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We study two one-dimensional equations: the strongly damped wave equation and the
heat equation, both with mixed boundary conditions. We prove the existence of global
strong solutions and the existence of compact global attractors for these equations in
two different spaces.

1. Introduction

In this paper, we study existence of strong solutions and existence of global compact
attractors for the following one-dimensional problems.

The strongly damped wave equation,

utt −uxx −utxx = g(t), 0 < x < 	, 0 < t < T ;
u(t,0) = 0, ux(t,	)+utx(t,	) = ρ

(
ut (t,	)

)
,

(1.1)

and the heat equation

zt −zxx +G(z) = h(t), z(t,0) = 0, zx(t,	) = ρ
(
z(t,	)

)
. (1.2)

Here 	 and T are positive constants, ρ : R → R is a nonincreasing and bounded function,
g, h ∈ L1(0,T ;L2(0,	)), and G is an operator from a subspace of H 1 into L2. In the
case where ρ is not continuous, we will understand ρ(x0), at a point of discontinuity x0,
as being the whole interval [ρ(x0 +0), ρ(x0 −0)]. In this case ρ will be a multi-valued
function, and the “equal signs” in the last equations of (1.1) and (1.2) will be changed
to “belong signs.” So, the boundary conditions at x = 	 will be written, respectively, as

ux(t,	)+utx(t,	) ∈ ρ
(
ut (t,	)

)
, zx(t,	) ∈ ρ

(
z(t,	)

)
, (1.3)
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or equivalently,
(
ut (t,	),ux(t,	)+utx(t,	)

) ∈ �,
(
z(t,	),zx(t,	)

) ∈ �, (1.4)

where � is the graph of the multi-valued function ρ.
The existence of global solutions for these two problems can be obtained using the

theory of monotone operators. The problem (1.2) gives rise to a maximal monotone
operator A that is of subdifferential type, A = ∂ϕ, where ϕ is a lower semicontinuous
and convex functional. This problem was studied in [1] under some conditions on G,
in particular the existence of strong solutions was proved.

Our goal is to obtain existence of global compact attractor. To reach this goal, first
of all, we will obtain a relation between the solutions of the two problems. With this
relation we can use one problem to get the properties of the other, in particular this
relation will be used to prove the existence of strong solutions for the problem (1.1).
Once we have existence of solutions, we will start working in order to get the existence
of the attractors. For our purpose, we will study the problem (1.2) in two different spaces
L2 and H 1 and using the relation between the solutions we will prove the existence
of attractors for the problems. More specifically, setting ut = v, where u(t) is solution
operator given by (1.1), we will study the evolution of three operators, z(t) given by
(1.2), in the spaces L2 and H 1, u(t)+v(t) in the space H 1 and v(t) in the space L2.

In order to obtain the results we will use the following procedures: to prove the
bounded dissipativeness of the problem (1.1) we will construct an appropriate equiv-
alent norm in the space. The bounded dissipativeness of (1.2) in H 1 will be obtained
using the uniform Gronwall lemma with some appropriate estimates. The proof of the
compactness of the operators will be done using arguments of Aubin-Lion’s type.

Asymptotic behavior of parabolic equations with monotone principal part was re-
cently studied by Carvalho and Gentile in [3], the main difference with our case, problem
(1.2), is that our functional ϕ is not equivalent to the norm of the space.

2. Abstract formulation and existence of solutions

As usual in wave equations context, setting v = ut , (1.1) can be seen as a system:

ut = v, vt = (u+v)xx +g, 0 < x < 	, 0 < t < T ;
u(t,0) = 0, ux(t,	)+vx(t,	) = ρ

(
v(t,	)

)
.

(2.1)

Therefore, our problem (1.1) can be viewed as an evolution equation

ẇ+Aw = f (t) (2.2)

in the Hilbert space

� = H1,0 ×L2(0,	), H1,0 = {
u ∈ H 1(0,	) : u(0) = 0

}
, (2.3)

with the inner product

〈(
u1,v1

)
,
(
u2,v2

)〉
�

=
∫ 	

0

(
u′

1u
′
2 +v1v2

)
dx, (2.4)
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where

f (t) =
(

0

g(t)

)
, A : �(A) ⊂ � :−→ �, (2.5)

is given by

A(u,v) = (−v,−(u+v)′′
)

(2.6)

on the domain

�(A) = {
(u,v) ∈ H1,0 ×H1,0 : (u+v) ∈ H 2(0,	) and (u+v)′(	) ∈ ρ

(
v(	)

)}
. (2.7)

Throughout the paper we denote by 〈·, ·〉 and | · | the usual inner product and norm
of L2, respectively. We use the terminology of Brézis [2] and Hale [4]

Lemma 2.1. The operator A is maximal monotone.

