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We consider the one-parameter family of linear operators that A. Belleni Morante re-
cently introduced and called B-bounded semigroups. We first determine all the proper-
ties possessed by a couple (A,B) of operators if they generate a B-bounded semigroup
(Y (t))t≥0. Then we determine the simplest further property of the couple (A,B) which
can assure the existence of a C0-semigroup (T (t))t≥0 such that for all t ≥ 0,f ∈D(B)
we can write Y (t)f = T (t)Bf . Furthermore, we compare our result with the previous
ones and finally we show how our method allows to improve the theory developed by
Banasiak for solving implicit evolution equations.

1. Introduction

The study of the transport equation with multiplying boundary conditions recently
prompted A. Belleni Morante to introduce a new class of evolution operators that he
called B-bounded semigroups. The original definition of this class was given in [7]
and generalized first by Belleni himself in [6], and then by Banasiak in [3]. Banasiak’s
definition reads as follows.

Definition 1.1. Let X and Z be Banach spaces and suppose that A and B are two linear
operators such that

(i) A :D(A)→X, B :D(B)→ Z, with D(A), D(B)⊂X,
(ii) D(A) ⊂ D(B) and for some ω ∈ R the resolvent set of A satisfies ρ(A) ⊃

]ω,∞[.
A one-parameter family of linear operators (Y (t))t≥0, which satisfies

(1) Y (t) :�→ Z, with X ⊃�⊇D(B), and for any t ≥ 0 and f ∈D(B)
∥∥Y (t)f ∥∥ ≤M exp(ωt)‖Bf ‖, (1.1)

(2) the function t → Y (t)f ∈ C([0,∞[,Z) for any f ∈�,

Copyright © 2000 Hindawi Publishing Corporation
Abstract and Applied Analysis 5:4 (2000) 227–244
2000 Mathematics Subject Classification: 47D06, 34G10
URL: http://aaa.hindawi.com/volume-5/S1085337500000336.html

http://aaa.hindawi.com/volume-5/S1085337500000336.html


228 Characterization of B-bounded semigroups

(3) for any f ∈�0 = {f ∈D(A);Af ∈�} ⊂D(A)⊂D(B) and t ≥ 0

Y (t)f = Bf +
∫ t

0
Y (s)Af ds (1.2)

is called a B-quasi bounded semigroup generated by A and B.

Here and in what follows we denote by ‖·‖ the norm in the Banach space Z. In the
case B is bounded, D(B)=X = Z, M = 1, ω = 0, one obtains the original definition,
while the case X = Z gives Belleni’s generalization.

If the pair (A,B) of operators generates a family satisfying conditions (1), (2), and
(3) then we write A ∈ B-G(M,ω,X,Z) (or A ∈ B-G(M,ω,X), if X = Z).

Suppose that A ∈ B-G(M,ω,X).
It is immediate to see that, if B �= I , B �= 0 then the family (Y (t))t≥0 is neither a

C0-semigroup nor an integrated semigroup [1, 9, 10]. In general, the family (Y (t))t≥0

is not even a C-existence family [8]. A deep analysis of this topic, that is, on the link of
B-bounded semigroups with C-existence families and C-regularized semigroups can
be found in [5].

However, one can see that the notion ofB-bounded semigroup is strictly related to the
notion of empathy [4]. Furthermore, both the empathy theory and the B-bounded semi-
group theory can be used for solving implicit evolution equations. In such a context the
B-bounded semigroup method seems to generalize the method used by Showalter [11].

The above considerations show how important is to obtain a full characterization
of generators of B-bounded semigroups. A first characterization, under the assumption
that operators A and B satisfy all the conditions of Definition 1.1, has been obtained
in [3]. For his study Banasiak introduced the extrapolation space XB , which represents
the completion of X with respect to the (semi)norm ‖ · ‖B = ‖B · ‖. Later, without
using the Banach space XB , it has been proved in [2] that the Banasiak characterization
theorem holds even if the assumption (ii) of Definition 1.1 is replaced by the weaker
assumption:

(iii) there exists ω ∈ R such that for each λ > ω, the map

(λI−A) :DB(A)−→D(B), (1.3)

where DB(A)={f ∈D(A)∩D(B) : Af ∈D(B)}, is bijective.
Recently, it has been shown that in many cases even this assumption is too restrictive

and can be relaxed even further. The relaxation suggested in [5] is the following:
(iv) Denote by AB the part of A in DB(A), that is, AB = A|DB(A). We assume that

the operator AB is closable in XB , that is, we assume that if the sequence (fn)n∈N of
elements of DB(A) is such that Bfn → 0 and BAfn → h in Z as n→ ∞, then h= 0.
Denoting � = ĀXBB , we assume further that there exist subspaces: � and D satisfying
D(B) ⊆ � ⊆ XB , and DB(A) ⊆ D ⊆ � ∩D(�) such that (λI − �|D) : D → � is
bijective for all λ > ω.

