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We present new existence results for singular discrete initial and boundary value prob-
lems. In particular our nonlinearity may be singular in its dependent variable and is al-
lowed to change sign.

1. Introduction

An upper- and lower-solution theory is presented for the singular discrete boundary value
problem

−∆(ϕp
(
∆u(k− 1)

))= q(k) f
(
k,u(k)

)
, k ∈N = {1, . . . ,T},

u(0)= u(T + 1)= 0,
(1.1)

and the singular discrete initial value problem

∆u(k− 1)= q(k) f
(
k,u(k)

)
, k ∈N = {1, . . . ,T},

u(0)= 0,
(1.2)

where ϕp(s)=|s|p−2s, p > 1, ∆u(k− 1)=u(k)−u(k−1), T∈{1,2, . . .}, N+={0,1, . . . ,T},
and u : N+ →R. Throughout this paper, we will assume f : N × (0,∞)→R is continuous.
As a result, our nonlinearity f (k,u) may be singular at u= 0 and may change sign.

Remark 1.1. Recall a map f : N × (0,∞)→R is continuous if it is continuous as a map of
the topological space N × (0,∞) into the topological space R. Throughout this paper, the
topolopy on N will be the discrete topology.

We will let C(N+,R) denote the class of map u continuous on N+ (discrete topology)
with norm ‖u‖ =maxk∈N+ ‖u(k)‖. By a solution to (1.1) (resp., (1.2)) we mean a u ∈
C(N+,R) such that u satisfies (1.1) (resp., (1.2)) for i ∈ N and u satisfies the boundary
(resp., initial) condition.

It is interesting to note here that the existence of solutions to singular initial and
boundary value problems in the continuous case have been studied in great detail in

Copyright © 2005 Hindawi Publishing Corporation
Advances in Difference Equations 2005:2 (2005) 205–214
DOI: 10.1155/ADE.2005.205

http://dx.doi.org/10.1155/S1687183904405044


206 Discrete initial and boundary value problems

the literature (see [2, 4, 5, 6, 7, 9, 10, 11] and the references therein). However, only a few
papers have discussed the discrete singular case (see [1, 3, 8] and the references therein).

In [7], the following result has been proved.

Theorem 1.2. Let n0 ∈ {1,2, . . .} be fixed and suppose the following conditions are satisfied:

f : N × (0,∞)−→R is continuous, (1.3)

q ∈ C
(
N , (0,∞)

)
, (1.4)

there exists a function α∈ C
(
N+,R

)
with

α(0)= α(T + 1)= 0, α > 0 on N such that

q(k) f
(
k,α(k)

)≥−∆(ϕp
(
α(k− 1)

))
for k ∈N ,

(1.5)

there exists a function β ∈ C(N+,R) with

β(k)≥ α(k), β(k)≥ 1
n0

for k ∈N+ with

q(k) f
(
k,β(k)

)≤−∆(ϕp
(
β(k− 1)

))
for k ∈N.

(1.6)

Then (1.1) has a solution u∈ C(N+,R) with u(k)≥ α(k) for k ∈N+.

In [1], the following result has been proved.

Theorem 1.3. Let n0 ∈ {1,2, . . .} be fixed and suppose the following conditions are satisfied:

f : N × (0,∞)−→R is continuous, (1.7)

q ∈ C
(
N , (0,∞)

)
, (1.8)

there exists a function α∈ C
(
N+,R

)
with

α(0)= 0, α > 0 on N such that

q(k) f
(
k,α(k)

)≥ ∆α(k− 1) for k ∈N ,

(1.9)

there exists a function β ∈ C
(
N+,R

)
with

β(k)≥ α(k), β(k) >
1
n0

for k ∈N+ with

q(k) f
(
k,β(k)

)≤ ∆β(k− 1) for k ∈N.

(1.10)

Then (1.2) has a solution u∈ C(N+,R) with u(k)≥ α(k) for k ∈N+.

Also some results from the literature, which will be needed in Section 2 are presented.

