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We introduce the notion of asymptotically almost nonexpansive curves which include
almost-orbits of commutative semigroups of asymptotically nonexpansive type map-
pings and study the asymptotic behavior and prove nonlinear ergodic theorems for such
curves. As applications of our main theorems, we obtain the results on the asymptotic
behavior and ergodicity for a commutative semigroup of non-Lipschitzian mappings
with nonconvex domains in a Hilbert space.

1. Introduction

LetH be a real Hilbert space with norm ‖·‖ and inner product (·, ·). LetC be a nonempty
subset of H and G be a commutative semitopological semigroup with identity. In this
case, (G,�) is a directed system when the binary relation “�” on G is defined by b � a

if and only if there is c ∈G such that a+c = b. Let � = {T (t) : t ∈G} be a semigroup
acting on C, that is, T (t + s)x = T (t)T (s)x for all t, s ∈ G and x ∈ C. Recall that a
semigroup � on C is said to be

(a) nonexpansive if ‖T (t)x−T (t)y‖ ≤ ‖x−y‖ for x,y ∈ C and t ∈G,
(b) asymptotically nonexpansive, [9], if there exists a function k :G �→ [0,∞) with

lim supt∈Gkt ≤ 1 such that∥∥T (t)x−T (t)y
∥∥≤ kt‖x−y‖ (1.1)

for x,y ∈ C and t ∈G,
(c) of asymptotically nonexpansive type, [9], if for each x ∈ C, there is a function

r(·,x) :G �→ [0,∞) with limt∈G r(t,x)= 0 such that∥∥T (t)x−T (t)y
∥∥≤ ‖x−y‖+r(t,x) ∀y ∈ C, t ∈G, (1.2)

where limt∈Gα(t) denotes the limit of a net α(·) on the directed system (G,�).
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It is easily seen that (a)⇒(b)⇒(c) and that both the inclusions are proper (cf. [9,
page 112]).

In 1975, Baillon [1] proved the first nonlinear mean ergodic theorem for nonexpan-
sive mappings in a Hilbert space: let C be a nonempty closed convex subset of a Hilbert
space H and let T be a nonexpansive mapping of C into itself. If the set F(T ) of fixed
points of T is nonempty, then the Cesáro means

Sn(x)= 1

n

n−1∑
k=0

T kx (1.3)

converge weakly as n→ ∞ to a fixed point y of T for each x ∈ C. In this case, letting
y = Px for each x ∈ C, P is a nonexpansive retraction of C onto the fixed point
set F(T ) of T such that PT = T P = P and Px ∈ conv{T nx : n = 0,1,2, . . . } for
each x ∈ C, where convA denotes the closure of the convex hull of A. The analogous
results are given for nonexpansive semigroups by Baillon and Brézis [2] and Brézis and
Browder [3]. In [13], Mizoguchi and Takahashi proved a nonlinear ergodic retraction
theorem for Lipschitzian semigroups by using the notion of submean.

In this paper, we introduce the notion of asymptotically almost nonexpansive curves
which include almost-orbits of commutative semigroups of asymptotically nonexpan-
sive type mappings, and we prove nonlinear ergodic theorems for such curves. As
applications of our main theorems, we obtain the results on the asymptotic behavior
and ergodicity for a commutative semigroup of non-Lipschitzian mappings with non-
convex domains in a Hilbert space. Our results generalize and improve the previously
known results of Baillon [1], Baillon and Brézis [2], Hirano and Takahashi [6], Ishihara
and Takahashi [7], Lau, Nishiura, and Takahashi [10], Li and Ma [11, 12], Mizoguchi
and Takahashi [13], Takahashi [14, 15], Takahashi and Zhang [16], and Tan and Xu
[17] in many directions.