In all the mentioned cases it has been proved that, if A ∈ B-G(M,ω,X,Z), then
there exists a C0-semigroup (T (t))t≥0 in ZB = R(B) such that Y (t)f = T (t)Bf for all
t ≥ 0,f ∈D(B). Such a semigroup is uniquely determined by the given pair (A,B).



Luisa Arlotti 229

In my opinion the achieved results are not completely satisfying yet. Indeed each
paper contains assumptions on the pair (A,B) which are weaker than those previously
considered, but are sufficient to guarantee the existence in ZB of the above mentioned
C0-semigroup (T (t))t≥0.

According to me the approach has to be completely reversed. In other words, first
one has to determine all the properties possessed by a couple (A,B) of operators if they
generate a B-quasi bounded semigroup (Y (t))t≥0. Then one has to determine which
further assumption can assure that Y (t)f = T (t)Bf for all t ≥ 0,f ∈ D(B), where
(T (t))t≥0 is a C0-semigroup in ZB which is uniquely determined by operatorsA and B.
It is the purpose of this paper to answer both questions.

In Section 2, we determine all the properties that two linear operators A and B
possess if the following holds:

(a) assumption (i) of Definition 1.1 is satisfied;
(b) A ∈ B-G(M,ω,X,Z), that is, there exists a family (Y (t))t≥0 such that condi-

tions (1), (2), and (3) of Definition 1.1 hold;
(c) family (Y (t))t≥0 satisfies the further condition

Y (0)f = Bf ∀f ∈D(B). (1.4)

It is easy to see that assumption (c) is independent from assumptions (1), (2), and (3)
of Definition 1.1, which only imply Y (0)f = Bf for all f ∈ DB(A). However, if we
want to obtain the above-mentioned representation for the family (Y (t))t≥0, then we
have to suppose condition (c) be satisfied too.

In Section 3, we show that, if (a), (b), and (c) hold, then the simplest further condition
that can assure the required representation of (Y (t))t≥0 is the following:

(v) for all f ∈D(B), λ > ω there exists a sequence (fn)n∈N of elements ofDB(A)
such that Bfn → g and BAfn → h in Z as n→ ∞ with λg−h= Bf .

In Section 4 we compare our result with the previous ones and show that condition
(v) is weaker than (iv).

Finally, in Section 5 we show how our results allow to improve the theory developed
in [4] for solving implicit evolution equations.

2. Properties of a pair (A,B) generating a B-bounded semigroup

In this section, we want to characterize all the properties that two linear operators A
and B possess if the above conditions (a), (b), and (c) are satisfied.

In order to achieve our aim, we consider the mapping � defined by putting, for all
g ∈ B(DB(A)),

�(g)= {
h ∈ R(B) : h= BAf for f ∈DB(A) with Bf = g}. (2.1)

Clearly the properties of mapping � and those of the pair (A,B) are strictly linked
with each other; indeed mapping � only depends on the given operators A and B.
Concerning this we can prove the following theorem.
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Theorem 2.1. Let the operators A and B satisfy the conditions (a), (b), and (c). Then
formula (2.1) defines a linear single-valued mapping � : B(DB(A))→ ZB , which is
closable in ZB . Its closure �̄ has the following properties:

(α) for all λ > ω one can define a linear bounded operator R(λ) : ZB → Z

such that
R(λ)

(
λI−�̄

)
g = g ∀g ∈D(

�̄
)
, (2.2)

(β) the mapping (λI−�̄ ) :D(�̄ )→ ZB is injective for all λ > ω,
(γ ) R(λI−�̄ ) is a closed subset of ZB for all λ > ω.

Remark 2.2. Observe that the statement � is a single-valued closable mapping in ZB
is equivalent to the statement that the operator AB is closable in XB . Indeed comparing
(iv) with definition (2.1) one sees that both statements have the following meaning: if
the sequence (fn)n∈N of elements of DB(A) is such that gn = Bfn → 0 and �gn =
BAfn → h in Z as n→ ∞, then h= 0.

Proof of Theorem 2.1. It is known that the assumptions of Theorem 2.1 assure that
formula (2.1) defines a linear single-valued mapping � : B(DB(A))→ ZB , which is
closable in ZB . Such a property has been proved in [1]. For the sake of completeness we
report here the considerations contained in [1], but some of them in a slightly different
form.

Consider f ∈DB(A) such that Bf = 0. From properties of Definition 1.1 we obtain,
for all t ≥ 0,

Y (t)f = 0,
∫ t

0
Y (s)Af ds = Y (t)f −Bf = 0. (2.3)

But then Y (t)Af = 0 for any t ≥ 0. In particular, BAf = Y (0)Af = 0. This shows that
� is a single valued mapping from B(DB(A)) to ZB . The linearity is easily verified.

