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We prove a Morse type lemma for, possibly degenerate, critical points of a C1 function
twice strongly differentiable at those points, which allows us to recover, for Finsler
metrics, the theorem of Gromoll and Meyer on the existence of infinitely many closed
geodesics.

1. Introduction

Morse theory has been successfully applied for proving existence and multiplicity re-
sults for extremals of various variational problems. In particular the following beautiful
theorem of Gromoll and Meyer (see [3]).

Theorem 1.1. If M is a compact, simply connected Riemannian manifold whose coho-
mology is not isomorphic to the one of a compact symmetric space of rank one, that is,
a sphere or a projective space, then M has infinitely many closed geodesics (nontrivial
and geometrically distinct).

It is still an open problem if the conditions on the cohomology may be withdrawn.
On the other side, there are examples of Finsler metrics on rank one symmetric spaces
with only a finite number of closed geodesics. One of the differences between the
critical points theory for the Finsler and the Riemannian cases is that the Finsler energy
is not C2. In fact it is twice differentiable at the critical points, but not in general outside
the regular curves. Therefore, in order to have a Morse theory for the Finsler case, we
need a Morse lemma for functions with such a level of regularity. This was done in [4]
for the case of nondegenerate critical points and, as a consequence, they obtained the
result of Gromoll and Meyer for the Finsler case with the additional hypothesis that
the closed geodesics are nondegenerate circles of critical points in the space of closed
curves (nondegenerate in the sense of Bott [1]).
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The aim of this paper is to prove a degenerate-critical-point version of the Morse
lemma as in [2] with conditions of low differentiability that, although stronger than
those in [4], are verified by the Finsler energy. More precisely, let f : � ⊂ H → R be
a C1 function defined on an open set of a Hilbert space H. Suppose that f is twice
differentiable at 0 and let N be the kernel of the symmetric operator A : H → H given by

〈Av,u〉 = 1

2
d2f0(v,u). (1.1)

If the image Im(A) is closed, sinceA is symmetric, N
⊥ = Im(A) and H is decomposable

in H = N
⊥ ⊕ N. Thus we can look at z ∈ H as x + y ∈ N

⊥ ⊕ N. We will prove the
following theorem.

Theorem 1.2. If f ′ is strongly differentiable at the origin, there is a neighborhood V

of 0 in H and a homeomorphism ϕ : V → ϕ(V ) ⊂ H such that

f
(
ϕ(x,y)

) = 1

2
〈Ax,x〉+f

(
g(y),y

)
, dϕ0 = I, (1.2)

where g is a function g : V ∩N → N
⊥.

2. Proof of Theorem 1.2

Recall that a function between two Banach spaces, f : E → F, is said to be strongly
differentiable at x if f is differentiable at x and

lim
y,z→x

r(y)−r(z)

‖y−z‖ = 0, (2.1)

where r(y) is the rest function of the Taylor’s formula for f around x. In other words,
f is strongly differentiable at x if and only if it is differentiable and, given ε > 0, there
is a neighborhood of x where r(y) is ε-Lipschitzian (hence so is f ). It is clear also that
if f is differentiable on a neighborhood of x and its differential f ′ is continuous at x,
then f is strongly differentiable at x. Moreover, if f is continuous in a neighborhood
of x and strongly differentiable at x, with invertible differential, then f is invertible
around x and the proof is the same as the classical inverse function theorem. Also the
corresponding version of the implicit function theorem gives the following proposition.

Proposition 2.1. Using the conditions and notation above, let 0 be a critical point of
f and suppose that f ′ is strongly differentiable at the origin. Then there is a continuous
function g : U ⊂ N → N

⊥ on an open set U containing 0 such that (∂f/∂x)(g(y),y) ≡
0 and g(0) = 0. Moreover, g is strongly differentiable at the origin and dg0 = 0.

Remark 2.2. If we write f (z) = f (x,y) and look at the restrictions of f on the planes
N

⊥ ×{y}, the above function g gives us a parametrization of the critical points of such
restrictions on a neighborhood of the origin in H.

We go now into the proof of Theorem 1.2. Define h1 : N
⊥ ⊕U → N

⊥ ⊕N by

h1(x,y) = x+g(y)+y. (2.2)
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It is clear that h1 is strongly differentiable at 0 and that dh1(0,0) = I , hence h1 is a
homeomorphism of a neighborhood V1 of the origin of H onto another neighborhood
of 0, say W1 = h1(V1).