Proof. If w1 = (u1,v1) and w2 = (u2,v2) are in �(A), we have by integrating by
parts that

〈
w1 −w2,Aw1 −Aw2

〉

= −(
v1(	)−v2(	)

)[(
u1 +v1

)′
(	)−(

u2 +v2
)′
(	)

]+
∫ 	

0

(
v′

1 −v′
2

)2
dx.

(2.8)

Since ρ is nonincreasing and (ui +vi)
′(	) ∈ ρ(vi(	)), i = 1,2, we have

〈
w1 −w2,Aw1 −Aw2

〉 ≥ 0, (2.9)

therefore, A is a monotone operator.
We prove that A is maximal by showing that R(I +A) = �. In fact, if (f,g) ∈ �

we consider z as being the unique solution of the ODE problem:

z−2z′′ = f +2g := h ∈ L2(0,	), z(0) = 0, z′(0) = a ∈ R, (2.10)

where a is chosen conveniently. Since z ∈ H 2(0,	)∩H1,0 and f ∈ H1,0, setting

u = 1

2
(z+f ), v = 1

2
(z−f ), (2.11)

we have that u,v ∈ H1,0, u+v = z ∈ H 2(0,	), and

u−v = f, v−(u+v)′′ = g. (2.12)

Therefore, it remains to be proved that (u+v)′(	) ∈ ρ(v(	)) or equivalently z′(	) ∈
ρ̃(z(	)), where

ρ̃(x) = ρ

(
1

2

(
x−f (	)

))
. (2.13)
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We obtain that condition by choosing the constant a appropriately. Setting

M =

0 1

1

2
0


 , (2.14)

we have from the variation constant formula(
z(	)

z′(	)

)
= ae	M

(
0

1

)
− 1

2

∫ 	

0
e(	−s)M

(
0

h(s)

)
ds. (2.15)

Since

e	M
(

0

1

)
=




√
2sinh

(
	√
2

)

cosh

(
	√
2

)

 , (2.16)

we have that the right-hand side of (2.15) is a straight line in plane, parametrized by a,
with positive slope. Therefore, there will be a unique a that gives the intersection with
the nonincreasing graph of ρ̃. The lemma is proved. �

Solutions of abstract evolution equations will be considered in the sense of Brézis
[2], that is we have the following definition.

Definition 2.2. Let f be in L1(0,T ;�). A continuous function w : [0,T ] → � is a
solution (or strong solution) of

ẇ(t)+Aw(t) = f (t) (2.17)

if w satisfies

(i) w(t) ∈ �(A), ∀t ∈ (0,T ),
(ii) w(t) is absolutely continuous (AC) on every compact set K ⊂ (0,T ) (therefore

ẇ(t) exists a.e. in (0,T )),
(iii) ẇ(t)+A(w(t)) = f (t), a.e. in (0,T ).

Moreover, w ∈ C([0,T ];�) is a weak solution of (2.17) if there exist sequences (fn) ∈
L1(0,T ;�) and (wn) ∈ C([0,T ];�) such that wn are strong solutions of

ẇn(t)+A
(
wn(t)

) = fn(t), (2.18)

fn → f in L1(0,T ;�), and wn → w uniformly in [0,T ].

We have from Theorem 3.4 of [2] the existence of weak solution for the prob-
lem (2.1).

In order to prove that this weak solution is in fact strong, we will look for a relation
between the solutions of (2.1) and the solutions of (1.2).

The problem (1.2) was studied in [1], where G is an operator

G : H1,0 −→ L2(0,	) (2.19)
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not necessarily local and h ∈ L2(0,T ;L2(0,	)). The problem can be written as the
abstract evolution problem in L2(0,	)

ż+�z = F(t,z), (2.20)

where F(t,z) = −G(z)+ h(t) and � : �(�) ⊂ L2(0,	) → L2(0,	) is the operator
given by

�z = −z′′ (2.21)

on the domain

�(�) = {
z ∈ H1,0 ∩H 2(0,	) : z′(	) ∈ ρ

(
z(	)

)}
. (2.22)

From Lemmas 2.1 and 2.2 of [1] we have that the operator � is strongly monotone,
that is, 〈