In order to show that � is closable in ZB observe that we can define a one-parameter
family of linear operators (T (t))t≥0 from R(B) to Z by putting, for f ∈D(B), t ≥ 0,

T (t)Bf = Y (t)f. (2.4)

Thanks to property (1) of Definition 1.1 we obtain for any g = Bf ∈ R(B), t ≥ 0∥∥T (t)g∥∥ ≤M exp(ωt)‖g‖. (2.5)

Therefore, for each t ≥ 0 operator T (t) is bounded. By the extension principle, it can
be uniquely extended to a bounded linear operator with domain ZB . Denote by T (t) the
extension too. Then inequality (2.5) holds for all t ≥ 0, g ∈ ZB . Moreover, definition
(2.4) and condition Y (0)= B yield T (0)= I .

From property (2) of Definition 1.1 we deduce that, fixed g ∈ R(B), t → T (t)g is a
continuous function of t for 0 ≤ t <∞. Inequality (2.5) allows to extend the property
for any g ∈ ZB . Thus for g ∈ ZB the function t → T (t)g ∈ C([0,∞),Z).

Finally, as a consequence of property (3) of Definition 1.1 we have for all g = Bf ∈
B(DB(A))

T (t)g = g+
∫ t

0
T (s)BAf ds, (2.6)
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that is, thanks to (2.1)

T (t)g = g+
∫ t

0
T (s)�gds. (2.7)

Now we are able to show that operator � is closable in ZB . Indeed, consider a sequence
(gn)n∈N of elements of D(�) = B(DB(A)) such that gn → 0 and �gn → h in Z as
n→ ∞. Clearly h ∈ ZB and T (t)gn → 0, T (t)�gn → T (t)h for all t ≥ 0 as n→ ∞.
Now writing (2.7) for each gn and taking the limit as n→ ∞ we obtain for all t ≥ 0,

∫ t

0
T (s)hds = 0. (2.8)

Because this implies T (t)h= 0 for all t ≥ 0, and in particular h= T (0)h= 0, operator
� is closable in ZB .

Consider the closure �̄ of �. We remember that

D(�̄ )={
g ∈ ZB : ∃(

fn
)
n∈N

in DB(A) and h∈ZB such that Bfn→g,BAfn → h
}
,

(2.9)

�̄g = lim
n→∞BAfn for g = lim

n→∞Bfn ∈D(
�̄

)
. (2.10)

From this and formula (2.7) we immediately obtain for all g ∈D(�̄ ), t ≥ 0,

T (t)g = g+
∫ t

0
T (s)�̄gds. (2.11)

Formula (2.11) allows to prove the stated properties.
(α) Put, for all g ∈ ZB , λ > ω,

R(λ)g =
∫ +∞

0
exp(−λt)T (t)g dt. (2.12)

Thanks to (2.5) we can state that for each λ > ω formula (2.12) defines a bounded
linear operator from ZB to Z with

∥∥R(λ)∥∥ ≤ M

λ−ω. (2.13)

From (2.11) and (2.12) we obtain, for all λ > ω, g ∈D(�̄),

R(λ)λg = g+λ
∫ +∞

0
exp(−λt)

∫ t

0
T (s)�̄gds dt

= g+
∫ +∞

0
exp(−λs)T (s)�̄gds = g+R(λ)�̄g,

(2.14)

that is (2.2).
(β) Suppose that λ > ω and g ∈ D(�̄ ) such that (λI − �̄ )g = 0. From (2.2) and

(2.12) we obtain g = 0. This proves the assertion.
(γ ) Formulas (2.2) and (2.13) show that for any λ > ω, the closed operator (λI−�̄ )

has bounded left inverse. Therefore its range is closed. This proves the statement. �
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Remark 2.3. It is interesting to consider the case X = Z and B = I .

Thanks to Theorem 2.1 in such a case we can state the following.
Suppose that A :D(A)→X is a linear operator inX. If there exists a one-parameter

family of linear operators (T (t))t≥0, which satisfies the following:

(1′) T (t) :X→X, and for any t ≥ 0 and f ∈X,
∥∥T (t)f ∥∥ ≤M exp(ωt)‖f ‖, (2.15)

(2′) the function t → T (t)f ∈ C([0,∞[,X) for any f ∈X,
(3′) for any f ∈D(A) and t ≥ 0

T (t)f = f +
∫ t

0
T (s)Af ds, (2.16)

(4′) T (0)= I ,

then operator A is closable. Its closure Ā has the following properties:

(α′) for any λ > ω, one can define a linear bounded operator R(λ) : X → X such
that

R(λ)
(
λI− Ā)

f = f for f ∈D(
Ā

)
, (2.17)

(β ′) the mapping (λI− Ā) :D(Ā)→X is injective for all λ > ω,
(γ ′) R(λI− Ā) is a closed subset of X for all λ > ω.

3. New characterization and generation theorems

In Section 2, we have established which properties a pair (A,B) of operators must pos-
sess if they generate a B-bounded semigroup, that is, if there exists a family (Y (t))t≥0

which satisfies conditions (1), (2), and (3) of Definition 1.1. We have also shown that
to each family (Y (t))t≥0 satisfying conditions (1), (2), and (3) of Definition 1.1 we
can associate a strongly continuous family of linear operators (T (t))t≥0 from ZB to
Z so that the formula T (t)Bf = Y (t) for all f ∈ D(B), t ≥ 0 holds. If furthermore
Y (0)= B, then the family (T (t))t≥0 is such that T (0)= I .

