F (u) ≥ 0 for u ∈ X2, ‖u‖ ≤ r
(2)

(see Brézis and Nirenberg [3] and Li and Willem [9]), and thus obtain a
nontrivial critical point with a nontrivial critical group in this case also.

We apply our abstract result to elliptic boundary value problems, includ-
ing an equation asymptotically linear at −∞ and superlinear at +∞, and
prove new multiplicity results.

2. Abstract Result

Throughout this section we assume that F satisfies the Palais-Smale com-
pactness condition (PS) and has only isolated critical values, with each crit-
ical value corresponding to a finite number of critical points.

Theorem 2.1. Suppose that there is a critical point u0 of F , F (u0) = c,
with Cj(F, u0) �= 0 for some j ≥ 0 and regular values a, b of F , a < c < b,
such that Hj(Fb, Fa) = 0. Then F has a critical point u with either

c < F (u) < b and Cj+1(F, u) �= 0, or

a < F (u) < c and Cj−1(F, u) �= 0.

Proof of Theorem 2.1 makes use of the following topological lemma:

Lemma 2.2. If B′ ⊂ B ⊂ A ⊂ A′ are topological spaces such that
Hj(A,B) �= 0 and Hj(A′, B′) = 0, then either

Hj+1(A′, A) �= 0 or Hj−1(B,B′) �= 0.

Proof. Suppose that Hj+1(A′, A) = 0. Since Hj(A′, B′) is also trivial, it fol-
lows from the following portion of the exact sequence of the triple (A′, A,B′)
that Hj(A,B′) = 0:

Hj+1(A′, A) Hj(A,B′)✲∂∗ Hj(A′, B′)✲i∗

Since Hj(A,B) �= 0, now it follows from the following portion of the exact
sequence of the triple (A,B,B′) that Hj−1(B,B′) �= 0:

Hj(A,B′) Hj(A,B)✲j∗ Hj−1(B,B′)✲∂∗ ✷
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Proof of Theorem 2.1. Take ε, 0 < ε < min {c− a, b− c} such that c is
the only critical value of F in [c − ε, c + ε]. Then, since Cj(F, u0) �= 0, it
follows from Chapter I, Theorem 4.2 of Chang [5] that Hj(Fc+ε, Fc−ε) �=
0. Since Hj(Fb, Fa) = 0, by Lemma 2.2, either Hj+1(Fb, Fc+ε) �= 0 or
Hj−1(Fc−ε, Fa) �= 0, and the conclusion follows from Chapter I, Theorem
4.3 and Corollary 4.1 of Chang [5].

As mentioned before, if F has a local linking near the origin, dimX1 =
j, then Cj(F, 0) �= 0 (see Liu [10]), and hence the following corollary is
immediate from Theorem 2.1:

Corollary 2.3. Suppose F has a local linking near the origin, dimX1 = j.
Assume also that there are regular values a, b of F , a < 0 < b, such that
Hj(Fb, Fa) = 0. Then F has a critical point u with either

0 < F (u) < b and Cj+1(F, u) �= 0, or

a < F (u) < 0 and Cj−1(F, u) �= 0.

If X is a Hilbert space, F is C2, and u is a critical point of F , we denote by
m(u) the Morse index of u and by m∗(u) = m(u)+dimker d2F (u) the large
Morse index of u. We recall that if u is nondegenerate and Cq(F, u) �= 0,
then m(u) = q (see Chapter I, Theorem 4.1 of Chang [5]). Let us also recall
that it follows from the Shifting theorem (Chapter I, Theorem 5.4 of Chang
[5]) that if u is degenerate, 0 is an isolated point of the spectrum of d2F (u),
and Cq(F, u) �= 0, then m(u) ≤ q ≤ m∗(u). Hence we have the following
corollary:

Corollary 2.4. Let X be a Hilbert space and F be C2 in Theorem 2.1.
Assume that for every degenerate critical point u of F , 0 is an isolated point
of the spectrum of d2F (u). Then F has a critical point u with either

c < F (u) < b and m(u) ≤ j + 1 ≤ m∗(u), or

a < F (u) < c and m(u) ≤ j − 1 ≤ m∗(u).