Remark 2.3. Observe that what h1 is doing is to move an open set of {0}×N onto the
parametrized surface of “critical points” (in the sense of Remark 2.2) {(g(y),y);y ∈
U ⊂ N}.

Since A|
N

⊥ is an isomorphism, we can write N
⊥ = H− ⊕ H+ where H− and H+

are the A-invariant subspaces where A is negatively defined and positively defined,
respectively. This way we have H = H− ⊕H+ ⊕N and z = x+y with x = x− +x+. It
is convenient to introduce an inner product on N

⊥, (·, ·), equivalent to the former 〈·, ·〉,
which makes the decomposition H− ⊕H+ orthogonal. It suffices to take

(
u− +u+,v− +v+

) = 〈
Au+,v+

〉− 〈
Au−,v−

〉
. (2.3)

The symbol | · | means the norm induced by this inner product.
From now on we are looking for a homeomorphism h2 : V2 ⊂ H → h2(V2), with

V2 ⊂ V1, such that, if ϕ = h1 ◦h2, then

f
(
ϕ(x,y)

) = 1

2
〈Ax,x〉+f

(
g(y),y

)
. (2.4)

We will search h2 of the form

h2(x,y) = x+λ(x,y)
(
x+ −x−

)+y, (2.5)

where λ : H → [−1/2,1/2]. Defining

ψ(x,y) = 1

2
〈Ax,x〉+f

(
g(y),y

)
, φ(x,y) = ψ(x,y)−f

(
x+g(y),y

)
, (2.6)

we have

f
(
ϕ(x,y)

) = f
(
x+λ(z)

(
x+ −x−

)+g(y),y
)

= ψ
(
x+λ(z)

(
x+ −x−

)
,y

)−φ
(
x+λ(z)

(
x+ −x−

)
,y

)
= 1

2

〈
A

(
x+λ(z)

(
x+ −x−

))
,x+λ(z)

(
x+ −x−

)〉
+f

(
g(y),y

)−φ
(
x+λ(z)

(
x+ −x−

)
,y

)
= 1

2
〈Ax,x〉+f

(
g(y),y

)+λ(z)
〈
Ax,x+ −x−

〉

+ 1

2
λ(z)2〈A(

x+ −x−
)
,x+ −x−

〉−φ
(
x+λ

(
x+ −x−

)
,y

)

= ψ(x,y)+λ(z)|x|2 + 1

2
λ(z)2〈A(

x+ −x−
)
,x+ −x−

〉

−φ
(
x+λ

(
x+ −x−

)
,y

)
,

(2.7)
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and so, f (ϕ(z)) = ψ(z) if and only if λ satisfies

φ
(
x+λ(z)

(
x+ −x−

)
,y

) = λ(z)|x|2 + 1

2
λ(z)2〈A(

x+ −x−
)
,x+ −x−

〉
. (2.8)

Now observe that φ(0,y) = 0, thus any value we give for λ(0,y) satisfies the last
equation on these points, in particular λ(0,y) = 0. For x �= 0 and y ∈ N fixed, consider
the function � : R → R defined by

�(λ,x,y) = 1

2|x|2
(
2φ

(
x+λ

(
x+ −x−

)
,y

)−λ2〈A(
x+ −x−

)
,x+ −x−

〉)
. (2.9)

We want a neighborhood of 0 in R×(N⊥ ⊕N) where � is a contraction and, therefore,
λ = λ(x,y) will be a fixed point of �. We begin estimating �′. Observe before that

∂φ

∂x
(x,y)v = 〈Ax,v〉− ∂f

∂x

(
x+g(y),y

)
v, (2.10)

hence (∂φ/∂x)(0,y) = 0 and, since φ′ is strongly differentiable at the origin, it follows
that, given ε > 0, if ‖x+y‖ is small enough, ‖(∂φ/∂x)(x,y)‖ ≤ ε|x|. But

∣∣∣∣∂�∂λ (λ,x,y)
∣∣∣∣ ≤ 1

|x|2
∥∥∥∥∂φ∂x

(
x+λ

(
x+ −x−

)
,y

)∥∥∥∥∣∣x+ −x−
∣∣

+ |λ|
|x|2

∣∣〈A(
x+ −x−

)
,x+ −x−

〉∣∣
≤ k1ε+k2|λ|,

(2.11)

where k1,k2 are constants. So, if we choose ε small and |λ| ≤ 1/(4k2), for instance, we
will have |�′| ≤ 1/2 and, using the mean value theorem,