�z1 −�z2, z1 −z2
〉 ≥ ∣∣z′

1 −z′
2

∣∣2 (2.23)

and of subdifferential type, � = ∂ϕ, where ϕ : L2(0,	) → R ∪ {+∞} is a proper,
convex, and lower semicontinuous function defined by

ϕ(z) =



p
(
z(	)

)+ 1

2

∫ 	

0
z′(x)2 dx if z ∈ H1,0,

+∞ otherwise,
(2.24)

where p is given by

p(z) =
∫ z

0
−ρ(s)ds. (2.25)

We should observe that ϕ may assume negative values, but the following estimate is
true: ∣∣z′∣∣2 ≤ k1ϕ(z)+k2, ∀z ∈ H1,0, (2.26)

where k1, k2 are constants; in particular ϕ is bounded below.
Indeed, since |ρ(s)| is bounded (by a constant k), we have for z ∈ H1,0

p
(
z(	)

) ≥ −k|z(	)| = −k

∣∣∣∣
∫ 	

0
z′(x)dx

∣∣∣∣ ≥ −k

∫ 	

0

∣∣z′(x)
∣∣dx, (2.27)

and then ∫ 	

0

(
1

4
z′(x)2 −k2

)
dx ≤

∫ 	

0

(
1

2
z′(x)2 −k

∣∣z′(x)
∣∣)dx ≤ ϕ(z) (2.28)

implies the estimate (2.26).
When G is Lipschitz continuous and h ∈ L2(0,T ;L2(0,	)), it was proved, [1, Theo-

rems 3.2 and 4.1], that the solutions of (1.2) are strong, in particular z(t) ∈ �(�), for
every t ∈ (0,T ). Moreover, from Theorem 3.6 of [2] the solution z satisfies

√
t
dz

dt
(t) ∈ L2(0,T ;L2(0,	)

)
(2.29)
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and when z(0) ∈ �(ϕ) = H1,0,

dz

dt
(t) ∈ L2(0,T ;L2(0,	)

)
. (2.30)

Consider the following relations between the problems (2.1) and (1.2):

z(t,x) = u(t,x)+v(t,x)−u(t,	)ξ(x), (2.31)

G(z) = z(	)ξ, (2.32)

h(t,x) = g(t,x)+v(t,x)+u(t,	)ξ ′′(x), (2.33)

where ξ : [0,	] → R is a smooth function satisfying ξ(0) = 0, ξ(	) = 1, and ξ ′(	) = 0.
The operator G, given in (2.32), can be considered as an operator from H 1(0,	) with

values in L2(0,	), and also with values in H1,0. In both of these cases G is Lipschitz
continuous and satisfies

|G(z)| ≤ c
∣∣z′∣∣, (2.34)

since

|z(	)| =
∣∣∣∣
∫ 	

0
z′(x)dx

∣∣∣∣ ≤ ∥∥z′∥∥
L1 . (2.35)

It is easy to see that if (u,v) is a solution of (2.1) then z, given by (2.31), is a solution
of (1.2) with h given by (2.33) and with initial condition z(0) = u(0)+Sv(0).

Conversely, if z is a solution of (1.2), we consider the problem in H1,0 given by

du

dt
(t)+u(t)−J (t)u(t) = 0, u(0) = 0, (2.36)

where J (t)u(t) = G(u(t))+z(t).
Since J (t) : H1,0 → H1,0, for t > 0, is globally Lipschitz, this problem has existence

and uniqueness of solutions, see [2, Theorem 1.4]. If u(t) is this unique solution, then
considering v(t) given by the relation (2.31) and g by the relation (2.33) we have that
(u,v) satisfies the problem (2.1) with u(0) = 0 and v(0) = z(0).

Under these conditions we can prove the following result.

Theorem 2.3. If g ∈ L2(0,T ;L2(0,	)), then for every w0 = (u0,v0) ∈ � there exists
a unique strong solution w = (u,v) ∈ C([0,T ];�) of (2.1) such that w(0) = w0.
Moreover, the solution w = (u,v) satisfies

√
t
d

dt
(u+v)(t) ∈ L2(0,T ;L2(0,	)

)
(2.37)

and, for v(0) ∈ H1,0,

d

dt
(u+v)(t) ∈ L2(0,T ;L2(0,	)

)
. (2.38)
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Proof. Since z, given by (2.31), is a strong solution of (1.2), in particular z(t) ∈ �(�),
�(�) given in (2.22), for every t ∈ (0,T ). It is easy to see that (u,v) is a strong solution
of (2.1).