Remark 2.5. In particular, Corollary 2.4 yields a critical point u �= u0 with
m(u) ≤ j + 1 and j − 1 ≤ m∗(u). Benci and Fortunato [2] have proved this
fact for the special case where u0 is a nondegenerate critical point with Morse
index j, but without assuming that the critical points of F are isolated. Their
proof is based on a generalized Morse theory due to Benci and Giannoni [1].
However, Corollary 2.4 says, in addition, that u is at a level different from
F (u0).

If X is a Hilbert space and dF is Lipschitz in a neighborhood of the
origin, we can relax the local linking condition as in (2). This follows from
the following extension of the result of Liu [10] (see also Theorem 5.6 of
Kryszewski and Szulkin [6]):

Theorem 2.6. Let X be a Hilbert space and dF be Lipschitz in a neighbor-
hood of the origin. Suppose that F satisfies the local linking condition (2),
dimX1 = j. Then Cj(F, 0) �= 0.
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Our proof of Theorem 2.6 uses the following “deformation” lemma:

Lemma 2.7. Under the assumptions of Theorem 2.6 there exist a closed
ball B centered at the origin and a homeomorphism h of X onto X such
that

1. 0 is the only critical point of F in h(B),
2. h|B∩X1 = idB∩X1,
3. F (u) > 0 for u ∈ h(B ∩X2\{0}).

Proof. Take open balls B′, B′′ centered at the origin, with B′ ⊂ B′′, such
that 0 is the only critical point of F in B′ and dF is Lipschitz in B′′, and let
B ⊂ B′ be a closed ball centered at the origin with radius ≤ r (in (2)). Since
B and (B′)c are disjoint closed sets there is a locally Lipschitz nonnegative
function g ≤ 1 satisfying

g =
{

1 on B
0 outside B′.

Consider the vector field

V (u) = g(u) ‖Pu‖ dF (u)

where P is the orthogonal projection onto X2. Clearly V is locally Lipshitz
and bounded on X. Consider the flow η(t) = η(t, u) defined by

dη

dt
= V (η), η|t=0 = u.

Clearly, η is defined for t ∈ [0, 1]. Let h = η(1, ·). Since h|(B′)c = id(B′)c and
h is one-to-one, h(B) ⊂ B′ and 1 follows. For u ∈ B ∩X2\{0},

F (h(u)) = F (u) +
∫ 1

0
g(η(t)) ‖Pη(t)‖ ‖dF (η(t))‖2 dt > 0

since F (u) ≥ 0 and g(u) ‖Pu‖ ‖dF (u)‖2 > 0.

Proof of Theorem 2.6. By 1 of Lemma 2.7, Cj(F, 0) = Hj(F0 ∩ h(B), F0 ∩
h(B)\{0}).

By the local linking condition (2) and 2 and 3 of Lemma 2.7, ∂B ∩X1 ⊂
F0∩h(B)\{0} ⊂ h(B\X2) and B∩X1 ⊂ F0∩h(B). Since h|∂B∩X1 = id∂B∩X1 ,
the inclusion ∂B ∩ X1 ↪→ h(B\X2) can also be written as the composition

of the inclusion ∂B ∩X1
i′
↪→ B\X2 and the restriction of h to B\X2. Hence

we have the following commutative diagram induced by inclusions and h:

Hj−1(h(B\X2)) Hj−1(F0 ∩ h(B)\{0})✛

Hj−1(B\X2) Hj−1(∂B ∩X1)✛ i′∗

❄
h∗

❄
Hj−1(F0 ∩ h(B))✲

i∗

Hj−1(B ∩X1)✲

❄
i′′∗

❄

Since ∂B ∩ X1 is a strong deformation retract of B\X2 and h is a home-
omorphism, i′∗ and h∗ are isomorphisms and hence i′′∗ is a monomorphism.
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Since rankHj−1(B ∩ X1) < rankHj−1(∂B ∩ X1), then it follows that i∗ is
not a monomorphism.