∣∣�(λ,x,y)−�
(
λ0,x,y

)∣∣ ≤ 1

2

∣∣λ−λ0
∣∣ ≤ 1

2
. (2.12)

Observe that �(0,x,y) = φ(x,y)/|x|2. Then, taking λ0 = 0, we get

∣∣�(λ,x,y)−�(0,x,y)
∣∣ ≤ 1

2
|λ|. (2.13)

Thus |�(λ,x,y)| ≤ |φ(x,y)/|x|2|+(1/2)|λ|. At last, if |λ| ≤ 2|φ(x,y)/|x|2|,
∣∣�(λ,x,y)∣∣ ≤ 2

∣∣∣∣φ(x,y)|x|2
∣∣∣∣. (2.14)

Therefore, if η(x,y) = 2|φ(x,y)/|x|2| ≤ 1/(4k2), � is a contraction of the interval
[−η,η]. But in fact limz→0 η(x,y) = 0. Just observe that (∂2φ/∂x2)(0,0) = 0 as well
as (∂2φ/∂x∂y)(0,0) = 0, thus, using the strong differentiability of ∂φ/∂x at 0, if
‖x+y‖ is small enough

∥∥∥∥∂φ∂x (x,y)
∥∥∥∥ =

∥∥∥∥∂φ∂x (x,y)−
∂φ

∂x
(0,y)

∥∥∥∥ ≤ ε|x|. (2.15)
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Now we just have to use the mean value inequality

‖φ(x,y)‖ = ‖φ(x,y)−φ(0,y)‖ ≤ |x|sup

{∥∥∥∥∂φ∂x (tx,y)
∥∥∥∥; t ∈ [0,1]

}
≤ ε|x|2. (2.16)

The function λ constructed in this way is bounded on an entire neighborhood
of the origin and might be discontinuous only at the points (0,y). Since λ(x,y) ∈
[−η(x,y),η(x,y)] we see it is continuous at 0. However h2 is continuous, even where
λ is not,

∣∣h2(x,y)−h2
(
0,y0

)∣∣ = ∣∣(1+λ)x+
∣∣+ ∣∣(1−λ)x−

∣∣+ ∣∣y−y0
∣∣. (2.17)

As well as h1, h2 is differentiable at the origin and dh2(0) = I . In fact, |h2(x,y)−
x − y| = |λ(x,y)| |x| and the differentiability follows from the continuity of λ at 0.
Unfortunately, we cannot guarantee the strong differentiability of h2 at 0, what leads
us to search the inverse h3 of h2 explicitly. Choosing a neighborhood of 0 in H in
such a way that |λ(x,y)| < 1/2, the function h3 defined below is the function we are
looking for

h3(x,y) = 1

1+λ(x,y)
x+ + 1

1−λ(x,y)
x− +y. (2.18)

In fact, continuity is clear in the whole neighborhood except at the points (0,y). For
these we have

∣∣h3(x,y)−h3
(
0,y0

)∣∣2 =
∣∣∣∣ 1

1+λ(x,y)
x+ + 1

1−λ(x,y)
x− +y−y0

∣∣∣∣
2

=
∣∣x+

∣∣2

|1+λ(x,y)|2 +
∣∣x−

∣∣2

|1−λ(x,y)|2 + ∣∣y−y0
∣∣2
,

(2.19)

and so h3 is continuous. That h3 really is a local inverse of h2 is just a simple verification
of the equalities h2 ◦h3 = id = h3 ◦h2. Finally we see that dh3(0) = I ,

∣∣h3(x,y)−x−y
∣∣2 =

∣∣∣∣ x+
1+λ

−x+
∣∣∣∣
2

+
∣∣∣∣ x−
1−λ

−x−
∣∣∣∣
2

= λ2

(1+λ)2

∣∣x+
∣∣2 + λ2

(1−λ)2

∣∣x−
∣∣2
,

(2.20)

and using the continuity of λ at 0 again completes the proof. �

It is not difficult to see that the Finsler energy verifies the hypothesis of this Morse
lemma so a Morse theory can be developed as in the Riemannian case. Moreover, the
index formula works the same as in the Riemannian case (see [5]) so we can repeat the
proof of [3] obtaining the analogue of Theorem 1.1 for the Finsler case.
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