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The aim of this paper is to show an application of the recently introduced B-bounded
semigroups in the theory of implicit and degenerate evolution equations. The most
interesting feature of this approach is its applicability to problems with noncloseable
operators.

1. Introduction

Consider the Cauchy problem for the implicit evolution equation

d

dt
(Ku)= Lu, lim

t→0+(Ku)(t)= ◦
u, (1.1)

where K : Z → X, L : Z → X, Z,X are, say, Banach spaces, and K,L are linear
operators. There is a number of approaches to solving such problems; for example,
[11, 12], similar in spirit the results of [15, 16, 17, 18] where an interesting notion of
empathy is introduced, or [20] where a suitable change of space method is used. In
this paper, we aim neither at a comprehensive treatment of the problem (1.1), nor at an
exhaustive comparison of various methods employed to solve it, but we rather describe
how a new notion of B-bounded semigroups, introduced in [8, 10] and investigated in
[3, 4], can be used in this field.

One of the “natural” ways of approaching (1.1) would be to factor out K and,
provided it is invertible, to consider a standard Cauchy problem with the operator
K−1L on the right-hand side. In some cases, however, the operator K is not closeable
and therefore there is no way the “time derivative” or the limit at t = 0+ can commute
with K . Thus, it is reasonable to study (1.1) as it stands. In [18, 19] this problem is
treated by introducing a pair of evolution families, called an empathy. As we will see, the
theory of B-bounded semigroups provides another convenient way of performing this
“impossible” commutations by passing to a specially constructed space related to K .
In this paper, a similar approach to that of [20] is used but some adopted assumptions
on K are less restrictive.
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It is worthwhile to note that the method of B-bounded semigroups does not require
X to be a Banach space (in fact X is not required to have any structure but linear) and
consequently the operators K and L are not assumed to have any standard topological
properties when considered separately; we require, however, their good behaviour in
the abstract extrapolation space XB introduced in [4] or, equivalently, a good behaviour
of the operator K−1L (or its suitable realization) in Z. The idea is similar to that of
[7, 14], where the authors also seek a modification of the original space in which the
given operators are, for example, closeable. Our method on one hand is less general,
as the modified space is defined in a prescribed way by the operators appearing in
the problem, but on the other hand this space may be much less restrictive than that
stipulated in the work cited.

As we mentioned before, we do not give a survey of all available methods for solving
(1.1); instead we demonstrate links between B-bounded semigroups and the empathy
theory which is also focused on solving problems with possibly noncloseable K , and
with the method employed by Showalter in [20], which seems to be a particular case
of the B-bounded semigroup method.

To keep the exposition within a reasonable length we focus on linear operators with
K invertible. A generalization to multivalued and nonlinear cases can be done along the
lines of, for example, [11, 12, 15, 20] with only minor difficulties (see also Remark 3.8).
We intend to pursue this topic provided interesting applications arise.

It is also worthwhile to note that despite superficial similarities of B-bounded semi-
groups and C-existence families, these two notions coincide only for a very restricted
class of operators. This question is addressed in detail in [5].

2. B-bounded semigroups revisited

We start with recalling basic facts from the theory of B-bounded semigroups and give
generalizations relevant to the theory of implicit evolution equations.

We consider the standard abstract Cauchy problem in a Banach space X:

du

dt
= Au, lim

t→0+u(t)= ◦
u. (2.1)

Very often the existence of the semigroup (exp(tA))t≥0 describing the evolution of
the system is established in a nonconstructive way. This is especially the case when
the positivity methods are employed (cf. [1]). Then very little quantitative information
on the evolution is available. On the other hand, there may exist an operator B such
that t → BetA can be calculated constructively yielding some information about the
evolution. An example of this type, pertaining to the transport equation with multiplying
boundary conditions, was analysed in [10] and has prompted one of the authors to define
a class of evolution families which behave well if looked at through the “lenses” of
another operator, and which can be thought of as generalizations of {BetA}t≥0. Such
families, called B-bounded semigroups, have been introduced in [8], and analysed and
applied to various problems in a few papers [3, 4, 6, 9].

The definition of B-quasi bounded semigroups as introduced in [9] (with some
modifications due to the author of this paper) reads as follows.
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Definition 2.1. Let (A,D(A)) be a linear operator in a Banach space X and (B,D(B))

be another linear operator from X to another Banach space Z with D(A)⊂D(B), and
let for some ω ∈ R the resolvent set of A satisfies

ρ(A)⊃]ω,∞[. (2.2)

A one-parameter family of operators (Y (t))t≥0 from X to Z, which satisfies

(1) D(Y(t))=:�⊇D(B), and for any t ≥ 0 and f ∈D(B)

‖Y (t)f ‖Z ≤M exp(ωt)‖Bf ‖Z, (2.3)

(2) the function t → Y (t)f ∈ C([0,∞[,Z) for any f ∈�,
(3) for any f ∈�0 := {f ∈D(A)∩D(B);Af ∈�} ⊂D(A)∩D(B)

Y (t)f = Bf +
∫ t

0
Y (s)Af ds, t ≥ 0 (2.4)

is called a B-quasi bounded semigroup generated by A.

To shorten notation, if A generates a B-bounded semigroup satisfying the above
conditions, then we write A ∈ B − �(M,ω,X,Z). We also shorten the name saying
that the family (Y (t))t≥0 defined in Definition 2.1 is a B-bounded semigroup generated
by A. We also use the standard notation A ∈ �(M,ω,X) to express the fact that A is
the generator of a C0-semigroup in X with the Hille-Yosida constants M and ω.

Remark 2.2. It follows that the assumptions [3]: D(A) ⊂ D(B) and (2.2) can be re-
placed by a single assumption that for λ > ω the operator

(λI −A) :DB(A)−→D(B), (2.5)

where

DB(A)= {
x ∈D(A)∩D(B); Ax ∈D(B)

}
(2.6)

is bijective. Note that this requirement is purely algebraic.

We recall here the main results of [4] together with some recent generalizations due
to [3].

The main role in the considerations of [4] is played by the space XB which is the
completion of the quotient space D(B)/N(B) with respect to the seminorm ‖ · ‖B =
‖B · ‖Z . It is known that then D(B)/N(B) is isometrically isomorphic to a dense
subspace of XB , say, �. The canonical injection of X into XB (and onto �) is denoted
by p. In a standard way B extends by density to an isometry B :XB → Z.