In this section, we first look for the simplest further property of the pair (A,B)
able to guarantee that the family (T (t))t≥0 is a strongly continuous semigroup in ZB .
Considering (2.2) and (2.12), we immediately see that such a property can be obtained
by requiring �̄ to be the generator of a strongly continuous semigroup in ZB with the
Hille constants M and ω, that is, �̄ ∈ G(M,ω,ZB). Indeed, in such a case we have
T (t)= exp(t�̄ ). The study of the above-mentioned topic is carried out in Theorem 3.1.

Then we deduce a new generation theorem (Theorem 3.5) and a new characterization
theorem (Theorem 3.6).

Now in order to prove Theorem 3.1 a preliminary consideration is necessary. Thanks
to (2.9) and (2.10), condition (v) can be rewritten in the equivalent form:

for all f ∈D(B), λ > ω there exists g ∈D(�̄ ) such that

λg−�̄g = Bf, (3.1)
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that is,

R
(
λI−�̄

) ⊇ R(B) ∀λ > ω. (3.2)

Considering this we can prove the following theorem.

Theorem 3.1. Suppose that all the assumptions of Theorem 2.1 are satisfied. Then
�̄ ∈ G(M,ω,ZB) if and only if the pair (A,B) satisfies condition (v) too. In such a
case we have for all t ≥ 0,

T (t)= exp
(
t�̄

)
. (3.3)

Proof

Necessity. Suppose that �̄ ∈ G(M,ω,ZB). Then R(λI − �̄ ) = ZB for all λ > ω and
therefore R(λI − �̄ ) ⊇ R(B) for all λ > ω. But, as we know, such a property is
equivalent to condition (v). Thus we can state that (v) is satisfied.

Sufficiency. Since �̄ is a closed operator in ZB the Hille-Yosida theorem assures that
�̄ ∈G(M,ω,ZB) if and only if the following conditions are satisfied:

(j) the resolvent set of �̄ contains ]ω,+∞[;
(jj) ‖(λI−�̄ )−n‖ ≤M/(λ−ω)n for all λ > ω;

(jjj) D(�̄ ) is dense in ZB .

Now, we prove that all these conditions are satisfied whenever (v) holds.
(j) We know that assumption (v) is equivalent to condition (3.2). Since R(λI − �̄ )

is a closed subset of ZB , we have

R
(
λI−�̄

) = ZB ∀λ > ω. (3.4)

This result, property (β) of Theorem 2.1 and (2.2) show that for λ > ω the mapping(
λI−�̄

) :D(
�̄

) −→ ZB (3.5)

is bijective with (
λI−�̄

)−1 = R(λ). (3.6)

Now inequality (2.13) gives

∥∥(
λI−�̄

)−1∥∥ ≤ M

λ−ω. (3.7)

Therefore, ρ(�̄ )⊇]ω,+∞[.
(jj) For any λ > ω, n ∈ N and g ∈ ZB put

Rn(λ)g = 1

(n−1)!
∫ +∞

0
exp(−λt)tn−1T (t)g dt. (3.8)

The properties of the family (T (t))t≥0 assure that for each λ > ω and n ∈ N, formula
(3.8) defines a bounded linear operator from ZB to Z with

∥∥Rn(λ)∥∥ ≤ M

(λ−ω)n . (3.9)
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Therefore, we only have to prove that such an operator is given by

Rn(λ)=
(
λI−�̄

)−n
. (3.10)

This can be shown by induction. Formula (3.8) holds for n = 1 because (2.12) and
(3.8) give

R1(λ)= R(λ)=
(
λI−�̄

)−1
. (3.11)

Suppose that formula (3.10) holds for n = m. Then we obtain from (2.11), for λ > ω,
g ∈D(�̄ ), that

Rm+1(λ)λg = 1

λm
g+ λ

m!
∫ +∞

0

(∫ +∞

s

tm exp(−λt)dt
)
T (s)�̄gds

= 1

λm
g+Rm+1(λ)�̄g+ 1

(m−1)!

×
∫ +∞

0

(∫ +∞

s

tm−1 exp(−λt)dt
)
T (s)�̄gds.