Now it follows from the following portion of the exact sequence of the pair
(F0∩h(B), F0∩h(B)\{0}) that Cj(F, 0) = Hj(F0∩h(B), F0∩h(B)\{0}) �= 0:

Cj(F, 0) Hj−1(F0 ∩ h(B)\{0})✲∂∗ Hj−1(F0 ∩ h(B))✲i∗

3. Elliptic Boundary Value Problems

Consider the problem{ −∆u = g(u) in Ω,
u = 0 on ∂Ω(3)

where Ω is a bounded domain in R
� with smooth boundary ∂Ω and g ∈

C1(R,R) satisfies

(g1): |g(u)| ≤ C (1 + |u|p−1) with 2 < p < 2n
n−2 , for some C > 0,

(g2): g(0) = 0 = g(a) for some a > 0,
(g3): there are constants µ > 2 and A > 0 such that

0 < µG(u) ≤ u g(u) for |u| ≥ A,

where G(u) :=
∫ u
0 g(t) dt.

Let λ = g ′(0) and let 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · be the eigenvalues of −∆
with Dirichlet boundary condition.

Theorem 3.1. Assume that g satisfies (g1) − (g3) and one of the following
conditions:

1. λj < λ < λj+1,
2. λj = λ < λj+1 and, for some δ > 0,

G(u) ≥ 1
2
λu2 for |u| ≤ δ,

3. λj < λ = λj+1 and, for some δ > 0,

G(u) ≤ 1
2
λu2 for |u| ≤ δ.

If j ≥ 3, problem (3) has at least four nontrivial solutions.

Proof. Solutions of (3) are the critical points of the C2 functional

F (u) =
∫
Ω

1
2

|∇u|2 −G(u)

defined on X = H1
0 (Ω). It is well known that F satisfies (PS).

By a standard argument involving a cut-off technique and the strong max-
imum principle, F has a local minimizer u0 with 0 < u0 < a,

rankCq(F, u0) = δq0.
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Since limt→∞ F (± tφ1) = −∞, where φ1 > 0 is the first Dirichlet eigenfunc-
tion of −∆, then F also has two mountain pass points u±

1 with u−
1 < u0 < u+1 ,

rankCq(F, u±
1 ) = δq1

(see the proof of Theorem B in Chang, Li, and Liu [4]).
Let X1 be the j-dimensional space spanned by the eigenfunctions cor-

responding to λ1, · · · , λj and let X2 be its orthogonal complement in X.
Then F has a local linking near the origin with respect to the decomposition
X = X1 ⊕X2 (see the proof of Theorem 4 in Li and Willem [9]) and hence

Cj(F, 0) �= 0.

Also, for α < 0 and |α| sufficiently large,

Hq(X,Fα) = 0 ∀q ∈ Z

(see Lemma 3.2 of Wang [13]). Therefore, by Theorem 2.1, F has a nontrivial
critical point uj with either

Cj+1(F, uj) �= 0 or Cj−1(F, uj) �= 0.

Since j ≥ 3, a comparison of the critical groups shows that u0, u±
1 , uj are

distinct nontrivial critical points of F .

Next we consider the following asymmetric problem of the Ambrosetti-
Prodi type { −∆u+ a(x)u = g(x, u) in Ω,

u = 0 on ∂Ω(4)

where a ∈ L∞(Ω) and g ∈ C1(Ω × R,R) satisfies
(g1): |g(x, u)| ≤ C (1 + |u|p−1) with 2 < p < 2n

n−2 , for some C > 0,
(g2): g(x, 0) = gu(x, 0) = 0,
(g3): limu→−∞

g(x,u)
u < λ1, uniformly in Ω,

(g4): limu→−∞
(
G(x, u) − 1

2 u g(x, u)
)
< +∞, uniformly in Ω,

(g5): there are µ > 2 and A > 0 such that

0 < µG(x, u) ≤ u g(x, u) for u ≥ A,

where G(x, u) :=
∫ u
0 g(x, t) dt.