2. Preliminaries and notations

Throughout this paper, let H be a real Hilbert space with norm ‖ ·‖ and inner product
(·, ·). Let G be a commutative semitopological semigroup with identity and let m(G)
be the Banach space of all bounded real-valued functions on G with the supremum
norm. For each s ∈G and f ∈m(G), we define rsf in m(G) given by(

rsf
)
(t)= f (t+s) ∀t ∈G. (2.1)

Let X be a subspace of m(G) and µ be an element of X∗ (the dual space of X). Then,
we denote by µ(f ) the value of µ at f ∈ X. To specify the variable t , we write the
value µ(f ) by µ(t)〈f (t)〉 or

∫
f (t)dµ(t). When X contains a constant 1, an element µ

of X∗ is called a mean on X if ‖µ‖ = µ(1)= 1. Further, let X be invariant under rs for
all s ∈ G. Then, a mean µ on X is said to be invariant if µ(rsf ) = µ(f ) for all s ∈ G

and f ∈ X. For s ∈ G, we can define a point evaluation δs by δs(f ) = f (s) for every
f ∈ m(G). A convex combination of point evaluations is called a finite mean on G.
Recently, the notion of the almost nonexpansive curve was introduced by Rouhani [5]
and Kada and Takahashi [8].
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Let u(·) : G �→ H be a function, in what follows we refer to such u(·) as a curve
in H . A bounded function u is called an almost nonexpansive curve if there exists a
function ε :G×G→ R with lims·t∈G ε(s, t)= 0, such that

∥∥u(h+s)−u(h+ t)
∥∥2 ≤ ∥∥u(s)−u(t)

∥∥2 +ε(s, t) ∀s, t,h ∈G. (2.2)

In the case ε(s, t)= 0 for all s, t ∈G, u is called a nonexpansive curve.
Now, we define the concept of the asymptotically almost nonexpansive curve.

Definition 2.1. The curve u(·) is said to be asymptotically almost nonexpansive if the
following conditions are satisfied:

(1) ‖u(h+ t)− u(h+ s)‖2 ≤ ‖u(t)− u(s)‖2 + ε(t, s,h) for all t, s,h ∈ G, where
ε(t, s,h)≥ 0 for all t, s,h ∈G;

(2) for an arbitrary ε > 0 there exists t0 ∈ G, and for each t � t0 there exists
ht = h(ε, t) ∈G such that

ε(t, s,h) < ε ∀t � t0, s � t0, h � ht . (2.3)

Note that, if u(·) is bounded then condition (1) is equivalent to

‖u(h+ t)−u(h+s)‖ ≤ ‖u(t)−u(s)‖+ε1(t, s,h) ∀t, s,h ∈G, (2.4)

where ε1(t, s,h) satisfies the same condition (2) as ε(t, s,h). We denote by L(u) the
following subset (possibly empty) of H :

L(u)=
{
z ∈H : lim

t∈G
∥∥u(t)−z

∥∥ exists
}
. (2.5)

Throughout the rest of this paper, u(·) is a bounded asymptotically almost nonex-
pansive curve and X is a subspace of m(G) containing constants invariant under rs for
each s ∈ G. Furthermore, suppose that for each x ∈ H , the function t �→ ‖u(t)−x‖2

is in X. Then by Riesz theorem, there exists a unique element uµ in H such that

µt

(
u(t),x

)= (
uµ,x

) ∀x ∈H. (2.6)

We denote uµ by µt 〈u(t)〉. If µ is a finite mean on G,

µ=
n∑
i=1

aiδti

(
ti ∈G, ai ≥ 0, 1 ≤ i ≤ n,

n∑
i=1

ai = 1

)
, (2.7)

then

µt

〈
u(t)

〉= n∑
i=1

aiu
(
ti
)
. (2.8)

We denote by ωw(u) the set of all weak limits of subnets of the net {u(t) : t ∈G}.
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3. Asymptotic behavior of curves

We begin with the following lemmas and proposition which play an important role in
the proof of our main theorems.

Lemma 3.1. Let u(·) be a bounded asymptotically almost nonexpansive curve. Then
the set L(u) (possibly empty) is closed and convex.