Lemma 1.4 [8]. Let u∈ C(N+,R) satisfy u(k)≥ 0 for k ∈N+. If u∈ C(N+,R) satisfies

−∆2u(k− 1)= u(k), k ∈N = {1,2, . . . ,T},
u(0)= u(T + 1)= 0,

(1.11)



H. Lü and D. O’Regan 207

then

u(k)≥ µ(k)‖u‖ for k ∈N+; (1.12)

here

µ(k)=min
{
T + 1− k

T + 1
,
k

T

}
. (1.13)

Lemma 1.5 [8]. Let [a,b]= {a,a+ 1, . . . ,b} ⊂N . If u∈ C(N+,R) satisfies

∆
(
ϕp
(
∆u(k− 1)

))≤ 0, k ∈ [a,b],

u(a− 1)≥ 0, u(b+ 1)≥ 0,
(1.14)

then u(k)≥ 0 for k ∈ [a− 1,b+ 1]= {a− 1,a, . . . ,b+ 1} ⊂N+.

In Theorems 1.2 and 1.3 the construction of a lower solution α and an upper solution
β is critical. We present an easily verifiable condition in Section 2.

2. Main results

We begin with a result for boundary value problems.

Theorem 2.1. Let n0 ∈ {1,2, . . .} be fixed and suppose (1.3), (1.4) hold. Also assume the
following conditions are satisfied:

there exists a constant c0 > 0 such that

q(k) f (k,u)≥ c0 for k ∈N , 0 < u≤ 1
n0

,
(2.1)

there exist h > 0 continuous and nondecreasing on [0,∞) such that

∣∣ f (k,u)
∣∣≤ h(u) for (k,u)∈N ×

[
1
n0

,∞
)

,
(2.2)

there exist M >
1
n0

such that

M− 1
n0

> ϕ−1
p

(
h(M)

)
b0;

(2.3)

here

b0 =max
k∈N

{ k∑
i=1

ϕ−1
p

( k∑
j=i

q( j)

)
,
k∑
i=1

ϕ−1
p

( k∑
j=i

q( j)

)}
. (2.4)

Then (1.1) has a solution u∈ C(N+,R) with u(k) > 0 for k ∈N .
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Proof. First we construct the lower solution α in (1.5). Let α(k) = cv(k), k ∈ N+, where
v ∈ C(N+,[0,∞)) is the solution of

−∆(ϕp
(
∆v(k− 1)

))= 1, k ∈N ,

v(0)= v(T + 1)= 0,
(2.5)

0 < c < min
{
c

1/(p−1)
0 ,

1
n0‖v‖

}
. (2.6)

Since−∆(ϕp(∆v(k− 1))) > 0 implies∆2v(k− 1) < 0 for k ∈N , it follows from Lemma 1.4
that v(k)≥ µ(k)‖v‖ for k ∈N+. Thus,

0 < α(k)≤ 1
n0

for k ∈N , (2.7)

−∆(ϕp
(
∆α(k− 1)

))= cp−1 ≤ c0 for k ∈N ,

α(0)= α(T + 1)= 0.
(2.8)

As a result (1.5) holds, since

q(k) f
(
k,α(k)

)≥ c0 ≥−∆
(
ϕp
(
∆α(k− 1)

))
for k ∈N. (2.9)

Next we discuss the boundary value problem

−∆(ϕp
(
∆u(k− 1)

))= q(k)h(M), k ∈N ,

u(0)= u(T + 1)= 1
n0

.
(2.10)

It follows from [8] that (2.10) has a solution u ∈ C(N+,R). Let v(k) = u(k)− 1/n0 for
k ∈ N+. Then ∆(ϕp(∆u(k− 1))) = −∆(ϕp(∆v(k− 1))) ≤ 0 for k ∈ N , and v(0) = v(T +
1)= 0. Lemma 1.5 guarantees that v(k)≥ 0 and so u(k)≥ 1/n0 for k ∈N+. Next we prove
u(k) ≤M for k ∈ N+. Now since ∆(ϕp(∆u(k− 1))) ≤ 0 on N implies ∆2u(k− 1) ≤ 0 on
N , then there exists k0 ∈N with ∆u(k)≥ 0 on [0,k0)= {0,1, . . . ,k0− 1} and ∆u(k)≤ 0 on
[k0,T + 1)= {k0,k0 + 1, . . . ,T}, and u(k0)= ‖u‖. Suppose u(k0) >M.