From (2.31)

d

dt
(u+v) = dz

dt
+v(t,	)ξ, v(t,	) = z(t,	), (2.39)

and z(t,	) ∈ L2(0,T ), according to the trace theorem for Lipschitz domain, [7, page 15],
therefore (2.37) and (2.38) follow, respectively, from (2.29) and (2.30). The proof is
complete. �

Although we are interested in studying the influence of the nonlinear boundary
condition in the problems, we should observe that we have existence of strong solution
in more general situations. In fact, we can consider

utt −uxx −utxx +q
(
t,x,u,ut

) = 0, 0 < x < 	, 0 < t < T ;
u(t,0) = 0, ux(t,	)+utx(t,	) = ρ

(
ut (t,	)

)
,

(2.40)

where
(q1) the application (t,x) → q(t,x,w) belongs to L2(0,T ;L2(0,	)), for every fixed

w ∈ �;
(q2) there exists k > 0, such that∣∣q(
t,x,w1

)−q
(
t,x,w2

)∣∣
L2(0,	) ≤ k

∥∥w1−w2
∥∥

�
, ∀t ∈ [0,T ], ∀w1,w2 ∈ �. (2.41)

This problem can be viewed as an abstract evolution equation in the Hilbert space �

ẇ+Aw+B(t,w) = 0, (2.42)

where B : [0,T ]×� → � is given by

B = (0,q). (2.43)

From the assumptions (q1) and (q2), we have that B satisfies
(B1) for every w ∈ �, the application t → B(t,w) belongs to L2(0,T ;�);
(B2) there exists k > 0, such that∥∥B(

t,w1
)−B

(
t,w2

)∥∥ ≤ k
∥∥w1 −w2

∥∥, ∀t ∈ [0,T ], ∀w1,w2 ∈ �. (2.44)

Under the above assumptions we have the following result.

Theorem 2.4. For every w0 ∈ � there exists a unique strong solution w ∈ C([0,T ];�)

of (2.42) satisfying w(0) = w0.

Proof. We use the method of Brézis [2]. Since, for every w ∈ C([0,T ];�),
B(t,w(t)) ∈ L2(0,T ;�), we can consider the sequence wn in C([0,T ];�), defined by
w0(t) = w0 and wn+1 is the weak solution of

ẇn+1(t)+A
(
wn+1(t)

) = −B
(
t,wn(t)

)
, wn+1(0) = w0 (2.45)
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which exists by Theorem 2.3. Using the first inequality of Lemma 3.1 of [2], we obtain

∥∥wn+1(t)−wn(t)
∥∥ ≤

∫ t

0

∥∥B(
σ,wn(σ )

)−B
(
σ,wn−1(σ )

)∥∥dσ

≤ k

∫ t

0

∥∥wn(σ)−wn−1(σ )
∥∥dσ,

(2.46)

therefore
∥∥wn+1(t)−wn(t)

∥∥ ≤ (kt)n

n!
∥∥w1 −w0

∥∥
L∞ . (2.47)

Thus, the sequence wn converges uniformly to w in [0,T ], so w is a weak solution of

ẇ(t)+A
(
w(t)

) = −B
(
t,w(t)

)
, w(0) = w0. (2.48)

Now, since B(t,w(t)) = (0,q(t, ·,w(t))) and it is easy to see that q(t, ·,w(t)) ∈
L2(0,T ;L2(0,	)), we have from Theorem 2.3 that w is a strong solution of (2.42).
The proof is complete. �

It is not difficult to see that the strong solutions, given by this theorem, depend
continuously on the initial data. More specifically, we have that there exists a positive
constant c such that

‖w(t)− w̃(t)‖L∞([0,T ];�) ≤ c
∥∥w0 − w̃0

∥∥
�
, (2.49)

where w(t) and w̃(t) are solutions of (2.42) with initial conditions w0 and w̃0, respec-
tively.

3. Existence of attractors in L2

We start by constructing an equivalent norm in the space �.

Lemma 3.1. If W(w) is given by

W(w) = W(u,v) =
∫ 	

0

[
1

2

(
u′)2 + 1

2
v2 +2βuv

]
dx, (3.1)

where

0 < β <
2

2	2 +1
, (3.2)

then W 1/2 is an equivalent norm in �.
Moreover, there exists a positive constant λ such that

∫ 	

0

[(
β	2 −1

)
f 2 −2βg2 −2βfg

]
dx ≤ −λ

(|f |2 +|g|2) ∀f,g ∈ L2(0,	). (3.3)
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Proof. Using Poincaré (|u| ≤ (	/
√

2)|u′|) and Schwarz inequalities, we have

− β	√
2

(∣∣u′∣∣2 +|v|2
)