(3.12)

We easily deduce that

Rm+1(λ)λg = Rm+1(λ)�̄g+Rm(λ)g, (3.13)

that is,

Rm+1(λ)
(
λI−�̄

)
g = Rm(λ)g = (

λI−�̄
)−m

g. (3.14)

This shows that, if (3.10) holds for n=m, then it holds for n=m+1 too.
(jjj) In order to prove that D(�̄ ) is dense in ZB , it is sufficient to prove that

lim
λ→∞λ

(
λI−�̄

)−1
h= h ∀h ∈ ZB. (3.15)

Note that

λ
(
λI−�̄

)−1
h−h=

∫ ∞

0
λe−λt(T (t)h−h)dt. (3.16)

Because the function t → T (t)h is continuous at t = 0, for any ε > 0 there exists δ > 0
such that for any 0 ≤ t < δ, ∥∥T (t)h−h∥∥< ε. (3.17)

Therefore, for λ > ω1 = max{0,ω},
∥∥λ(λI−�̄

)−1
h−h∥∥ ≤

∫ ∞

0
λe−λt∥∥T (t)h−h∥∥dt

=
∫ δ

0
λe−λt∥∥T (t)h−h∥∥dt+

∫ ∞

δ

λe−λt∥∥T (t)h−h∥∥dt
< ε+2M

∫ ∞

δ

λe−(λ−ω1)t‖h‖dt < 2ε,

(3.18)

for λ sufficiently large.
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Thus we have shown that �̄ ∈G(M,ω,ZB).
Now, it is immediate to recognize that for any t ≥ 0 operators exp(t�̄ ) and T (t)

coincide. Indeed, we know that for given s ≥ 0 and g ∈ D(�̄ ), we have exp(s�̄ )g ∈
D(�̄ ) ⊆ ZB . Therefore, for each t > 0 we can consider the function s → h(s), 0 ≤
s ≤ t defined by

h(s)= T (t−s)exp
(
s�̄

)
g. (3.19)

By virtue of formula (2.11) we have

h′(s)= −T (t−s)�̄ exp
(
s�̄

)
g+T (t−s)�̄ exp

(
s�̄

)
g = 0. (3.20)

This shows that h(s)= h(0) for 0 ≤ s ≤ t . In particular, we have h(t)= h(0), that is,

T (t)g = exp
(
t�̄

)
g. (3.21)

Because t is an arbitrary positive number and g is an arbitrary element ofD(�̄ ), which
is dense in ZB , formula (3.3) is proved for any t ≥ 0. �

Corollary 3.2. Suppose that all the assumptions of Theorem 3.1 are satisfied. Then
for any t ≥ 0 and f ∈D(B) we have Y (t)f ∈ ZB .

Proof. If the assumptions of Theorem 3.1 hold, then for any t ≥ 0 and f ∈ D(B)
we have

Y (t)f = exp
(
t�̄

)
Bf. (3.22)

But exp(t�̄ ) is a bounded linear operator in ZB for each t ≥ 0. Therefore, Y (t)f ∈ ZB
for any t ≥ 0 and f ∈D(B). �

Remark 3.3. Clearly Theorems 2.1 and 3.1 answer both the questions we asked in the
introduction. In particular, Theorem 3.1 shows that the assumption (v) is the necessary
and sufficient condition so that the representation (3.22) holds.

Now consider the following condition.
(v′) B(DB(A)) is dense in ZB and R(λI−�̄ )= R(µI−�̄ ) for any λ, µ > ω. We

can now prove the following proposition.

Proposition 3.4. If the assumptions of Theorem 2.1 are satisfied, then conditions (v)
and (v′) are equivalent.

Proof. Suppose that the assumptions of Theorem 2.1 and condition (v) hold. Then also
(3.4) holds and R(λI−�̄ )= R(µI−�̄ ) for any λ, µ > ω. Moreover, thanks to point
(jjj) of Theorem 3.1, we can state that B(DB(A)), which is dense in D(�̄ ), is dense in
ZB too. Thus we can conclude that condition (v′) is satisfied.

Conversely, suppose that the assumptions of Theorem 2.1 and condition (v′) hold.
Then for given λ,µ > ω and f ∈D(�̄ ) there exists g ∈D(�̄ ) such that

(
λI−�̄

)
g = (

µI−�̄
)
f, (3.23)
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and therefore,

(µ−λ)f = (
λI−�̄

)
(g−f ) ∈ R(

λI−�̄
)
. (3.24)

This shows that

D
(
�̄

) ⊆ R(
λI−�̄

)
. (3.25)

But then R(λI − �̄ ), which is a closed subset of ZB , contains D(�̄ ) = B(DB(A)) =
ZB . This shows that condition (v) is satisfied. �

Now we can state a new generation theorem in the following form.

Theorem 3.5. LetX and Z be Banach spaces and suppose that A and B are two linear
operators such that

(i) A :D(A)→X, B :D(B)→ Z, with D(A), D(B)⊂X.
The pair (A,B) generates aB-quasi bounded semigroup (Y (t))t≥0 with the property

Y (0)f = Bf for all f ∈D(B), and satisfies either condition (v) or condition (v′) if and
only if (2.1) defines a single-valued mapping � : B(DB(A))→ ZB which is closable
in ZB and whose closure �̄ generates a C0-semigroup in ZB . The B-quasi bounded
semigroup (Y (t))t≥0 is such that Y (t)f = exp(t�̄ )Bf for any t ≥ 0 and f ∈D(B).

Similarly we can state this new characterization theorem.