An important observation is that if A generates a B-bounded semigroup, then A

preserves cosets ofD(B)/N(B) and therefore it can be defined to act from pDB(A)⊂ �
into �. We denote by AB the part of A in D(B), that is, AB = A|DB(A). It can be also
proved [4] that if A ∈ B−�(M,ω,X,Z), then the shift of A to � is closeable in XB ;
we denote its closure by A.

To simplify the notation we use the same notation for the operators A and B defined
on � and their shifts which is possible by [4]; with this convention the injection p
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becomes the identity (or more precisely projection) and for any operator C defined in
XB and x ∈D(B), the symbol Cx is to be understood as Cpx, if the latter is defined.

We introduce the subspace ZB = R(B) (the closure of the range of B in Z). The
main result of [4, Theorem 4.1], reads as follows.

Theorem 2.3. IfA∈B−�(M,ω,X,Z) andB[DB(A)]Z= ZB , thenA ∈�(M,ω,XB).
Conversely, if there is � ⊃ A such that � ∈ �(M,ω,XB), then � = A and A ∈
B−�(M,ω,X,Z).

The B-bounded semigroup (Y (t))t≥0 for x ∈D(B) is given by

Y (t)x = exp
(
tBAB−1)Bx = Bexp(tA)x. (2.7)

The assumption that B[DB(A)] is dense in ZB can be discarded if Z (and conse-
quently ZB ) are reflexive spaces (see [4, Corollary 4.1]). Recently Arlotti [3] proved
that if the B-bounded semigroup satisfies the additional condition

∀x ∈D(B), Y (0)x = Bx, (2.8)

then B[DB(A)] is dense in ZB (or equivalently,DB(A) is dense in XB ). Note that (2.4)
gives (2.8) only for x ∈�0 that, in most cases, reduces to DB(A).

It is easy to see that the converse is also true. Therefore, if (2.8) holds, then the
density assumption in Theorem 2.3 can be omitted.

Since the space XB is in many cases rather difficult to handle, Theorem 2.3 is most
often used in the following version (see [4, Theorem 4.3] and [3, Theorem 2.1]).

Theorem 2.4. Let the operators A and B satisfy the conditions of Definition 2.1. Then
A is the generator of a B-quasi bounded semigroup satisfying (2.8) if and only if the
following conditions hold:

(1) B[DB(A)] is dense in ZB ,
(2) there exist M > 0 and ω ∈ R such that for any x ∈D(B), λ > ω and n ∈ N:

∥∥B(λI −A)−nx
∥∥
Z

≤ M

(λ−ω)n
‖Bx‖Z. (2.9)

If we do not require (Y (t))t≥0 to satisfy (2.8), then condition (1) is sufficient but not
necessary.

The main point in the proof of Theorem 2.4 is the observation that (2.9) can be
extended to hold on the entire XB . This allows a useful corollary.

Corollary 2.5. Let the operators A and B satisfy the conditions of Definition 2.1 and
let also assumptions (1) and (2) of Theorem 2.4 be satisfied.

(1) If the estimate (2.9) is satisfied for n= 1 withM = 1 and ω = 0, thenA generates
a semigroup of contractions in XB and consequently A ∈ B−�(1,0,X,Z).

(2) If the estimate

∥∥B(λI −A)−1x
∥∥
Z

≤ M

|λ−ω|‖Bx‖Z (2.10)
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holds for λ ∈ Sθ = {λ ∈ C; |Argλ| ≤ π/2+ θ, θ > 0}, then A generates an analytic
semigroup in XB and consequently A ∈ B−�(M ′,ω,X,Z) for some constant M ′.

2.1. Further improvement of the generation theorem. Note that it is not necessary
for A to generate a semigroup in X. Thus, the existence of a B-bounded semigroup is
no longer related to the existence of (exp(tA))t≥0, as was the case in the motivating
example of [8]. As mentioned before, the assumption that [ω,∞[⊆ ρ(A) for some
ω ∈ R was replaced by the requirement that (λ−A) : DB(A) → D(B) is bijective. It
follows that this assumption can be relaxed even further. A detailed discussion of this
topic together with the proofs can be found in [5]. Here we sketch the main results.

Our aim is to replace assumption (2.2) by a weaker one which would require only
the bijectivity of a suitable extension of A. In fact, in the proof of Theorem 2.3 the
assumption (2.2) is used to show that [ω,∞[⊂ ρ(A). Thus, what we really need is the
Hille-Yosida estimate valid on some dense subspace X of XB . Moreover, as we are
using the pseudo-resolvent identity, we must have that Dλ = (λI −A)−1X ⊂ X for
λ > ω and this yields that Dλ must be independent of λ [5]. Finally, as our starting
point are X and the operators defined in it, the space X must be accessible from X in
the sense of the operator closure in XB . All these indicate that we can free ourselves
from any topological structure of X.

Therefore we adopt the following new assumptions on A and X.
(2.1′) The spaceX is a linear space and the operatorAB is closeable inXB . Denoting

A = Ā
XB

B , we assume further that there exist subspaces X satisfying D(B)⊆ X ⊆XB ,
and DB(A)⊂D ⊂ X∩D(A) such that (λ−A|D) :D → X is bijective for all λ > ω.

We have then the following theorem [5].

Theorem 2.6. Let the operators A and B satisfy the conditions of Definition 2.1 with
assumption (2.2) replaced by assumption (2.1′). Then A ∈ B−�(M,ω,X,Z) and (2.8)
holds if and only if the following conditions are satisfied:

(1) B(D) is dense in ZB ,
(2) there exist M > 0 and ω ∈ R such that for any y ∈ X, λ > ω, and n ∈ N:

∥∥B
(
λI −A|D

)−n
y
∥∥
Z

≤ M

(λ−ω)n
‖By‖Z. (2.11)

If we do not assume (2.8), then assumption (1) is sufficient but not necessary. In both
cases the B-bounded semigroup is given again by (2.7).

Example 2.7. Consider X = L2(R,e
x2dx), Au = ∂xu on the maximal domain, and

(Bu)(x) = e−x2/2u(x). Clearly, B : X → X is a continuous operator. Moreover,
‖Bu‖X = ‖u‖L2(R) and since C∞

0 (R) ⊂ X, we can identify XB with L2(R). We con-
sider the closure A of A, that is, we take a sequence (un)n∈N of elements of D(A)

such that un → u and ∂xun → g as n→ ∞ in L2(R). However, this is the same as the
closure of D(A) in W 1

2 (R), and as C∞
0 (R) ⊂ D(A) is dense in W 1

2 (R), we obtain that
Au = ∂xu for u ∈ W 1

2 (R). Thus, A generates a semigroup of contractions in XB and

therefore (Y (t)u)(x)= e−x2/2u(t+x) satisfies conditions (1)–(3) of Definition 2.1. By
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standard argument (see also [5]) one can prove however that, λI −A : D(A) → X is
not bijective for any λ, hence Definition 2.1 is not applicable.