Proof. We can show the closedness from this inequality,∣∣‖u(t)−x‖−‖u(s)−x‖∣∣
= ∣∣‖u(t)−x‖−∥∥u(t)−xn

∥∥+∥∥u(t)−xn
∥∥−∥∥u(s)−xn

∥∥+∥∥u(s)−xn
∥∥−‖u(s)−x‖∣∣

≤ ∣∣‖u(t)−x‖−∥∥u(t)−xn
∥∥∣∣+∣∣∥∥u(t)−xn

∥∥−∥∥u(s)−xn
∥∥∣∣+∣∣∥∥u(s)−xn

∥∥−‖u(s)−x‖∣∣
≤ 2

∥∥xn−x
∥∥+ ∣∣∥∥u(t)−xn

∥∥−∥∥u(s)−xn
∥∥∣∣.

(3.1)

And also, the convexity follows from the equality

∥∥u(t)−(λq1 +(1−λ)q2
)∥∥2 = λ

∥∥u(t)−q1
∥∥2 +(1−λ)

∥∥u(t)−q2
∥∥2

−λ(1−λ)
∥∥q1 −q2

∥∥2
.

(3.2)

�

Proposition 3.2. The set
⋂

s∈G conv{u(t) : t � s}∩L(u) consists of at most one point.

Proof. Suppose that L(u) �= ∅. Let p be the unique asymptotic center of {u(t) : t ∈G}
in L(u) and x ∈ ⋂s∈G conv{u(t) : t � s}∩L(u). We conclude the proof by showing
that x = p. Since∥∥u(t)−x

∥∥2 = ∥∥u(t)−p
∥∥2 +‖x−p‖2 +2

(
u(t)−p,p−x

)
, (3.3)

we have

2 lim
t∈G

(
u(t)−p,p−x

)+‖p−x‖2 ≥ 0. (3.4)

For any ε > 0, there exists t0 ∈G such that

2
(
u(t)−p,p−x

)+‖p−x‖2 ≥ −ε ∀t � t0. (3.5)

Since x ∈ conv{u(t) : t � t0}, it follows that

2(x−p,p−x)+‖p−x‖2 ≥ −ε, (3.6)

that is, ‖p−x‖2 ≤ ε. Since ε > 0 is arbitrary, we have x = p. This completes the proof.
�

Since G is commutative, there exists a net {λα : α ∈ I } of finite means on G such that

lim
α∈I

∥∥λα −r∗
s λα

∥∥= 0 ∀s ∈G, (3.7)

where I is a directed set and r∗
s is the conjugate of rs (see [4]).
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Lemma 3.3. λα(t)〈u(t+h)〉 converges weakly to an element p in
⋂

s∈G conv{u(t) : t�s}
∩L(u) uniformly in h ∈G.

Proof. For any {tα} ∈ G, let W be the set of all weak limit points of λα(t)〈u(t+ tα)〉.
In view of Proposition 3.2, it suffices to show that

W ⊂
⋂
s∈G

conv{u(t) : t � s}∩L(u). (3.8)

To show this, let {tαβ : β ∈ J } be a subnet of {tα : α ∈ B} such that λαβ (t)〈u(t+ tαβ )〉
converges weakly to some z in H , where J is a directed set. For any ε > 0, there exists
tε ∈G such that for any t � tε , there exists ht ∈G such that

ε(t, s,h) < ε ∀t, s � tε, h � ht . (3.9)

Then

‖u(h+ t)−z‖2 −‖u(t)−z‖2 −2
(
u(h+ t)−u(t),λαβ (s)

〈
u
(
s+ tαβ + tε

)〉−z
)

=
(
u(h+ t)−u(t),u(h+ t)+u(t)−2λαβ (s)

〈
u
(
s+ tαβ + tε

)〉)
= λαβ (s)

(∥∥u(h+ t)−u
(
s+ tαβ + tε

)∥∥2 −∥∥u(t)−u
(
s+ tαβ + tε

)∥∥2
)