Theorem 3.6. Let the operators A and B satisfy assumption (i). Then the pair (A,B)
generates the B-quasi bounded semigroup (Y (t))t≥0, with Y (0) = B, and satisfies
either condition (v) or condition (v′) if and only if (2.1) defines a single-valued mapping
� : B(DB(A))→ ZB which is closable in ZB and such that the following conditions
hold:

(1) B(DB(A)) is dense in ZB ,
(2) there existM ≥ 1 and ω ∈ R such that ρ(�̄ )⊇]ω,+∞[ and for any f ∈D(B),
λ > ω and n ∈ N:

∥∥(
λI−�̄

)−n
Bf

∥∥ ≤ M

(λ−ω)n ‖Bf ‖. (3.26)

Remark 3.7. Consider the case X = Z and B = I .
By virtue of Theorem 3.1 we can state the following.
Suppose that there exists a one-parameter family of linear operators (T (t))t≥0, which

satisfies the conditions (1′), (2′), (3′), and (4′) of Remark 2.3. Then Ā ∈G(M,ω,X) if
and only if either the condition

R
(
λI− Ā) =X ∀λ > ω (3.27)

or the condition

D(A)=X, R
(
λI− Ā) = R(

µI−�̄
)

for any λ,µ > ω (3.28)

is satisfied.
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4. Comparison with the previous results

This section is devoted to compare our new characterization and generation theorems
(Theorems 3.5 and 3.6) with Theorem 3.1 and Proposition 3.2 in [5].

To this aim we have to introduce the Banach space XB and to provide some results
proved in [3].

Definition 4.1. We consider the set X of sequences (fn)n∈N such that fn ∈ D(B) for
n ∈ N and (Bfn)n∈N is a Cauchy sequence. We define XB to be the space of all classes
of equivalence of sequences (fn)n∈N ∈ X with respect to the following relation:

(
fn

)
n∈N

≡ (
gn

)
n∈N

if and only if lim
n→∞

∥∥Bfn−Bgn
∥∥ = 0. (4.1)

The space XB is a normed space with the norm
∥∥[(
fn

)
n∈N

]∥∥
XB

= lim
n→∞

∥∥Bfn∥∥. (4.2)

Definition 4.2. Denote by P the operator from D(B) into XB defined by

Pf = [
(f,f, . . .)

]
. (4.3)

Definition 4.3. Denote by � the linear operator from XB into ZB defined for & =
[(fn)n∈N] ∈XB by

�&= lim
n→∞Bfn. (4.4)

It is known (see [3, Lemma 2.1 and Proposition 2.1]) that � is an isometric isomorphism
of XB into ZB .

We also recall the Banasiak characterization theorem proved in [5]. It states the
following: suppose that the operators A and B satisfy assumption (i) of Definition 1.1
and assumption (iv). Then the pair (A,B) generates a B-quasi bounded semigroup
(Y (t))t≥0, with Y (0)= B, if and only if the following conditions hold:

(1′) �(D) is dense in ZB ,
(2′) there exist M > 0 and ω ∈ R such that for any η ∈ �, λ > ω, and n ∈ N,

∥∥�
(
λI−�|D

)−n
η
∥∥ ≤ M

(λ−ω)n ‖�η‖. (4.5)

Finally, we recall that, according to Proposition 3.2 of [5], the family (Y (t))t≥0 can
be represented in the form

Y (t)= �exp(t�)P (4.6)

if and only if the further following assumption is satisfied:

(iv′) there exists some λ > ω such that the operator λI−� is injective.

Now we can compare our new characterization theorem with the previous results.
Such a comparison is carried out in the following propositions.
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Proposition 4.4. Condition (iv) implies condition (v).

Proof. Suppose that condition (iv) is satisfied. Consider f ∈DB(A) such that Bf = 0
and take the sequence (fn)n∈N of elements of DB(A) such that fn = f for any n. Then
Bfn = Bf = 0 and BAfn = BAf for any n. Since operator AB is closable in XB , we
have BAf = 0. This shows that (2.1) defines a single-valued mapping from B(DB(A))
to ZB . Moreover, considering Definition 4.3, we obtain

� = �AB�−1. (4.7)

The properties of the linear operator � assure that, if AB is closable in XB , then � is
closable in ZB with

D(�̄ )= �
(
D(�)

)
, (4.8)

�̄ = ���−1, (4.9)

where, according to (iv), � = ĀXBB .
We remember that

D(�)=
{
&= [(

fn
)
n∈N

] ∈XB, such that each

fn ∈DB(A) and
(
BAfn

)
n∈N

converges in Z
}
, (4.10)

�&= [(
Afn

)
n∈N

]
.

Considering the properties of � and (4.10) we easily see that formulas (4.8) and (4.9)
exactly give the operator defined by (2.10) and its domain (2.9), respectively. Now,
assume that there exist subspaces � and D satisfying D(B)⊆ � ⊆XB , and DB(A)⊆
D ⊆ �∩D(�) such that (λI−�|D) :D→ � is bijective for all λ > ω.