2.2. Special case. It is of interest to determine conditions under which XB is not
an abstract space but can be identified with a subspace of X. We have the following
theorem.

Theorem 2.8. Let X,Z be Banach spaces and B : X → Z be an injective operator.
The following conditions are equivalent:

(i) XB has the following properties:
(i′) each coset x̃ ∈ XB contains a sequence (xn)n∈N converging in the norm of

X to some x ∈X, and x is the limit of any other X-Cauchy sequence in x̃,
(i′′) if (xn)n∈N ∈ x̃, (yn)n∈N satisfy ‖xn−yn‖X → 0 as n→ ∞ and (yn)n∈N ∈ ỹ

for some ỹ ∈XB , then x̃ = ỹ,
(ii) the operator B is closeable and B−1 is bounded,
(iii) there is an isometric isomorphism T : XB → X′

B ↪→ X which satisfies
T |D(B) = Id.

Proof. (i)⇔(ii). Since for each x̃ ∈ XB , there is exactly one representative (xn)n∈N

which converges in X to, say, x, the formula

T x̃ = T
[(
xn

)
n∈N

] = lim
n→∞xn = x (2.12)

defines an operator T : XB → X. Moreover, as D(B) � x̃ = [(x,x, . . .)], we get
T |D(B) = Id . Next define

X′
B ={

x∈X; x= lim
n→∞xn for some

(
xn

)
n∈N

⊂D(B) such that
(
Bxn

)
n∈N

is Cauchy
}
.

(2.13)

By the assumption in (i′′), T :XB →X′
B is a bijection. This allows us to induce a norm

in X′
B by

‖x‖X′
B

= ∥∥[(
xn

)
n∈N

]∥∥
B

= lim
n→∞‖Bxn‖, (2.14)

where x = limn→∞ xn. In fact, if x ∈ X′
B , then there must be x̃ ∈ XB such that for

some (xn)n∈N ∈ x̃, limn→∞ xn = x. By the assumption, there is only one such x̃, hence
x ∈X′

B determines uniquely x̃. Since ‖[(xn)n∈N]‖B is well defined by the last equality
in (2.14), ‖ · ‖X′

B
is well defined. This norm turns T into an isometry and thus X′

B

becomes a Banach space.
Thanks to the assumption (i′′) again, we can define the shift B′ :X′

B → Z by

B′x = Bx̃ = lim
n→∞Bxn, (2.15)

where (xn)n∈N is as before. We have

B :D(B)
onto−−−→ ImB,

B′ :X′
B

onto−−−→ ImB.

(2.16)



J. Banasiak 19

SinceX′
B ⊂X, we can consider (B′,X′

B) as an unbounded operator inX. Let (xn)n∈N ⊂
X′
B converges to x ∈ X and (B′xn)n∈N ⊂ Z converges to y ∈ Z, in the respective

norms. From the assumption (i′), for each n ∈ N there is a sequence (x(n)k)k∈N ∈ T −1xn,
x
(n)
k ∈D(B), converging to xn inX. From the construction of cosets inXB , (Bx

(n)
k )k∈N

is a Cauchy sequence and as a consequence, for any n ∈ N, Bx(n)k → B′xn as k → ∞.

Indeed, denote x̃n = T −1xn = [(x(n)k )k∈N] and x̃
(n)
l = T −1x

(n)
l = [(x(n)l ,x

(n)
l , . . .)].

Since (Bx(n)k )k∈N is a Cauchy sequence, we obtain, for any sufficiently large l ∈ N

∥∥x̃n− x̃
(n)
l

∥∥
XB

= lim
k→∞

∥∥Bx(n)k −Bx
(n)
l

∥∥
Z
< ε, (2.17)

that is, liml→∞ x̃
(n)
l = x̃n in XB . Since T is an isomorphism, and by (2.14) and (2.15)

we obtain that for any n ∈ N,

lim
k→∞Bx

(n)
k = B′xn. (2.18)

For any r ∈ N we can find nr ∈ N such that

‖xnr −x‖X <
1

r
, ‖B′xnr −y‖Z <

1

r
, (2.19)

and for such a fixed nr we select kr ∈ N satisfying

∥∥x(nr )kr
−xnr

∥∥
X
<

1

r
,

∥∥Bx(nr )kr
−Bxnr

∥∥
Z
<

1

r
. (2.20)

Define φr = x
(nr )
kr

. For any r ∈ N, φr ∈ D(B). Fixing ε > 0 we find r0 > 2/ε, and for
any r > r0 we have by estimates (2.19) and (2.20),

‖φr −x‖X <
2

r
< ε,

∥∥Bφr −y
∥∥
Z

= ∥∥Bφr −B′x̄
∥∥
Z
<

2

r
< ε,

(2.21)

which means that (φr)r∈N is a sequence defining x̄ and from assumption (i′) we obtain
x̄ = x ∈X′

B . Thus (B
′,X′

B) is a closed operator inX. ThereforeX′
B =D(B′), equipped

with the norm of the graph, is a Banach space, and B′ :X′
B

onto−−−→ ImB is a continuous
bijection. Therefore the inverse of B′ is bounded in the norm of the graph, and for its
restriction B−1 we obtain

∀y ∈ ImB, ‖x‖X ≤ ‖x‖X+‖Bx‖Z = ‖x‖D(B′) ≤K‖Bx‖Z (2.22)

for some constant K , which gives the boundedness of B−1 : Z →X.
Now let B : X → Z be a closeable operator with a bounded inverse. For any x̃, let

(xn)n∈N ∈ x̃, that is, (Bxn)n∈N is a Cauchy sequence in Z. By the boundedness of B−1,
(xn)n∈N is a Cauchy sequence inX and its limit x ∈D(B̄). Also, by the boundedness of
B−1, if any other Cauchy sequence (Byn)n∈N is such that (B(xn−yn))n∈N is convergent
to 0, then limn→∞ yn = x. Next, if xn → x and yn → x in X determine two cosets x̃
and ỹ, then by definition both (Bxn)n∈N and (Byn)n∈N converge. Since B is closeable,
they must have the same limit, that is, x̃ = ỹ.
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(ii)⇔(iii). From (ii) to (iii) the theorem follows easily, as in the previous part we con-
structed a required isometry, and sinceX′

B =D(B), set-theoretically and topologically,
X′
B ↪→X.
Conversely, let T be the stipulated isomorphism and define for x ∈X′

B

Bx = BT −1x. (2.23)

Since X′
B ↪→ X, then T : XB → X is continuous, and therefore T −1 is closed as

an operator defined in X. Since B is an isomorphism, then B : X → ImB is closed.
But since T |D(B) = Id, B is an extension of B and therefore B is closeable. More-
over, B

−1 = TB−1 : ImB → X is continuous, therefore B−1 = TB−1|ImB is also
bounded. �

Remark 2.9. It is interesting to note that there exist operators which are injective with
bounded inverse but which are not closeable [17].