≤ λαβ (s)
(∥∥u(h+ t)−u

(
h+s+ tαβ + tε

)∥∥2 −∥∥u(t)−u
(
s+ tαβ + tε

)∥∥2
)

+4M2
∥∥λαβ −r∗

hλαβ

∥∥
< ε+4M2

∥∥λαβ − l∗hλαβ
∥∥

(3.10)

for all t � tε and h � ht , where M = supt∈G ‖u(t)‖. Note that λαβ (t)〈u(t + tαβ + tε)〉
converges weakly to z. For fixed t � tε and h � ht , taking the limit for β ∈ J , we have

‖u(h+ t)−z‖2 −‖u(t)−z‖2 ≤ ε ∀t � tε, h � ht . (3.11)

Therefore,

inf
s∈G

sup
τ�s

‖u(τ)−z‖2 ≤ ‖u(t)−z‖2 +ε ∀t � tε, (3.12)

and hence

inf
s∈G

sup
τ�s

‖u(τ)−z‖2 ≤ sup
s∈G

inf
τ�s

‖u(τ)−z‖2 +ε. (3.13)

Since ε > 0 is arbitrary, we have z ∈ L(u).
Now, we show that z ∈⋂s∈G conv{u(t) : t � s}. For each s ∈G, since λαβ (t)〈u(t+

tαβ + s)〉 ∈ conv{u(t) : t � s}, we get z ∈ ⋂
s∈G conv{u(t) : t � s}. This completes

the proof. �

Now, we can prove the ergodic convergence theorem for asymptotically almost
nonexpansive curves.

A net {µα : α ∈ A} of continuous linear functionals on X is called strongly regular
if it satisfies the following conditions:
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(a) supα∈A ‖µα‖<+∞;
(b) limα∈Aµα(1)= 1;
(c) limα∈A ‖µα −r∗

s µα‖ = 0 for every s ∈G.

Theorem 3.4. Let {µα : α ∈ A} be a strongly regular net of continuous linear functional
on X. Then there exists p ∈⋂s∈G conv{u(t) : t � s}∩L(u) such that

w− lim
α∈A

∫
u(t+h)dµα(t)= p uniformly in h ∈G. (3.14)

Moreover, uµ = p for each invariant mean µ.

Proof. By Lemma 3.3, there exists p ∈ ⋂s∈G conv{u(t) : t � s}⋂L(u) and for any
ε > 0 and y0 ∈H with ‖y0‖ = 1, there exists α0 ∈ B such that∣∣(λα0(t)〈u(t+h)〉−p,y0

)∣∣< ε

supα∈A ‖µα‖ ∀h ∈G. (3.15)

Suppose that

λα0 =
n∑
i=1

aiδti , ti ∈G, ai ≥ 0, i = 1,2, . . . ,n,
n∑
i=1

ai = 1. (3.16)

Since {µα : α ∈ A} is strongly regular, there exists α1 ∈ A such that∣∣µα(1)−1
∣∣< ε

(‖p‖+1)
,

∥∥µα −r∗
si
µα

∥∥< ε

M
, 1 ≤ i ≤ n, ∀α � α1,

(3.17)

where M = sup{‖u(t)‖ : t ∈G}. Since for all α � α1, h ∈G,∣∣∣∣
(∫

λα0(t)
〈
u(t+s+h)

〉
dµα(s)−p,y0

)∣∣∣∣
=
∣∣∣∣
∫ (

λα0(t)
〈
u(t+s+h)

〉−p,y0
)
dµα(s)−

(
p,y0

)(
µα(1)−1

)∣∣∣∣
≤ sup

α∈A
∥∥µα

∥∥ sup
s∈G

∣∣(λα0(t)
〈
u(t+s+h)

〉−p,y0
)∣∣+ε ≤ 2ε,

∣∣∣∣
(∫

u(s+h)dµα(s),y0

)
−
(∫

λα0(t)
〈
u(t+s+h)

〉
dµα(s),y0

)∣∣∣∣
=
∣∣∣∣∣
(∫ (

u(s+h)−
n∑
i=1

aiu
(
ti +s+h

))
dµα(s),y0

)∣∣∣∣∣
≤

n∑
i=1

aiM
∥∥µα −r∗

ti
µα

∥∥< ε.