Then if we put

� = �(�), E = �(D), (4.11)

we can state that there exist subspaces � and E satisfying R(B) ⊆ � ⊆ ZB , and
D(�)⊆ E ⊆ �∩D(�̄ ) such that (λI−�̄ |E) : E→ � is bijective for all λ > ω. This
implies that

R
(
λI−�̄

) ⊇ R(
λI−�̄ |E

) = � ⊇ R(B), (4.12)

that is, condition (v). �

Proposition 4.5. Condition (1) of Theorem 3.6 and condition (1′) of Banasiak’s theo-
rem are equivalent.

Proof. Observe that D(�) is dense in D(�̄ ), with

D(�)= B(
DB(A)

) ⊆ �(D)⊆D(
�̄

)
. (4.13)

Therefore

B
(
DB(A)

) = �(D)=D(
�̄

)
. (4.14)

This proves the statement. �
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Proposition 4.6. Condition (2′) of Banasiak’s theorem implies Condition (2) of
Theorem 3.6.

Proof. Using the operator �, it is immediate to recognize that condition (2′) can be
rewritten in the following equivalent form:

(2′′) there exist M > 0 and ω ∈ R such that for any g ∈ �, λ > ω, and n ∈ N,

∥∥(
λI−�̄ |E

)−n
g
∥∥ ≤ M

(λ−ω)n ‖g‖. (4.15)

But we know that � ⊇ R(B) and that M cannot be less than 1. Therefore, we deduce
that if (2′) holds then condition (2) of Theorem 3.6 holds too. �

Propositions 4.5 and 4.6 show that the assumptions made by Banasiak in [5] are
stronger than ours.

Furthermore, suppose that the operators A and B satisfy the conditions (a), (b), and
(c) of the introduction. Then property (β) of Theorem 2.1 holds. By virtue of formula
(4.9), we can rewrite that property in the equivalent form

(β ′) the mapping (λI−�) :D(�)→XB is injective for all λ > ω.
This shows that condition (iv′) is certainly satisfied if the pair (A,B) of operators

satisfies assumption (i) of Definition 1.1 and generates a B-quasi bounded semigroup
(Y (t))t≥0, with Y (0) = B. But then we can state that the assumptions of Theorem
3.1 in [5] imply (iv′) and therefore they are sufficient to guarantee the representation
(4.6). Such a property holds however we choose the set D. Finally, using (4.9) and
Definition 4.2, we can easily see that the two representations (3.22) and (4.6) coincide.
On the other hand, if the assumptions of our characterization theorem allow to write
the family (Y (t))t≥0 in the form (3.22), the stronger assumptions of the Banasiak
characterization theorem must give the same representation, that is, (4.6), whatever the
set D is.

5. Application to implicit evolution equations

Recently Banasiak, [4], proved that the B-bounded semigroups theory can be applied
for solving implicit evolution equations. Here we want to show how our technique can
simplify such an application.

Indeed consider the Cauchy problem for the implicit evolution equation

d

dt
(Ku)= Lu, lim

t→0+(Ku)(t)= u0, (5.1)

where K and L are linear operators, K :D(K)→ X and L :D(L)→ X, with D(K),
D(L)⊆ Z. Here X is a linear space and Z is a Banach space.

Assume that the operator K is one-to-one. Define B =K−1 and to such an operator
associate the Banach space ZB = R(B)=D(K). To B associate also the Banach space
XB and the operators P and � given by Definitions 4.1, 4.2, and 4.3, respectively.
If operators K and L are closable in XB , then, according to [4], we introduce the
following definition.
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Definition 5.1. A Z-valued function t → u(t) is called anXB -solution to problem (5.1)
if it is a classical solution of the problem

d

dt
K̄XBu= L̄XBu, lim

t→0+
(
K̄XBu

)
(t)= Pu0, (5.2)

that is, t → K̄XBu(t) is continuously differentiable in XB , the differential equation
holds for all t > 0 in XB , and the initial condition holds as a limit in the topology
of XB .

Sufficient conditions for the existence of an XB -solution to problem (5.1) are ob-
tained in the following theorem.

Theorem 5.2. Assume that K and L are linear operators, K : D(K) → X and L :
D(L)→X, where D(K), D(L)⊆ Z, X is a linear space and Z a Banach space.

Assume that the operator K is one-to-one. Define the operator � = K−1L with
the domain D(�) = {g ∈ D(K)∩D(L) : Lg ∈ R(K)}. If � is closable in ZB and if
�̄ ∈ G(M,ω,ZB), then for any u0 ∈ R(K) such that K−1u0 ∈ D(�), the function
t → exp(t�̄ )K−1u0 is an XB -solution to problem (5.1).

In order to prove such a theorem some preliminary considerations are necessary.
First of all we can remark the following.

Remark 5.3. Given a sequence (fn)n∈N of elements of D(B) = R(K), we can state
that (Pfn)n∈N converges to & in XB as n→ ∞ if and only if (K−1fn)n∈N converges
to �& in ZB as n→ ∞.

Now we have to show that the following propositions hold.