If B is not invertible, then we can still obtain a similar result, however in a less com-
pact form. First we note that it is impossible to follow the way leading to Theorem 2.3
as already the quotient space D(B)/N(B) is not a subspace of X.

We start with some preliminaries. Following, for example, [21, pages 766–767], we
can write split D(B) as an algebraic direct sum

D(B)=N(B)⊕DB (2.24)

for some linear space DB such that B : DB → R(B) is a bijection (clearly DB is not
unique, butR(B) is independent of the choice ofDB ). We denote byB−1

R : R(B)→DB

the right inverse to B having DB as its range. Conversely, given any right inverse B−1
R

to B defined on R(B) we can always split D(B) as in (2.24) with DB = R(B−1
R ).

Now we can construct a number of extrapolation spaces X̃B completing various
DB ’s in the norm ‖B ·‖Z . It is important to note that all these spaces are isometrically
isomorphic to each other and also to the spaceXB . Indeed, let X̃B be a completion ofDB

with respect to the abovementioned norm. Denote by B̃ : X̃B → R(B)
Z
the extension

by continuity of (B,DB). As in the original case, this is an isometric isomorphism.

However, also B : XB → R(B)
Z
is an isometric isomorphism, therefore T = B̃−1B :

XB → X̃B is an isometric isomorphism. Let x ∈DB ⊂D(B), then Bx = Bx ∈ R(B),
but B̃−1 is here the extension of the inverse of B|DB

, hence we obtain

T|DB
= Id . (2.25)

Now we can formulate a generalization of Theorem 2.8.

Corollary 2.10. Let X,Z be Banach spaces, X =N(B)⊕DB and DB be the range
of some right inverse B−1

R . The following are equivalent:

(i) the operator (B,DB) is closeable and B
−1
R is bounded,

(ii) there is an isomorphism T :XB →X′
B ↪→X which satisfies T |DB

= Id.
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If either of the above condition holds and additionally bothN(B) andDB are closed,
then (B,D(B)) is also closeable.

Proof. (i)⇔(ii). The proof is straightforward by repeating the proof of the equivalence
(ii)⇔(iii) of Theorem 2.8 with (B,D(B)) replaced by (B,DB) and applying (2.25).

To prove the last statement consider xn → 0 in X, xn ∈D(B), n= 1, . . . , such that
Bxn → y in Z. We write xn = x′

n+x′′
n with x′

n ∈ N(B) and x′′
n ∈ DB for n = 1, . . . .

Since Bxn = Bx′′
n , we see that (Bx

′′
n)n∈N is also convergent, and by the boundedness

of the right inverse, (x′′
n)n∈N is also convergent in X. Therefore (x′

n)n∈N converges
and by the closedness of both subspaces we get x′ = limn→∞ x′

n ∈ N(B) and x′′ =
limn→∞ x′′

n ∈ DB . On the other hand, x′ +x′′ = 0 which yields x′ = x′′ = 0 by (2.24).
Thus x′′

n → 0 and Bx′′
n → y implies y = 0 by closeability of (B,DB) and therefore

(B,D(B)) is also closed. �

If we have the case described in Theorem 2.8, the operator A also becomes much
simpler.

Theorem 2.11. If B is a closeable operator such that B−1 is bounded, and A is
closeable in X with λI − Ā injective for some λ > ω, and moreover A ∈ B −
�(M,ω,X,Z), then

A = Ā
∣∣
DB̄(Ā)

, (2.26)

where

DB̄

(
Ā

) = {
x ∈D

(
Ā

)∩D
(
B̄

); Āx ∈D
(
B̄

)}
. (2.27)

Proof. Let x ∈D(A). Then there exists a sequence (xn)n∈N inDB(A) such that Bxn →
B̄x and BAxn → B̄Ax as n→ ∞. From the proof of Theorem 2.8, it follows that also
B̄−1 is bounded, that is, xn → x andAxn → Ax inX as n→ ∞. From this formulae we
get that x ∈D(B̄), x ∈D(Ā) with Ax = Āx and Āx ∈D(B̄), that is, D(A)⊂DB̄(Ā).

Conversely, for λ > ω, λI −A : D(A)
onto−−−→ D(B̄), and for x ∈ DB̄(Ā), λx− Āx ∈

D(B̄). Thus for some y ∈D(A) we obtain

λy−Ay = λx− Āx, (2.28)

but y ∈ D(A) ⊂ DB̄(Ā) yields Ay = Āy, and by injectivity of λI − Ā we get
x = y ∈D(A). �

Example 2.12. We consider X = L2(R,e
−x2dx), Au = ∂xu on the maximal domain,

and (Bu)(x) = ex
2/2u(x). B : X → X is an unbounded operator and since ‖Bu‖X =

‖u‖L2(R), we see that D(B) = L2(R). Since B(D(B)) = X, we obtain that XB =
D(B)= L2(R) by Theorem 2.8. Then DB(A)=W 1

2 (R) and A generates a contraction

semigroup, say (T (t))t≥0, in L2(R). Thus Y (t)u = BT (t)u = ex
2/2u(t + x) is the

B-bounded semigroup generated by (A,B).
Note that here neither D(A)⊂D(B), nor ρ(A)⊃ [ω,∞[, but the (2.5) is satisfied.
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3. B-bounded semigroups and implicit evolution equations

3.1. XB -solutions of implicit evolution equations. We consider again the original
Cauchy problem (1.1). It is often the case that the original spaces X and Z are not the
most convenient spaces from the mathematical point of view. We are usually interested
to keep the values of the solution in the original space which may be related to some
physical properties like finite total energy space, finite mass, and so forth, but for (1.1)
to hold in the strict sense may be too restrictive and often it is enough that it holds
in some other Banach (or even linear topological) space X̃ with K and L replaced
by appropriate extensions K̃ and L̃ acting from Z to X̃. This concept is similar to
the differentiation in the sense of distributions; a related concept for semigroups is
sometimes called the Haraux extrapolation [13].