(3.18)

Thus, we obtain, for all α � α1,h ∈G,∣∣∣∣
(∫

u(s+h)dµα(s)−p,y0

)∣∣∣∣< 3ε. (3.19)
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This completes the proof. �

Theorem 3.5. Let u(·) be a bounded asymptotically almost nonexpansive curve. Then
the following conditions are equivalent:

(1) w− limt∈Gu(t) exists;
(2) ωw(u)⊂ L(u);
(3) w− limt∈G(u(h+ t)−u(t))= 0 for every h ∈G.

Proof. (3)⇒(2). Let ε > 0. Then there exists tε ∈ G and for each t � tε there exists
ht ∈G such that

ε(t, s,h) < ε ∀t, s � tε, h � ht . (3.20)

Let z ∈ ωw(u). Then we can take a subnet {u(tα) : α ∈ J } with tα � tε for each
α ∈ J and

w− lim
α∈J u

(
tα
)= z. (3.21)

Since L(u) is nonempty by Lemma 3.3, let p ∈ L(u). Since for each t � tε and h � ht ,∥∥u(h+ tα
)−p

∥∥2 −∥∥u(tα)−p
∥∥2 +2

(
u
(
h+ tα

)−u
(
tα
)
,p−z

)
= ∥∥u(h+ tα

)−z
∥∥2 −∥∥u(tα)−z

∥∥2

= ∥∥u(h+ tα
)−u(h+ t)

∥∥2 +∥∥u(h+ t)−z
∥∥2

+2
(
u
(
h+ tα

)−u(h+ t),u(h+ t)−z
)−∥∥u(tα)−z

∥∥2

≤ ∥∥u(tα)−u(t)
∥∥2 +ε+∥∥u(h+ t)−z

∥∥2

+2
(
u
(
h+ tα

)−u(h+ t),u(h+ t)−z
)−∥∥u(tα)−z

∥∥2

= ∥∥u(h+ t)−z
∥∥2 +∥∥u(t)−z

∥∥2 +2
(
u
(
tα
)−z,z−u(t)

)
+2

(
u
(
h+ tα

)−u(h+ t),u(h+ t)−z
)+ε,

(3.22)

for fixed t � tε and h � ht . Taking the limit for α ∈ J , we have∥∥u(h+ t)−z
∥∥2 ≤ ∥∥u(t)−z

∥∥2 +ε. (3.23)

This implies z ∈ L(u) in the same way as in Lemma 3.3.
(2)⇒(1). Since ωw(u) ⊂ ⋂

s∈G conv{u(t) : t ≥ s}, ωw(u) is a singleton from
Proposition 3.2. This implies (1) holds.

(1)⇒(3). It is clear. �

4. Asymptotic behavior of almost-orbits

In this section, using the main results in Section 3, we prove the ergodic theorems and
weak convergence theorems for almost-orbits of commutative semigroups of asymp-
totically nonexpansive type mappings with nonconvex domains.
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Let C be a nonempty subset of a Hilbert space H and � = {T (t) : t ∈G} be a family
of mappings from C into itself. Recall that � is said to be a commutative semigroup
of asymptotically nonexpansive type mappings on C if the following conditions are
satisfied:

(a) T (t+s)x = T (t)T (s)x for all t, s ∈G and x ∈ C;
(b) for each x ∈ C and t ∈G, there exists α(t,x)≥ 0 such that∥∥T (t)x−T (t)y

∥∥≤ ‖x−y‖+α(t,x) ∀y ∈ C, (4.1)

with

lim
t∈Gα(t,x)= 0 ∀x ∈ C. (4.2)