≤
∫ 	

0
2βuvdx ≤ β	√

2

(∣∣u′∣∣2 +|v|2
)
. (3.4)

Using (3.2) we can see that

β	√
2

<
1

2
. (3.5)

Therefore, if η = 1/2−β	/
√

2, we have

η
(∣∣u′∣∣2 +|v|2

)
≤ W(u,v) ≤

(∣∣u′∣∣2 +|v|2
)
, (3.6)

then W 1/2 is an equivalent norm in �.
The second part of the lemma follows by noticing that
∫ 	

0

[(
β	2 −1

)
f 2 −2βg2 −2βfg

]
dx ≤ (

β	2 −1
)|f |2 −2β|g|2 +2β|f ||g| (3.7)

and, for β satisfying (3.2), the right-hand side of this inequality is a negative definite
form. �

Theorem 3.2. If g,h ∈ L∞(R+;L2(0,	)), then the problems (1.2) and (2.1) are
bounded dissipative. More precisely, if (u,v) and z are the solutions of (1.2) and (2.1),
with initial conditions (u0,v0) and z0, respectively, then there exist positive constants
c1,c2, and µ such that

∥∥(
u(t), v(t)

)∥∥
�

≤ c1
∥∥(

u0, v0
)∥∥

�
e−µt +c2, (3.8)

|z(t)| ≤ c1
∣∣z0

∣∣ e−µt +c2. (3.9)

Moreover, for z0 ∈ H1,0 and r positive, there exist positive constants a,b, with b = b(r)

depending on r , such that
∫ t+r

t

ϕ
(
z(s)

)
ds ≤ a

∣∣z0
∣∣2

e−µt +b, t ≥ 0. (3.10)

Proof. From the relation between the two problems the estimate (3.9) follows from
(3.8). To prove (3.8) it is enough to consider initial data in the domain �(A). Using
(2.1) and Poincaré inequality (|v|2 ≤ (	2/2)|v′|2), we obtain after an integration by
parts that for almost every t

Ẇ (t) = d

dt
W

(
u(t),v(t)

)

≤
∫ 	

0

[(
β	2 −1

)(
v′)2 −2β

(
u′)2 −2βu′v′]dx (3.11)

+[
2βu(	)+v(	)

]
(u+v)′(	)+

∫ 	

0
[2βu+v]g(t)dx. (3.12)
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The first integral, line (3.11), can be estimated using Lemma 3.1
∫ 	

0

[(
β	2 −1

)(
v′)2 −2β

(
u′)2 −2βu′v′]dx ≤ −λ

(∣∣u′∣∣2 + ∣∣v′∣∣2
)
. (3.13)

To estimate the terms in line (3.12), we observe that (u+v)′(	) satisfies the boundary
condition, so it is bounded by some constant M , then using (2.35) we can show that
there exists a positive constant c, such that, for every δ > 0

[
2βu(	)+v(	)

]
(u+v)′(	) ≤ c

(
δ
(∣∣u′∣∣2 + ∣∣v′∣∣2

)
+ 1

δ
M2

)
. (3.14)

Using Poincaré inequality we also obtain
∫ 	

0
(2βu+v)g(t)dx ≤ c

(
δ
(∣∣u′∣∣2 + ∣∣v′∣∣2

)
+ 1

δ
‖g‖2

)
. (3.15)

Choosing δ sufficiently small, we obtain positive constants µi = 1,2, and K , such
that

Ẇ (t) ≤ −µ1

(∣∣u′∣∣2 + ∣∣v′∣∣2
)
+K ≤ −µ2W(t)+K. (3.16)

Solving this differential inequality, we obtain

W(t) ≤ e−µ2tW(0)+ K

µ2
(3.17)

that implies (3.8).
In order to prove inequality (3.10) we have that � is the subdifferential of the

functional ϕ and ϕ(0) = 0, therefore ϕ(z) ≤ 〈�z, z〉. So, multiplying (1.2) by z we
obtain

1

2

d

dt
|z|2 +ϕ(z) ≤ −〈G(z), z〉+〈h, z〉. (3.18)

The operator G satisfies (2.34), then, using (2.26), we obtain for every δ > 0 a
constant M depending on δ such that∣∣〈G(

z(t)
)
,z(t)

〉∣∣ ≤ δϕ
(
z(t)

)+M
(|z(t)|2 +1

)
(3.19)

and, since

|〈h(t),z(t)〉| ≤ c
(|z(t)|2 +1

)
, (3.20)

we obtain by grouping the equivalent terms and choosing a convenient small value for
δ that

d

dt
|z(t)|2 +ϕ

(
z(t)