To be able to link K and L with K̃ and L̃ we restrict these extensions to the closures
of respective operators. In other words, D(L) and D(K) are required to be cores for L̃
and K̃ , respectively.

As we mentioned in the introduction, in general, thanks to Theorem 2.6, we do not
need any topological structure in X and therefore there is no need to introduce any
topological assumptions on K and L separately—as we see, these will be replaced by
appropriate assumption imposed on either LK−1 or K−1L.

We introduce the following definition.

Definition 3.1. Let X ⊂ X̃ and L̃ = L̄X̃, K̃ = K̄X̃. A Z-valued function t → u(t) is
called an X̃-solution of the problem (1.1) if it is a classical solution of the problem

d

dt

(
K̃u

) = L̃u, lim
t→0+

(
K̃u

)
(t)= ◦

u, (3.1)

that is, t → K̃u(t) is continuously differentiable in X̃, the differential equation holds
for all t > 0 in X̃, and the initial condition holds as a limit in the topology of X̃.

With this definition we can formulate the following theorem.

Theorem3.2. Suppose that we are given operatorsK :D(K)→X andL :D(L)→X

withD(L),D(K)⊂ Z, whereZ is a Banach space andX is a linear space. Assume that
K is a densely defined, one-to-one operator. DefineA= LK−1 with the natural domain
D(A) = K(D(L)∩D(K)) and B = K−1. If A ∈ B−�(M,ω,X,Z) (in the sense of
Subsection 2.1), then, for any x ∈ DB(A) = {x ∈ K(D(L)∩D(K));LK−1x ∈ ImK},
the function t → Y (t)x, where (Y (t))t≥0 is the B-bounded semigroup generated by A,
is an XB -solution of the problem (1.1).

Proof. Since Y (t)x = Bexp(tA)x, where B : XB → Z is an isomorphism and x ∈
D(A), we obtain

d

dt
Y (t)x = d

dt
Bexp(tA)px = B

d

dt
exp(tA)px = BAexp(tA)px (3.2)
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which can be rewritten as

d

dt
B−1Y (t)x = AB−1Y (t)x. (3.3)

Similarly,

lim
t→0+ B−1Y (t)x = x. (3.4)

To complete the proof wemust show thatB−1 is the closure ofK = B−1 and thatAB−1

is the closure of L= AB−1. The first statement follows from the fact that B, being the
extension by density, is also the closure of B and that the operation (x,y) → (y,x),
which transforms graph of an operator onto the graph of its inverse, is an isomorphism.

Consider the second operator. By construction A is the closure of LK−1 defined on

DB(A)=D
(
LK−1) = {

x ∈K
(
D(L)∩D(K)

);LK−1x ∈ ImK
}

(3.5)

in XB .
We know thatB is the closure ofK−1 inXB . Consider the operator (AB−1,BD(A));

it is well defined and closed, as A is closed and B−1 is continuous. Also, since D(A)

is dense in XB and B is an isomorphism, this is a densely defined operator.
We prove that the operator (AB−1,BD(A)) is the closure of (L,D(L)∩D(K))

in XB . Let x ∈ D(L)∩D(K), then Kx ∈ K(D(L)∩D(K)) ⊂ D(A). For such x

we have

AB−1x = AKx = LK−1Kx = Lx, (3.6)

hence AB−1 is an extension of (L,D(L)).
We know that A is the XB -closure of LK−1 from DB(A), that is for any y ∈D(A)

there is a sequence (yn)n∈N of elements belonging to K(D(L)∩D(K)) and such that
LK−1yn ∈ ImK , which satisfies yn → y in XB and

Ay =XB − lim
n→∞LK−1yn. (3.7)

Take arbitrary x ∈ B(D(A)); then x = By for some y ∈D(A) or y = B−1x. Now

Ay = AB−1x =XB − lim
n→∞LK−1yn, (3.8)

but yn ∈ K(D(L)∩D(K)), that is, yn = Kxn for some xn ∈ D(L)∩D(K). However,
on D(K)= ImB we have B−1x = B−1x =Kx and consequently,

yn =Kxn = B−1xn. (3.9)

Because (yn)n∈N converges in XB by construction, (xn)n∈N = (Byn)n∈N converges in
Z to x (by continuity of B) and

AB−1x = Ay =XB − lim
n→∞LK−1yn =XB − lim

n→∞Lxn. (3.10)

This shows that AB−1 ⊂ LK−1
XB

. However, since AB−1 is a closed extension of
LK−1, the theorem is proved. �
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Remark 3.3. The assumption that K is densely defined in Z is not essential. If it does

not hold, then in the considerations the space Z should be replaced by D(K)
Z = ZB .

The assumption (2.2), specified to the present conditions, means that the operator
(LK−1,D(LK−1)), where D(LK−1) is defined by (3.5), satisfies

ρ
(
LK−1) ⊃ [ω,∞[ (3.11)

for some ω ∈ R. If this assumption is satisfied, then we can combine Theorem 3.2 with
Corollary 2.5 to obtain the following result.

Theorem 3.4. Assume that

(1) the set {y ∈D(L)∩D(K); Ly ∈ ImK} is dense in D(K)
Z
,

(2) for x ∈D(K) either

∥∥(
λI −K−1L

)−1
x
∥∥
Z

≤ λ−1‖x‖Z, λ > 0, (3.12)

or
∥∥(
λI −K−1L

)−1
x
∥∥
Z

≤ M

|λ−ω|‖x‖Z, λ ∈ Sθ , (3.13)

then, for any x ∈ {x ∈ K(D(L)∩D(K)); LK−1x ∈ ImK}, the function t →
Y (t)x is an XB -solution to (1.1).

In reflexive spaces assumption (1) is superfluous.