Here λ1 < λ2 ≤ λ3 ≤ · · · denote the eigenvalues of −∆ + a with Dirichlet
boundary condition.

Theorem 3.2. Assume that g satisfies (g1) − (g5) and one of the following
conditions:

1. λj < 0 < λj+1,
2. λj = 0 < λj+1 and, for some δ > 0,

G(x, u) ≥ 0 for |u| ≤ δ,

3. λj < 0 = λj+1 and, for some δ > 0,

G(x, u) ≤ 0 for |u| ≤ δ.

If j ≥ 3, problem (4) has at least three nontrivial solutions.
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We seek critical points of

F (u) =
∫
Ω

1
2

(
|∇u|2 + a(x)u2

)
−G(x, u)

on X = H1
0 (Ω).

Lemma 3.3. If g satisfies (g1), (g3) − (g5), then, for α < 0 and |α| suffi-
ciently large,

Hq(X,Fα) = 0 ∀q ∈ Z.

Proof. Let X̃ = C1
0 (Ω) and F̃ = F |X̃ . By elliptic regularity, F and F̃ have

the same critical set. If F does not have any critical values in (α, α′), then
Fα (respectively F̃α) is a strong deformation retract of {u ∈ X : F (u) < α′}
(respectively {u ∈ X̃ : F̃ (u) < α′}) (see Chapter I, Theorem 3.2 and Chapter
III, Theorem 1.1 of Chang [5]). Since X̃ is dense in X, by a theorem of
Palais [12],

Hq(X, {F < α′}) ∼= Hq(X̃, {F̃ < α′}).
Therefore it suffices to prove that, for α < 0 and |α| large,

Hq(X̃, F̃α) = 0 ∀q ∈ Z.

Let S∞ =
{
u ∈ X̃ : ‖u‖X = 1

}
be the unit sphere in X̃ and let S∞

+ =
{u ∈ S∞ : u > 0 somewhere}, which is a relatively open subset of S∞, con-
tractible to {φ1} via (t, u) �−→ (1−t)u+t φ1

‖(1−t)u+t φ1‖ t ∈ [0, 1]. We shall show that

F̃α is homotopy equivalent to S∞
+ for α < 0 and |α| large.

By (g3) and (g5),

−C (1 + u2) ≤ G(x, u) ≤ 1
2
λ1 u

2 + C for u ≤ A,

G(x, u) ≥ C uµ for u ≥ A,

where C denotes (possibly different) positive constants. Thus for u ∈ S∞
+ ,

F̃ (tu) =
1
2

(
1 +

∫
Ω
au2

)
t2 −

∫
Ω
G(x, tu)

≤ C

(
1 + t2 − tµ

∫
tu≥A

uµ
)

and it follows that
lim
t→∞ F̃ (tu) = −∞.

On the other hand, in N =
{
u ∈ X̃ : u ≤ 0 everywhere

}
, the nonpositive

cone in X̃,

F̃ (u) ≥ 1
2

∫
Ω

(
|∇u|2 + a(x)u2 − λ1 u

2
)

− C ≥ −C.
By (g4) and (g5),

γ := sup
Ω×R

(
G(x, u) − 1

2
u g(x, u)

)
< +∞.
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Thus for u ∈ S∞
+ and t > 0,

d

dt
F̃ (tu) =

(
1 +

∫
Ω
au2

)
t−

∫
Ω
u g(x, tu)

=
2
t

{
F̃ (tu) +

∫
Ω
G(x, tu) − 1

2
tu g(x, tu)

}

≤ 2
t

{
F̃ (tu) + γ |Ω|

}
< 0

if F̃ (tu) < −γ |Ω|.
Fix α < min

{
infN F̃ , −γ |Ω|, inf‖u‖<1 F̃

}
. Then it follows that for each

u ∈ S∞
+ there exists a unique T (u) ≥ 1 such that

F̃ (tu)




> α for 0 ≤ t < T (u)
= α for t = T (u)
< α for t > T (u),

and
F̃α =

{
tu : u ∈ S∞

+ , t ≥ T (u)
}
.