) ≤ a1 +a2|z(t)|2, (3.21)

for some positive constants a1, a2. Integrating this inequality from t to t +r we obtain
∫ t+r

t

ϕ
(
z(s)

)
ds ≤ |z(t)|2 +a1r +a2

∫ t+r

t

|z(s)|2 ds. (3.22)

This inequality and (3.9) imply (3.10). �
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Theorem 3.3. If h ∈ L∞(R+;L2(0,	)), then the solution operator Th(t) : L2(0,	) →
L2(0,	), associated to the solution of (1.2), is a compact operator for each t > 0.

Proof. Multiplying (1.2) by φ ∈ H1,0, we obtain〈
zt ,φ

〉 = zx(t,	)φ(	)− 〈
zx,φx

〉−〈G(z),φ〉+〈h,φ〉, (3.23)

therefore (3.10) and (3.23) imply that zt ∈ L2(0,T ;H ′
1,0) and

∫ T

0

∥∥zt∥∥2
H ′

1,0
dt ≤ C

(|z(0)|,T )
. (3.24)

To prove the compactness it is enough to consider initial data in a dense subset of
L2(0,	). Let B be the bounded set B = B(r)∩H1,0, where B(r) the ball of L2(0,	) with
center at zero and radius r , and Th(t)(z0) the solution of (1.2) with initial condition z0.

From (3.10) and (3.24),

B̄ = {
Th(·)

(
z0

);z0 ∈ B
}

(3.25)

is a bounded set in the Banach space

W =
{
v ∈ L2(0,T ;H1,0

);vt = dv

dt
∈ L2(0,T ;H ′

1,0

)}
. (3.26)

Therefore, from Theorem 5.1 of [6], B̄ is a precompact set in L2(0,T ;L2(0,	)). Then,
if (zn) is a sequence in B, taking subsequences if necessary, we can suppose that
(Th(·)(zn)) converges to some function z(·) ∈ L2(0,T ;L2(0,	)), and also, for almost
every τ ∈ (0,T ),

Th(τ)
(
zn

) −→ z(τ ) as n −→ ∞. (3.27)

Consider now the evolution operator S(·)(z,h) given by

S(t)(z,h) = (
Th(t)z,ht

)
, (3.28)

where ht is the translation of h, ht (τ ) = h(t +τ). From [8], S(t) : t ≥ 0 is a dynamical
system. Therefore, for t > 0, there exists τ ∈ (0, t) such that (3.27) is true, then(

Th(t)zn,ht

) = S(t)
(
zn,h

) = S(t −τ)S(τ)
(
zn,h

)
= S(t −τ)

(
Th(τ)zn,hτ

) −→ S(t −τ)
(
z(τ ),hτ

)
= (

Thτ (t −τ)z(τ ),ht

) (3.29)

implies the compactness of Th(t).
Denoting by vu0(t) the dynamical system given by the problem (2.1), when the initial

condition u(0) = u0 ∈ H1,0 is fixed. Using Theorems 3.2 and 3.3 and the relation (2.31),
we can state the next result that is a consequence of Theorem 2.2 of Ladyzhenskaya [5].

�

Theorem 3.4. Under the above conditions the two dynamical systems z(t) and vu0(t)

have compact global attractors in L2(0,	).
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4. Existence of attractors in H1,0

We start doing some estimates of the solution z(t) of (1.2) when the initial condi-
tion z(0) ∈ H1,0. Using Theorem 3.6 of [2], we have that t → ϕ(z(t)) is absolutely
continuous and

d

dt
ϕ
(
z(t)

) = 〈
�z(t),zt (t)

〉
, a.e., (4.1)

then
d

dt
ϕ
(
z(t)

) = −|�z(t)|2 +〈�z(t),−G(z)+h〉, (4.2)

and integrating on t we obtain
∫ t

0
|�z(s)|2 ds+ϕ

(
z(t)

)

≤ ϕ
(
z(0)

)+
∫ t

0
|�z(s)| ∣∣h(s)−G

(
z(s)

)∣∣ds
≤ ϕ

(
z(0)

)+
∫ t

0

1

2
|�z(s)|2 ds+

∫ t

0

∣∣G(
z(s)

)∣∣2
ds+

∫ t

0
|h(s)|2 ds.