Proof. Assumption (1) of Theorem 2.4 requires B[DB(A)] to be dense in ZB . With
B =K−1 and DB(A) defined by (3.5), we obtain

B
[
DB(A)

] =K−1{x ∈K
(
D(L)∩D(K)

);LK−1x ∈ ImK
}

= {
y ∈D(L)∩D(K); Ly ∈ ImK

} (3.14)

so our assumption (1) is simply rephrasing of that of Theorem 2.4.
Equation (2.9) specified to our case reads

∥∥K−1(λI −LK−1)−1
f

∥∥
Z

≤ λ−1
∥∥K−1f

∥∥
Z
, λ > 0, (3.15)

for f ∈ ImK . Since K is invertible, putting x = K−1f gives an arbitrary element of
D(K). Hence we have

∥∥K−1(λI −LK−1)−1
Kx

∥∥
Z

= ∥∥(
K−1(λI −LK−1)K)−1

x
∥∥
Z

= ∥∥(
λI −K−1L

)−1
x
∥∥
Z
,

(3.16)

thus inequality (3.15) follows from (3.12). Analogous arguments prove the statement
for analytic case. Assumption (1) is needed for the density of the domain of A in XB ,
and it is well known, that for reflexive space this follows once the Hille-Yosida estimates
are satisfied. �
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An important role in the theory of B-bounded semigroups is played by the operator
BAB−1 which gives rise to another semigroup which can be used to define the B-
bounded semigroup, the advantage of which stems from acting in the space Z rather
than in the abstract space XB . In our case formally we have BAB−1 =K−1LK−1K =
K−1L. Precisely, by (3.5) we must define K−1L on the domain

D
(
K−1L

) = {
y ∈D(L)∩D(K); Ly ∈ ImK

}
, (3.17)

which has already appeared in Theorem 3.4. Then we have the following proposition.

Proposition 3.5. The operator (LK−1,D(LK−1)) is closeable in XB if and only if
(K−1L,D(K−1L)) is closeable in Z and the following equality holds:

Ax = KK−1L
Z
K−1x, (3.18)

where K is the XB -closure of K . Consequently, the operator BAB−1 of Theorem 2.3
is equal to K−1L.

Proof. Let x ∈D(A), then

y = K−1x = lim
n→∞K−1xn = lim

n→∞yn (3.19)

in Z, with xn ∈DB(A), hence yn ∈D(K−1L), and

K−1Ax = lim
n→∞K−1LK−1xn = lim

n→∞K−1Lyn. (3.20)

This shows that y ∈D(K−1L) and K−1Ly = K−1Ax and consequently

A ⊂ KK−1LK−1. (3.21)

Conversely, if y ∈D(K−1L), then for (yn)n∈N ⊂D(K−1L) we have

lim
n→∞yn = y, lim

n→∞K−1Lyn =K−1Ly. (3.22)

Putting xn = Kyn, we obtain that (xn)n∈N converges in XB and by continuity of K,
we have XB − limn→∞ xn = x = Ky. Thus, (K−1LK−1xn)n∈N converges in Z, and
therefore (LK−1xn)n∈N converges in XB to Ax and KK−1LK−1 ⊂ A. �

With this proposition, Theorem 2.6 yields a stronger version of Theorem 3.4. Note
that the assumption (2.1′) is incorporated into Theorem 3.6 as assumption (2) below.

Theorem 3.6. Assume that

(1) D(K−1L) is dense in D(K)
Z
,

(2) the operator (K−1L,D(K−1L)) is closeable in Z and there exist spaces: X

satisfying for D(K) ⊆ X ⊆ Z, and D satisfying D(K−1L) ⊆ D ⊆ D(K−1L)

such that for x ∈ � either
∥∥(
λI −K−1L|D

)−1
x
∥∥
Z

≤ λ−1‖x‖Z, λ > 0, (3.23)
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or
∥∥(
λI −K−1L|D

)−1
x
∥∥
Z

≤ M

|λ−ω|‖x‖Z, λ ∈ Sθ , (3.24)

then, for any x ∈ D(LK−1), the function t → Y (t)x is an XB -solution to (1.1). For
x ∈D(LK−1) the classical solution is given by

u(t,x)= etK
−1LK−1x. (3.25)

In reflexive spaces assumption (1) is superfluous.

Remark 3.7. An XB -solution to (1.1) exists for a larger class of initial values, namely
for all x ∈ KD(K−1L).

Remark 3.8. Using arguments similar to that preceding Corollary 2.10, we can provide
analogous solvability results even when K is not invertible. In fact, all the theorems
above are valid if we replace (K,D(K)) by (K,DK) where Z = N(K)⊕DK , and Z

by ZB = D̄Z
K as noted in Remark 3.3. However, in such a case the uniqueness is an

open question, as different choices of DK lead in general to different spaces XB , and
to different B-bounded semigroups.

3.2. B-bounded semigroups and empathy. We start with a brief outline of the em-
pathy theory as presented in [19]. Let X and Z be Banach spaces and consider two
families of operators � = {E(t) : X → X}t>0 and � = {S(t) : X → Z}t>0 such that
the Laplace transforms: R(λ)y = �(E(t)y)(λ) and P(λ)y = �(S(t)y)(λ) exist for any
y ∈X and λ > 0. The pair 〈�,�〉 is called an empathy if for any s, t > 0

S(t+s)= S(t)E(s) (3.26)

and P(ξ) is invertible for some ξ > 0. It can be proved that then P(λ) is invertible for
any λ > 0, and the same is valid for R(λ). Also, the subspaces �E = R(λ)X and � =
P(λ)Z are independent of λ. Define the operators: K : � → �E by K = R(λ)P−1(λ)

and L : � → X by L = (λR(λ)−I )P−1(λ); both can be proved to be independent of
λ and

P(λ)= (λK−L)−1. (3.27)

The pair 〈L,K〉 is called the generator of empathy 〈�,�〉. In this case, for any y ∈ �E ,
the function t → S(t)y is a solution of the Cauchy problem (1.1). This result is not
satisfactory, as it allows to recognize which Cauchy problem is solvable by a given
empathy. The inverse requires an additional assumption. To explain its meaning, we first
note that it can be proved that � is a semigroup, but not necessarily a C0-semigroup,
in X. In particular, the function t → E(t)x can be unbounded at t = 0 for some
x ∈ X. To be able to prove the main generation result for empathy in [19], the author
introduced the assumption that the empathy 〈�,�〉 is uniformly bounded, that is, there
exist constants N ′, M ′ such that supt>0 ‖S(t)‖ ≤ M ′, supt>0 ‖E(t)‖ ≤ N ′. Then the
following theorem is valid.
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Theorem3.9. Suppose that the spaceX has the Radon-Nikodym property. The operator
pair 〈L,K〉 is the generator of a uniformly bounded empathy 〈�,�〉 if and only if the
operators P(λ) and R(λ) are bounded for every λ > 0 and there exist positive numbers
M,N such that for every λ > 0 and k = 1,2, . . .

‖P(λ)‖ ≤ λ−1M,
∥∥Rk(λ)

∥∥ ≤ λ−kN. (3.28)

To compare empathy with B-bounded semigroups, we first note that for 〈L,K〉 to be
the generator of an empathy, K must be an injective operator. Moreover, by definition,
the solution family (S(t))t≥0 is a family of bounded operators in X. Since the B-
bounded semigroup (Y (t))t≥0 is supposed to give solutions for the same problem, it
must be also defined on the whole space, which requires B = K−1 to be a bounded
operator.