Also notice that for k ∈N , we have

−∆(ϕp
(
∆u(k− 1)

))= q(k)h(M). (2.11)

We sum (2.11) from j + 1 (0≤ j < k0) to k0 to obtain

ϕp
(
∆u( j)

)= ϕp
(
∆u
(
k0
))

+h(M)
k0∑

k= j+1

q(k). (2.12)

Now since ∆u(k0)≤ 0, we have

ϕp
(
∆u( j)

)≤ h(M)
k0∑

k= j+1

q(k) for 0≤ j < k0, (2.13)
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that is,

∆u( j)≤ ϕ−1
p

(
h(M)

)
ϕ−1
p

( k0∑
k= j+1

q(k)

)
for 0≤ j < k0. (2.14)

Then we sum the above from 0 to k0− 1 to obtain

u
(
k0
)−u(0)≤ ϕ−1

p

(
h(M)

)k0−1∑
j=0

ϕ−1
p

( k0∑
k= j+1

q(k)

)

≤ ϕ−1
p

(
h(M)

) k0∑
j=1

ϕ−1
p

( k0∑
k= j

q(k)

)
.

(2.15)

Similarly, we sum (2.11) from k0 to j (k0 ≤ j ≤ T + 1) to obtain

−ϕp
(
∆u( j)

)=−ϕp
(
∆u
(
k0− 1

))
+h(M)

j∑
k=k0

q(k) for j ≥ k0. (2.16)

Now since ∆u(k0− 1)≥ 0, we have

−∆u( j)= ϕ−1
p

(
h(M)

)
ϕ−1
p

( j∑
k=k0

q(k)

)
for j ≥ k0. (2.17)

We sum the above from k0 to T to obtain

u
(
k0
)−u(T + 1)≤ ϕ−1

p

(
h(M)

) T∑
j=k0

ϕ−1
p

( j∑
k=k0

q(k)

)
. (2.18)

Now (2.15) and (2.18) imply

M− 1
n0
≤ b0ϕ

−1
p

(
h(M)

)
. (2.19)

This contradicts (2.3). Thus

1
n0
≤ u(k)≤M for k ∈N+. (2.20)

Let β(k)≡ u(k) for k ∈N+. Now (2.7) and (2.20) guarantee

α(k)≤ β(k) for k ∈N+. (2.21)

Now (2.2) and (2.20) imply f (k,β(k))≤ h(β(k))≤ h(M) so

β ∈ C
(
N+,R

)
with

β(k)≥ α(k), β(k)≥ 1
n0

for k ∈N+ with

q(k) f
(
k,β(k)

)≤−∆(ϕp
(
β(k− 1)

))
for k ∈N.

(2.22)

Now Theorem 1.2 guarantees that (1.1) has a solution u∈ C(N+,R) with u(k)≥ α(k) > 0
for k ∈N . �



210 Discrete initial and boundary value problems

Example 2.2. Consider the boundary value problem

∆2u(k− 1)= k[
u(k)

]α +
[
u(k)

]β−A, k ∈N ,

u(0)= u(T + 1)= 0
(2.23)

with p = 2, α > 0, 0 ≤ β < 1, and A > 0. Then (2.23) has a solution u ∈ C(N+,R) with
u(k) > 0 for k ∈N .

To see this, we will apply Theorem 2.1 with

q(k)= 1, f (k,u)= k

uα
+uβ−A. (2.24)

Let n0 > (2A)1/α and c0 =A. Then for k ∈N and 0 < u≤ 1/n0,

q(k) f (k,u)= k

uα
+uβ−A≥ k

uα
−A≥ 1

uα
−A≥ 2A−A=A= c0, (2.25)

so (2.1) is satisfied. Let h(u)= uβ +nα0T +A. Then (2.2) is immediate. Also since 0≤ β < 1,
we see that

there exist M >
1
n0

such that M− 1
n0

> b0
(
Mβ +nα0T +A

)
; (2.26)

here

b0 =max
k∈N

( k∑
j=1

(k− j + 1),
T∑
j=k

( j− k+ 1)

)
. (2.27)

Thus (2.3) holds. Theorem 2.1 guarantees that (2.23) has a solution u ∈ C(N+,R) with
u(k) > 0 for k ∈N .

Next we present a result for initial value problems.