A function u(·) :G �→ C is said to be an almost-orbit of � = {T (t) : t ∈G} if

lim
t∈G

[
sup
h∈G

∥∥u(h+ t)−T (h)u(t)
∥∥]= 0. (4.3)

Throughout the rest of this section, � = {T (t) : t ∈ G} is a commutative semigroup
of asymptotically nonexpansive type mappings on C, u(·) : G �→ C is a bounded
almost-orbit of � = {T (t) : t ∈ G}, and X is a subspace of m(G) containing constants
invariant under rs for each s ∈ G. Furthermore, suppose that for each x ∈ H , the
function t �→ ‖u(t)−x‖2 is in X. Denote by F(�) the set of common fixed points of
� = {T (t) : t ∈G}.

We begin with the following lemmas.

Lemma 4.1. Let u(·) be a bounded almost-orbit of the commutative semigroup � =
{T (t) : t ∈ G} of asymptotically nonexpansive type mappings on C. Then it is an
asymptotically almost nonexpansive curve.

Proof. Put ϕ(t)= suph∈G ‖u(h+ t)−T (h)u(t)‖. Then limt∈Gϕ(t)= 0. Since∥∥u(h+ t)−u(h+s)
∥∥≤ ∥∥u(h+ t)−T (h)u(t)

∥∥+∥∥T (h)u(t)−T (h)u(s)
∥∥

+∥∥u(h+s)−T (h)u(s)
∥∥

≤ ϕ(t)+ϕ(s)+α
(
h,u(t)

)+∥∥u(t)−u(s)
∥∥,

(4.4)

for every h, t, s ∈G. It is easily seen that u(·) is an asymptotically almost nonexpansive
curve. �

Lemma 4.2. If u(·) and v(·) are almost-orbits of �, then limt∈G ‖u(t)− v(t)‖ exists.
Furthermore, we have F(�)⊆ L(u).

Proof. Set

ϕ(t)= sup
s∈G

∥∥u(s+ t)−T (s)u(t)
∥∥,

ψ(t)= sup
s∈G

∥∥v(s+ t)−T (s)v(t)
∥∥. (4.5)
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Then, limt∈Gϕ(t)= limt∈Gψ(t)= 0. Since for each t, s ∈G,∥∥u(s+ t)−v(s+ t)
∥∥≤ ∥∥u(s+ t)−T (s)u(t)

∥∥+∥∥T (s)u(t)−T (s)v(t)
∥∥

+∥∥v(s+ t)−T (s)v(t)
∥∥

≤ ϕ(t)+ψ(t)+α
(
s,u(t)

)+∥∥u(t)−v(t)
∥∥,

inf
s∈G

sup
τ�s

∥∥u(τ)−v(τ)
∥∥≤ ϕ(t)+ψ(t)+∥∥u(t)−v(t)

∥∥.
(4.6)

It follows that

inf
s∈G

sup
τ�s

∥∥u(τ)−v(τ)
∥∥≤ sup

s∈G
inf
τ�s

∥∥u(τ)−v(τ)
∥∥, (4.7)

which complete the proof of the first part. The second part is obvious. �

We can prove the following proposition from Lemma 4.2 and Proposition 3.2.

Proposition 4.3. The set
⋂

s∈G conv{u(t) : t � s}∩F(�) consists of at most one point.

From Theorem 3.4, we can prove the following theorem which is an extension of
the result of Tan and Xu [17] in many directions.

Theorem 4.4. Let C be a nonempty subset of H , � = {T (t) : t ∈ G} a commutative
semigroup of asymptotically nonexpansive type mappings on C, and u(·) be a bounded
almost-orbit of �. If {µα : α ∈ A} is a strongly regular net of continuous linear func-
tional on X, then

w− lim
α∈A

∫
u(t+h)dµα(t)= p ∈

⋂
s∈G

conv
{
u(t) : t � s

}⋂
L(u) (4.8)

uniformly in h ∈G. Further, if each T (t) is continuous and
⋂

s∈G conv{u(t) : t � s} ⊂
C, then p ∈ F(�).