(4.3)

Using (2.26) and (2.34), we obtain, for t ∈ [0,T ], that

1

2

∫ t

0
|�z(s)|2 ds+ϕ

(
z(t)

) ≤ ϕ
(
z(0)

)+c1 +c2

∫ t

0
ϕ
(
z(s)

)
ds (4.4)

for some constants c1,c2.
Thus, from Gronwall inequality, there exists a constant C(ϕ(z(0)),T ) depending on

ϕ(z(0)) and T such that

ϕ
(
z(t)

) ≤ C
(
ϕ
(
z(0)

)
,T

)
, (4.5)∫ t

0
|�z(s)|2 ds ≤ C

(
ϕ
(
z(0)

)
,T

)
, (4.6)

in particular, we have z ∈ L∞(0,T ;H1,0)∩L2(0,T ;H 2(0,	)).
Moreover, if z1(t) and z2(t) are solutions with initial condition on H1,0 we have,

using (2.23),
∣∣(z1(t)

)′ −(
z2(t)

)′∣∣2 ≤ 〈
�z1(t)−�z2(t),z1(t)−z2(t)

〉
= −1

2

d

dt

∣∣z1(t)−z2(t)
∣∣2 − 〈

G
(
z1(t)

)−G
(
z2(t)

)
,z1(t)−z2(t)

〉
.

(4.7)

Since G is Lipschitz, we obtain after an integration on t

1

2

∫ t

0

∣∣∣(z1(s)
)′ −(

z2(s)
)′∣∣∣2

ds+ 1

2

∣∣z1(t)−z2(t)
∣∣2

≤ 1

2

∣∣z1(0)−z2(0)
∣∣2 +c

∫ t

0

∣∣z1(s)−z2(s)
∣∣2

ds,

(4.8)
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therefore, from Gronwall inequality, there exists a constant C depending on T , such
that

∣∣z1(t)−z2(t)
∣∣ ≤ C

∣∣z1(0)−z2(0)
∣∣, (4.9)

∫ t

0

∣∣(z1(s)
)′ −(

z2(s)
)′∣∣2

ds ≤ C
∣∣z1(0)−z2(0)

∣∣2 (4.10)

for t ∈ [0,T ].
Now we study the evolution of the problem (1.2) in H1,0. Our first result is concerned

with continuity with respect to time and initial data.

Lemma 4.1. The solution operator, z(t) = T (t)z0, of the problem (1.2) is continuous
in the variables t and z0 in the H1,0-norm. More precisely, the operator

R
+ ×H1,0 −→ H1,0,

(
t,z0

) −→ T (t)z0, (4.11)

is continuous separately in each variable.

Proof. Fix z0 ∈ H1,0 and let (tn) be a sequence in R
+ converging to t , we know that the

solution (z(tn)) converges to z(t) in L2(0,	) and, using Lemma 3.6 of [2], (ϕ(z(tn)))

converges to ϕ(z(t)). Then, from (2.26), |(z(tn))′| is bounded, therefore, there exists a
subsequence of (z(tn)), that we keep denoting by (z(tn)), that converges weakly to z(t)

in H1,0.
First of all, we claim that the weak convergence implies the convergence of (z(tn,	)).

In fact considering a smooth function φ such that φ(0) = 0 and φ(	) �= 0, we obtain
by integrating by parts

∫ 	

0
z′(tn,x)

φ(x)dx = z
(
tn,	

)
φ(	)−

∫ 	

0
z
(
tn,x

)
φ′(x)dx,

∫ 	

0
z′(t,x)φ(x)dx = z(t,	)φ(	)−

∫ 	

0
z(t,x)φ′(x)dx.

(4.12)

Thus, passing to the limit, z(tn,	) → z(t,	), what proves our claim. Next, since p is
continuous and ∥∥z(tn)∥∥2

H1,0
= 2

[
ϕ
(
z
(
tn

))−p
(
z
(
tn,	

))]
, (4.13)

we have ‖z(tn)‖H1,0 → ‖z(t)‖H1,0 that implies the strong convergence of (z(tn)) to z(t)

and the continuity of the operator in the variable t . �

Now we prove the continuity of the operator in the second variable. In fact, what we
have is a stronger result:

Theorem 4.2. If (z0n) is a bounded sequence in H1,0 and converges to z0 in the
L2(0,	)-norm, then the corresponding solutions of (1.2) zn(t) = T (t)z0n converges to
z(t) = T (t)z0 in H1,0, for fixed t > 0, as n → ∞. In particular, for t > 0, the operator
T (t) : H1,0 → H1,0 is compact.
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Proof. We have (ϕ(z0n)) bounded, then from (4.5) and (2.26) both sequences (ϕ(zn(t)))

and (|(zn(t))′|) are uniformly bounded for t ∈ [0,T ]. The convergence z0n → z0 in
L2(0,	) and (4.10) imply the convergence

zn −→ z in L2(0,T ;H1,0
)
, (4.14)

therefore zn(τ ) → z(τ ) in H1,0 for almost every τ ∈ [0,T ].
For t ∈ [0,T ],∣∣ϕ(

zn(t)
)−ϕ

(
z(t)

)∣∣ ≤ ∣∣ϕ(
zn(t)

)−ϕ
(
zn(τ )

)∣∣+ ∣∣ϕ(
zn(τ )

)−ϕ
(
z(τ )

)∣∣
+ ∣∣ϕ(

z(τ )
)−ϕ

(
z(t)

)∣∣. (4.15)

The first term in the right-hand side satisfies

ϕ
(
zn(t)

)−ϕ
(
zn(τ )

) =
∫ t

τ

d

ds
ϕ
(
zn(s)

)
ds (4.16)

and from (4.2)

d

dt
ϕ
(
z(t)

) ≤ ∣∣G(
z(t)

)∣∣2 +|h(t)|2, (4.17)

therefore the sequences (d/dt (ϕ(zn(t)))) are uniformly bounded in L2(0,	) for every
t ∈ [0,T ]. Then (4.15) implies ϕ(zn(t)) → ϕ(z(t)) for every t ∈ [0,T ], as n → ∞.
Therefore, the same argument we have just used in the first part of the theorem implies
that zn(t) → z(t) in H1,0-norm, as n → ∞. �

Theorem 4.3. If h ∈ L∞(0,∞;L2(0,	)), then there exists a bounded set in H1,0 that
attracts all the solutions of the problem (1.2) with initial condition in a subset of H1,0

that it is bounded in L2(0,	). In particular, the problem (1.2) is bounded dissipative
in H1,0.

Proof. If z(t) is a solution of the problem (1.2) with initial condition in H1,0 we have,
using (4.17), that ϕ(z(t)) satisfies the differential inequality

d

dt
ϕ
(
z(t)

) ≤ a1ϕ
(
z(t)

)+a2 +|h(t)|2, t > 0, (4.18)

where a1,a2 are constants.
For solution with initial conditions in H1,0 and bounded in L2(0,	), (3.10) implies

that
∫ t+r

t
ϕ(z(s))ds is less than a fixed constant for t sufficiently large, then we can use

the uniform Gronwall lemma, see [9, page 89], to obtain the result of the theorem. �

As a consequence of the two previous theorems and the relation (2.31) we have the
following theorem.

Theorem 4.4. Under the above conditions, the dynamical system z(t) given by (1.2)
has a compact global attractor in H1,0. Moreover, for v(0) ∈ H1,0, u(t)+v(t) given by
(2.1) has also a compact global attractor in H1,0.
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[7] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Édi-
teurs, Paris, 1967 (French). MR 37#3168.

[8] G. R. Sell, Nonautonomous differential equations and topological dynamics. I. The basic
theory, Trans. Amer. Math. Soc. 127 (1967), 241–262. MR 35#3187a. Zbl 189.39602.

[9] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Applied
Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1988. MR 89m:58056.
Zbl 662.35001.

Aloisio F. Neves: IMECC/UNICAMP, CP 6065, 13081-970 Campinas, SP, Brazil
E-mail address: aloisio@ime.unicamp.br

http://www.ams.org/mathscinet-getitem?mr=98i:35098
http://www.emis.de/cgi-bin/MATH-item?887.35078
http://www.ams.org/mathscinet-getitem?mr=50:1060
http://www.emis.de/cgi-bin/MATH-item?252.47055
http://www.ams.org/mathscinet-getitem?mr=89g:58059
http://www.emis.de/cgi-bin/MATH-item?642.58013
http://www.ams.org/mathscinet-getitem?mr=92k:58040
http://www.emis.de/cgi-bin/MATH-item?755.47049
http://www.ams.org/mathscinet-getitem?mr=41:4326
http://www.emis.de/cgi-bin/MATH-item?189.40603
http://www.ams.org/mathscinet-getitem?mr=37:3168
http://www.ams.org/mathscinet-getitem?mr=35:3187a
http://www.emis.de/cgi-bin/MATH-item?189.39602
http://www.ams.org/mathscinet-getitem?mr=89m:58056
http://www.emis.de/cgi-bin/MATH-item?662.35001
mailto:aloisio@ime.unicamp.br