Theorem 2.3. Let n0 ∈ {1,2, . . .} be fixed and suppose (1.2), (1.3) hold. Also assume the
following conditions are satisfied:

there exists a constant c0 > 0 such that

q(k) f (k,u)≥ c0 for k ∈N , 0 < u≤ 1
n0

,
(2.28)

there exist h > 0 continuous and nondecreasing on [0,∞) such that

∣∣ f (k,u)
∣∣≤ h(u) for (k,u)∈N ×

[
1
n0

,∞
)

,
(2.29)

there exist M >
1
n0

such that

M− 1
n0

> h(M)
T∑

k=1

q(k).
(2.30)

Then (1.2) has a solution u∈ C(N+,R) with u(k) > 0 for k ∈N .
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Proof. First we construct the lower solution α in (1.9). Let

α(k)=



c

k∑
i=1

q (i) , k ∈N ,

0, k = 0,

(2.31)

where

0 < c <
1

n0
∑T

i=1 q(i)
, cmax

k∈N
q(k)≤ c0. (2.32)

Then (2.7) holds, and α(0)= 0, ∆α(k− 1)= α(k)−α(k− 1)= cq(k)≤ c0 for k ∈N with
(1.9) holding, since

q(k) f
(
k,α(k)

)≥ c0 ≥ ∆α(k− 1) for k ∈N. (2.33)

Next we discuss the initial value problem

∆u(k− 1)= q(k) f ∗
(
k,u(k)

)
, k ∈N ,

u(0)= 1
n0

;
(2.34)

here

f ∗(k,u)=




f
(
k,

1
n0

)
, u≤ 1

n0
,

f (k,u),
1
n0
≤ u≤M,

f (k,M), u≥M.

(2.35)

Then (2.34) is equivalent to

u(k)=




1
n0

+
k∑
i=1

q(i) f ∗
(
i,u(i)

)
, k ∈N ,

1
n0

, k = 0.

(2.36)

From Brouwer’s fixed point theorem, we know that (2.34) has a solution u ∈ C(N+,R).
We first show

u(k)≥ 1
n0

for k ∈N+. (2.37)

Suppose (2.37) is not true. Then there exists a τ ∈N such that

u(τ) <
1
n0

, u(τ− 1)≥ 1
n0

(2.38)
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since u(0)= 1/n0. Thus we have, from (2.28)

∆u(τ − 1)= q(τ) f ∗
(
τ,u(τ)

)= q(τ) f
(
τ,

1
n0

)
> 0, (2.39)

so

u(τ)− 1
n0

> u(τ − 1)− 1
n0
≥ 0, (2.40)

a contradiction. Thus (2.37) is satisfied. Next we show

u(k)≤M for k ∈N+. (2.41)

Suppose (2.41) is false. Then since u(0)= 1/n0, there exists τ ∈N such that

u(τ) >M, u(k)≤M for k ∈ {0,1, . . . ,τ − 1}. (2.42)

Thus, we have

∆u(τ − 1)= u(τ)−u(τ− 1)≤ q(τ)h(M),

∆u(τ − 2)= u(τ − 1)−u(τ− 2)≤ q(τ − 1)h(M),

...

∆u(0)= u(1)−u(0)≤ q(1)h(M).

(2.43)

Adding both sides of the above formula gives

u(τ)−u(0)≤ h(M)
τ∑

k=1

q(k)≤ h(M)
T∑

k=1

q(k), (2.44)

that is,

M− 1
n0
≤ h(M)

T∑
k=1

q(k). (2.45)

This contradicts (2.30). Thus, we have (2.20). Let β(k) ≡ u(k) for k ∈ N+. By (2.7) and
(2.37), we have α(k)≤ β(k) for k ∈N+. Then

β ∈ C
(
N+,R

)
with

β(k)≥ α(k), β(k) >
1
n0

for k ∈N+ with

q(k) f
(
k,β(k)

)= ∆β(k− 1) for k ∈N.

(2.46)
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Now Theorem 1.3 guarantees that (1.2) has a solution u∈ C(N+,R) with u(k)≥ α(k) > 0
for k ∈N . �

Example 2.4. Consider the initial value problem

∆u(k− 1)= k
[
u(k)

]−α
+
[
u(k)

]β−A, k ∈N ,

u(0)= 0
(2.47)

with α > 0, 0 ≤ β < 1, and A > 0. Now (2.47) has a solution u ∈ C(N+,R) with u(k) > 0
for k ∈N .

To see this we will apply Theorem 2.3 with (2.24). Let n0 > (2A)1/α and c0 = A.Then for
k ∈N and 0 < u≤ 1/n0, (2.25) holds and so (2.28) is satisfied. Let h(u)= uβ + nα0 T +A.
Then (2.29) is immediate. Also since 0≤ β < 1, we see

there exist M >
1
n0

such that M− 1
n0

> T
(
Mβ +nα0T +A

)
, (2.48)

so (2.30) holds. Theorem 2.3 guarantees that (2.47) has a solution u ∈ C(N+,R) with
u(k) > 0 for k ∈N .
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