We have the following theorem.

Theorem 3.10. Let (Y (t))t≥0 be a B-bounded semigroup generated by A where A :
D(A) → X, B : D(B) → Z, D(A),D(B) ⊂ X, A satisfies (2.2) with ω = 0, and
B is a bounded, one-to-one operator. The pair 〈(Y (t))t≥0, (e

tA|X)t≥0〉 is an empathy
generated by 〈AB−1,B−1〉 if and only if

∀t ≥ 0, etAX ⊂X (3.29)

∀x ∈X, λ > 0, t −→ e−λt
(
etA

∣∣
X

)
x ∈ L1(0,∞,X). (3.30)

Proof. Since B is a bounded operator, (Y (t))t≥0 is a family of bounded operators by
property (1) of Definition 2.1. Moreover, by [8] we have

P(λ)x = B(λI −A)−1x =
∫ ∞

0
e−λtY (t)x dt (3.31)

for any x ∈X and since B is invertible, P(λ) exists and is invertible.
By (3.30) the operator R(λ) is well defined. Fix t ≥ 0 and consider xn → x and

etAxn → y in X as n → ∞. Since by the boundedness of B, X ↪→ XB , y = etAx and
etA is a closed operator, and being defined on the whole X, it is a bounded operator.
Next, for any x ∈X we have, by (3.29),

Y (t+s)x = Bexp
(
(t+s)A

)
x = Bexp(tA)exp(sA)x = Y (t)exp(sA)x, (3.32)

therefore 〈(Y (t))t≥0, (e
tA|X)t≥0〉 is an empathy.

Since B is bounded, we obtain for any x ∈X

BR(λ)x = B

∫ ∞

0
e−λt etA

∣∣
X
x dt =

∫ ∞

0
e−λtY (t)x dt = B(λI −A)−1x, (3.33)

where again we usedX ↪→XB to obtain the equivalence of the integrals. HenceR(λ)=
(λI −A)−1, by a simple calculation

K = R(λ)P−1(λ)= B−1,

L= (
λ(λI −A)−1−I

)
(λI −A)B−1 = AB−1.

(3.34)
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Conversely, the properties (3.29) and (3.30) follow from the original definition of
empathy. �

A better characterization of (etA|X)t≥0 can be obtained when the empathy is uni-
formly bounded. Clearly, then the statement of Theorem 3.10 is valid provided condi-
tions (3.29) and (3.30) are replaced by the requirement that (etA|X)t≥0 is a strongly
measurable and uniformly bounded semigroup in X. Depending on the structure of X,
we can prove some additional properties of this semigroup.

Proposition 3.11. Let the assumptions of Theorem 3.10 be satisfied and 〈(Y (t))t≥0,

(etA|X)t≥0〉 be a uniformly bounded empathy. Then A satisfies the Hille-Yosida esti-
mates in X, and consequently

(1) (etA|D(A))t≥0 is a C0-semigroup in D(A),

(2) if X has the Radon-Nikodym property, then additionally (etA|X)t>0 is a bounded
strongly continuous semigroup of bounded operators in X (but in general not a
C0-semigroup),

(3) if X is reflexive or D(A) = X, then (etA|X)t≥0 is a C0-semigroup generated
by A.

Proof. If 〈(Y (t))t≥0, (e
tA|X)t≥0〉 is a uniformly bounded empathy, then by [19, Theo-

rem 7.1] there is N such that for any λ > 0, k = 1,2, . . . we have ‖λkRk(λ)‖ ≤ N .
From (3.33) we obtain that ∥∥(λI −A)−k

∥∥ ≤ λ−kN, (3.35)

hence A satisfies the Hille-Yosida estimates in X. The rest of the proof follows from
the well-known theorem by Arendt [2] (see also [5]). �

Another avenue to explore is based on the following simple observation which fol-
lows immediately from the definition of B-bounded semigroups.

Proposition 3.12. The pair 〈(Y (t))t≥0, (exp(tA))t≥0〉 is an empathy in the pair Z,XB .

This proposition suggests that if one could find a space X′ ⊂ X such that X is a
completion of X′ with respect to the norm ‖K−1 · ‖Z , then the notion of B-bounded
semigroup generated in the pair X′,Z would coincide with the notion of empathy in
the pair of spaces X,Z. However, the following result shows that also here the choice
is very limited.

Proposition 3.13. The pair 〈(Y (t))t≥0, (exp(tA))t≥0〉 is an empathy in Z,X if and
only if K is a bounded operator, with a bounded densely defined inverse K−1.

Proof. The pair 〈(Y (t))t≥0, (exp(tA))t≥0〉 is an empathy in Z,X if and only if XB

can be identified with X. By Theorem 2.8 this is possible if and only if B = K−1 is
closeable and B−1 = K is bounded. XB is then identified with D(B̄) = D(K−1) and
by Theorem 2.8 again we must have D(K−1)=X.
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Next, the operator K−1 is invertible (because it equals B). It follows that K̄ =
(K−1)−1. In fact, y = K̄x if and only if x = limn→∞ xn, xn ∈ D(K) and y =
limn→∞Kxn. Putting yn = Kxn we obtain that this is equivalent to limn→∞ yn = y,

yn ∈ D(K−1) and limn→∞K−1yn = x, thus K−1y = x which due to the invertibility
of K−1 proves the statement. Since for bounded operators the closure is equal to the
extension by continuity, denoted for a moment by K̃ , we obtain that

K̃ :D(K)
onto−−−→X (3.36)

is invertible and bounded operator. Since D(K) is a Banach space, K̃−1 = K−1 is a
bounded operator and clearlyK−1 is bounded. Using again the fact that the closure of a
bounded operator is equal to its extension by continuity, we obtain thatX =D(K−1)=
D(K−1)= ImK .

The proof in the reverse direction is obvious. �

It is instructive to compare Hille-Yosida type estimates required for generation of
empathy and B-bounded semigroup. For simplicity, we assume that the estimates are
valid with k = 1 and N = 1 for the empathy and with k = 1, M = 1, ω = 0 for
B-bounded semigroup. In such a case equations (3.28) can be transformed to

∥∥(
λI −K−1L

)−1
f

∥∥
Z

≤ λ−1‖Kf ‖X, f ∈D(K)⊂ Z, (3.37)∥∥(
λI −LK−1)−1

u
∥∥
X

≤ λ−1‖u‖X. (3.38)

The second inequality is simply the Hille-Yosida estimate for the operator LK−1 in X
(and thus if K and L commute and X = Z, this condition is equivalent to (3.23)).