By the implicit function theorem, T ∈ C(S∞
+ , [1,∞)). Hence

η(s, tu) =
{

(1 − s) tu+ s T (u)u if 1 ≤ t < T (u)
tu if t ≥ T (u)

defines a strong deformation retraction of
{
tu : u ∈ S∞

+ , t ≥ 1
} � S∞

+ onto
F̃α.

Proof of Theorem 3.2. Since F (− tφ1) < 0 for t > 0 sufficiently small, by
standard arguments, F has a local minimizer u0 with u0 < 0,

rankCq(F, u0) = δq0.

Since limt→∞ F (tφ1) = −∞, then F also has a mountain pass point u1,

rankCq(F, u1) = δq1.

As in the proof of Theorem 3.1,

Cj(F, 0) �= 0,

so, using Lemma 3.3, F also has a nontrivial critical point uj with either

Cj+1(F, uj) �= 0 or Cj−1(F, uj) �= 0.

Since j ≥ 3, u0, u1, uj are distinct nontrivial solutions of (4).

Finally we give an application of Theorem 2.1 to the problem{ −∆u+ a(x)u = λ g(u) in Ω,
u = 0 on ∂Ω(5)

where a ∈ L∞(Ω) and g ∈ C1(R,R) satisfies

(g1): lim|u|→∞
g(u)

u < 0,
(g2): g(0) = g ′(0) = 0.
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Theorem 3.4. Assume that g satisfies (g1), (g2), and one of the following
conditions:

1. λj < 0 < λj+1,
2. λj = 0 < λj+1 and, for some δ > 0,

G(u) ≥ 0 for |u| ≤ δ,

3. λj < 0 = λj+1 and, for some δ > 0,

G(u) ≤ 0 for |u| ≤ δ.

If j ≥ 3, problem (5) has at least four nontrivial solutions for every λ suffi-
ciently large.

Example 3.5. g(u) = ± |u|u− u3

Remark 3.6. See Brézis and Nirenberg [3] and Li and Willem [9] for at
least two nontrivial solutions.

Proof of Theorem 3.4. Since, for λ sufficiently large, there is an a priori
estimate for the solutions of (5) by the maximum principle, we may also
assume that g(u) = bu with b < 0, for |u| large. Then the functional

F (u) =
∫
Ω

1
2

(
|∇u|2 + au2

)
− λG(u)

is well defined on X = H1
0 (Ω), and bounded below and satisfies (PS) for λ

large.
Since F (± tφ1) < 0 for t > 0 sufficiently small, F has two local minimizers

u±
0 with u−

0 < 0 < u+0 ,
rankCq(F, u±

0 ) = δq0.

Then F also has a mountain pass point u1,

rankCq(F, u1) = δq1.

As before,
Cj(F, 0) �= 0,

and, for α < inf F ,
rankHq(X,Fα) = δq0,

so F has a (fourth) nontrivial critical point uj with either

Cj+1(F, uj) �= 0 or Cj−1(F, uj) �= 0.
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3. H. Brézis and L. Nirenberg, Remarks on finding critical points. Comm. Pure Appl.
Math. XLIV (1991), 939–963.

4. K. C. Chang, S. J. Li, and J. Liu, Remarks on multiple solutions for asymptotically
linear elliptic boundary value problems. Topol. Methods Nonlinear Anal. 3 (1994),
43–58.



446 K. Perera

5. K.-C. Chang, Infinite-dimensional Morse theory and multiple solution problems,
Progress in Nonlinear Differential Equations and their Applications, Vol. 6, Birkhäuser
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