Proof. By Lemma 4.1 and Theorem 3.4, we need only to prove that if each T (t) is
continuous and

⋂
s∈G conv{u(t) : t � s} ⊂ C, then p ∈ F(�). By assumption, we have

p ∈ C. Let 0 < ε ≤ 1. Then there exists t1 ∈G such that

ϕ(t)= sup
h∈G

∥∥T (h)u(t)−u(h+ t)
∥∥< ε

8d
,

α(t,p) <
ε

8d
,

(4.9)

for each t � t1, where d = 1+sup{‖u(t)−p‖ : t ∈G}. Since

‖T (s)p−p‖2 +2
(
u
(
s+ t+ t1

)−p,p−T (s)p
)+∥∥u(s+ t+ t1

)−p
∥∥2

= ∥∥u(s+ t+ t1
)−T (s)u

(
t+ t1

)∥∥2 +∥∥T (s)u(t+ t1
)−T (s)p

∥∥2

+2
(
u
(
s+ t+ t1

)−T (s)u
(
t+ t1

)
,T (s)u

(
t+ t1

)−T (s)p
)

≤ ∥∥u(t+ t1
)−p

∥∥2 +ε

(4.10)
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for s � t1, this implies that

‖T (s)p−p‖2µα(1)+2µα(t)
(
u
(
s+ t+ t1

)−p,p−T (s)p
)

≤ (
µα −r∗

s µα

)
(t)
∥∥u(t+ t1

)−p
∥∥2 +µα(1)ε.

(4.11)

Taking the limsup for α ∈ A, we get

∥∥T (s)p−p
∥∥2 ≤ ε ∀s � t1. (4.12)

It follows that T (t)p is convergent strongly to p, therefore, p ∈ F(�) by the continuity
of {T (t) : t ∈G}. This completes the proof. �

Let AO(�) be the set of all almost-orbits of �. Then for each h ∈G and u ∈ AO(�),
the function v : G �→ C, defined by v(t) = T (h)u(t), is also an almost-orbit of �. In
fact, as before, we set ϕ(t)= sups∈G ‖u(s+ t)−T (s)u(t)‖. Since

∥∥v(s+ t)−T (s)v(t)
∥∥= ∥∥T (h)u(s+ t)−T (s)T (h)u(t)

∥∥
≤ ∥∥T (h)u(s+ t)−u(h+s+ t)

∥∥
+∥∥u(h+s+ t)−T (s+h)u(t)

∥∥
≤ ϕ(s+ t)+ϕ(t),

(4.13)

the result follows.
Using Theorem 4.4, we have the following ergodic retraction theorem.

Theorem 4.5. Let C be a nonempty bounded subset of a Hilbert space H and let �
be a commutative semigroup of asymptotically nonexpansive type mappings on C such
that each T (t) is continuous. Then for an invariant mean µ, the mapping P : u �→ uµ
is a unique retraction from the set AO(�) onto F(�) such that

(1) P is nonexpansive in the sense that

‖Pu−Pv‖ ≤ lim
t∈G‖u(t)−v(t)‖; (4.14)

(2) PT (h)u= T (h)Pu= Pu for u ∈ AO(�) and h ∈G;
(3) Pu ∈⋂s∈G conv{u(t) : t � s} for u ∈ AO(�).

As a direct consequence of Theorem 3.5, we can prove the following theorem which
is an extension of the Takahashi and Zhang [16]. Note that we do not assume F(�) to
be nonempty.

Theorem 4.6. Let C be a nonempty subset of a Hilbert space H and let � be a
commutative semigroup of asymptotically nonexpansive type mappings on C, and let
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u(·) be a bounded almost-orbit of �. Then w− limt∈Gu(t) exists (in L(u)) if and only
if w− limt∈G(u(h+ t)−u(t))= 0 for all h ∈G.
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