On the other hand, for the generation a K−1-bounded semigroup of contractions we
must have by, Theorem 3.4,

∥∥(
λI −K−1L

)−1
x
∥∥
Z

≤ λ−1‖x‖Z ∀x ∈D(K)⊂ Z. (3.39)

Summarizing, for the generation of K−1-bounded semigroup of contractions, the op-
erator K−1L must generate a semigroup of contractions in Z. On the other hand, for
generation of an empathy, we must have a generation of a semigroup of contractions
in X by LK−1 and additionally, the resolvent of K−1L must be a continuous operator
from D(K) with graph norm to Z. Explanation of the different order in which the
operators K−1 and L enter the Hille-Yosida estimates comes from Proposition 3.12.
If we think of empathy as a B-bounded semigroup with X = X′

B , then the estimate
(3.38) follows directly from (2.9). Now the estimate (3.39) is obtained from (3.15) by
passing fromX to a new spaceXB . See also Subsection 3.4 where we discuss a suitable
example.

3.3. Showalter’s approach. The approach presented in [20] is very similar in spirit to
the ideas leading to the construction of a B-bounded semigroup. The theory presented
there covers, however, much broader class of problems including nonlinear evolution
inclusions. On the other hand, a number of assumptions on K are more restrictive than
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those appearing in the theory of B-bounded semigroups. For simplicity we outline here
the approach of [20] in the case of linear evolution equations.

It is assumed thatK : E → E∗ is a linear, symmetric, and nonnegative operator from
a linear space E to its algebraic dual. This allows us to introduce a semi-scalar product
on E; the corresponding semi-normed space is denoted by Eb. Its continuous dual E′

b

is a Hilbert space. The operator L is assumed to act from a domain in Eb into E′
b.

In a particular case when K generates a scalar product under which Eb is complete,
K becomes the Riesz isomorphism onto E′

b. Thanks to this, one can proceed as in
Theorem 3.2 converting problem (1.1) into the standard Cauchy problem

du

dt
=K−1Lu, lim

t→0+u(t)=K−1 ◦
u, (3.40)

in Eb. Hence, the question to be solved is whether K−1L generates a semigroup in Eb.
Using the B-bounded semigroup approach we obtain the same problem under the

following particular assumptions. Let D(K) ⊂ X and (K,D(K)) be a symmetric,
positive operator in X. Assume that Eb is the completion of D(K) under the scalar
product (Kx,y); then its continuous dual E′

b is exactly the space XB (B =K−1) as K
is the Riesz isomorphism between Eb and E′

b.
Here we see that B-bounded semigroups offer a greater flexibility, as, for example,

if we keep Z =X, then as XB we obtain a space such that a suitable extension of K is

an isomorphism between D(K)
X
and XB . We will see an example of this kind in the

next subsection.
The approach of [20] has been used also when K is not invertible. Again, the

idea is similar to that used in the construction of B-bounded semigroup with non-
invertible B-one passes to the quotient space D(K)/N(K). The problem is that the
second operator involved,L, not necessarily can be made to act in such a quotient space.
In B-bounded semigroups theory the properties of B-bounded semigroups ensured that
this was indeed possible. In [20] the author introduced a suitable multivalued relation
which fortunately preserves the essential properties of the original operator. This seems
to be a complementary approach to that sketched in Remark 3.8, but the comparison of
these methods is still an open question.

3.4. The Sobolev-Galpern equation. Consider a model problem which can be dealt
with using all three approaches:

∂t (3u)=32u, u|∂� = 0, ∂νu|∂� = 0, 3u|t=0 = ◦
u, (3.41)

where �⊂ R
n is a bounded sufficiently smooth set.

The empathy theory (see [17] where, in fact, an early version of empathy theory,
called the B-evolution theory was used), the solution operators t → S(t) act from

L2(�) into W 4
2 (�)∩

◦
W

2
2(�), the related semigroup (E(t))t≥0, generated by a suitable

realization ofLK−1 =323−1 acts inL2(�) and the equation is also satisfied inL2(�).

Using Showalter’s approach we obtain Eb = ◦
W

1
2(�) with E

′
b =W−1

2 (�); it follows
that the solution is a

◦
W

1
2(�)-valued function and the equation is satisfied in W−1

2 (�).
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Using B-bounded semigroups we are able to construct even weaker solutions. Let
Z = X = L2(�), K = 3 with D(K) = W 2

2 (�)∩
◦
W

1
2(�) and L = 32 with D(L) =

W 4
2 (�)∩

◦
W

2
2(�). From the general theory of PDE’s we know thatK is an isomorphism

onto L2(�). From the elliptic regularity it follows that XB = (W 2
2 (�)∩

◦
W

1
2(�))

′ (the
continuous dual). Since all the occurring spaces are reflexive, we have to check only
the Hille-Yosida estimates. Let u ∈D(L), then we have

(
λu−K−1Lu,u

)
X

= λ‖u‖2X−(
K−1Lu,u

)
X
, (3.42)

next (
K−1Lu,u

)
X

= (
LKK−1u,K−1u

)
X

= (LKf,f )X

=
∫
�

323f f̄ dx = −
∫
�

|∇3f |2 dx ≤ 0,
(3.43)

hence

λ‖u‖2X ≤ (
λu−K−1Lu,u

)
X

≤ ∥∥λu−K−1Lu
∥∥
X
‖u‖X. (3.44)

Now, let x ∈D(K) and consider the equation x = λu−K−1Lu.We can transform this
equation to

Kx = λKu−Lu (3.45)

with Kx ∈X. Since we have

(Ku,u)X ≥ c1‖u‖21, (−Lu,u)X ≥ c2‖u‖22, (3.46)

we obtain for u ∈ ◦
W

2
2 ⊂D(K)

(λKu−Lu,u)≥ c1‖u‖21+c2‖u‖22 ≥ c2‖u‖22, (3.47)

hence λK −L is coercive on
◦
W

2
2 and for each Kx ∈ X there is u ∈ ◦

W
2
2 (in fact, in

D(L) from the elliptic regularity) satisfying (3.45). Thus, we see that the Hille-Yosida
estimates (3.23) is satisfied and problem (3.41) has a unique XB -solution.

It is interesting to note that in this case also the first two solutions can be obtained
by B-bounded semigroup method by a suitable choice of the space X.
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