Proposition 5.4. If the operator K is one-to-one, then it is closable in XB , with

D
(
K̄XB

) = ZB, K̄XB = �−1. (5.3)

Proof. Take g ∈ ZB . BecauseD(K)= ZB there exists a sequence (gn)n∈N of elements
of D(K) such that gn → g in ZB as n→ ∞.

Put fn =Kgn and&= �−1g. ThenK−1fn → �& in ZB as n→ ∞, and therefore,
according to Remark 5.3, PKgn = Pfn →&= �−1g in XB as n→ ∞.

This proves the statement, since g ∈D(K̄XB ) and K̄XBg = �−1g. �

Proposition 5.5. Suppose that the operator K is one-to-one and that the operator �
is closable in ZB . Then L|D(�) is closable in XB , with

D
(
L̄XB

) =D(
�̄

)
, L̄XB = �−1�̄ . (5.4)

Proof. Consider a sequence (fn)n∈N of elements of D(�) such that fn → 0 in ZB and
PLfn →& in XB as n→ ∞. Then, according to Remark 5.3, K−1Lfn → �& in ZB
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as n→ ∞. Because � = K−1L is supposed to be closable in ZB , we have �& = 0
and therefore &= 0. This shows that L|D(�) is closable in XB . Now

D
(
L̄XB

) = {
g ∈ ZB : ∃(

gn
)
n∈N

in D(�) and & ∈XB : gn → g,PLgn →&
}

= {
g ∈ ZB : ∃(

gn
)
n∈N

in D(�) and & ∈XB : gn → g,K−1Lgn → �&
}

=D(
�̄

)
,

L̄XBg =&= �−1�̄g.
(5.5)

�

Now we are able to prove Theorem 5.2.

Proof of Theorem 5.2. If the assumptions of Theorem 5.2 are satisfied then Proposi-
tions 5.4 and 5.5 hold. Suppose that u0 ∈ R(K) such that K−1u0 ∈D(�) and consider
the function t → u(t) = exp(t�̄ )K−1u0 ∈ D(�̄ ). Then the function t → K̄XBu(t) =
�−1u(t) is continuously differentiable in XB , with

d

dt
K̄XBu(t)= �−1�̄ exp

(
t�̄

)
K−1u0 = �−1�̄u(t). (5.6)

By virtue of Proposition 5.5, we obtain for all t > 0,

d

dt
K̄XBu(t)= L̄XBu(t). (5.7)

Moreover, taking into account definitions (4.7) and (4.8), we have

lim
t→0+

(
K̄XBu

)
(t)= �−1K−1u0 = Pu0. (5.8)

Thus the assertion is completely proved. �

Remark 5.6. Suppose that the assumptions of Theorem 5.2 are satisfied and consider
the family (Y (t))t≥0 defined by putting for f ∈ R(K), t ≥ 0

Y (t)f = exp
(
t�̄

)
K−1f. (5.9)

Such a family has the properties (1) and (2) of Definition 1.1. Moreover, for all t > 0
and f ∈K(D(�)), we have

d

dt
Y (t)f = exp

(
t�̄

)
�̄K−1f = exp

(
t�̄

)
�K−1f

= exp
(
t�̄

)
K−1LK−1f = Y (t)Af,

(5.10)

if we define A= LK−1 with the natural domain

D(A)= {
f ∈ R(K) :K−1f ∈D(L)} =K(

D(K)∩D(L)). (5.11)
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Clearly the above relation immediately gives, for all t > 0, f ∈K(D(�)),

Y (t)f =K−1f +
∫ t

0
Y (s)Af ds, (5.12)

that is,

Y (t)f = Bf +
∫ t

0
Y (s)Af ds. (5.13)

Observing that

K
(
D(�)

) = {
f ∈K(

D(K)∩D(L)) : LK−1f ∈ R(K)}
= {
f ∈D(A) : Af ∈D(B)} =DB(A),

(5.14)

we see that also property (3) of Definition 1.1 is satisfied with A = LK−1. Therefore,
the family (Y (t))t≥0 is a B-quasi bounded semigroup generated by the pair (A,B).
Moreover, the relation between such a pair and the operator � is the same as in
Section 4.

Remark 5.7. It is interesting to compare our Theorem 5.2 with Theorem 3.3 in [4].
Using the notation introduced in Section 4 and taking into account the characterization
theorem proved in [5], we can write the content of Theorem 3.3 in [4] in the following
way. Define operator � as in our Theorem 5.2. If � is closable inZB and if there exists a
subspace E: D(�)⊆ E ⊆D(�̄ ) such that �̄ |E generates a C0-semigroup T (t) in ZB ,
then for any f ∈D(A) the function t → T (t)K−1f is anXB -solution to problem (5.1).
But, according to the considerations developed in Section 4, if �̄ |E ∈ G(M,ω,ZB),
then �̄ is a generator and T (t)= exp(t�̄ ). Thus the statement of our Theorem 5.2 and
that of Banasiak’s theorem (Theorem 3.3) coincide.
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