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A discrete-time delayed diffusion model governed by backward difference equations is
investigated. By using the coincidence degree and the related continuation theorem as
well as some priori estimates, easily verifiable sufficient criteria are established for the
existence of positive periodic solutions.

1. Introduction

Recently, some biologists have argued that the ratio-dependent predator-prey model is
more appropriate than the Gauss-type models for modelling predator-prey interactions
where predation involves searching processes. This is strongly supported by numerous
laboratory experiments and observations [1, 2, 3, 4, 10, 11, 12]. Many authors [1, 5, 7, 13,
14] have observed that the ratio-dependent predator-prey systems exhibit much richer,
more complicated, and more reasonable or acceptable dynamics. In view of periodicity
of the actual environment, Chen et al. [6] considered the following two-species ratio-
dependent predator-prey nonautonomous diffusion system with time delay:

ẋ1(t)= x1(t)

(
a1(t)− a11(t)x1(t)− a13(t)x3(t)

m(t)x3(t) + x1(t)

)
+D1(t)

(
x2(t)− x1(t)

)
,

ẋ2(t)= x2(t)
(
a2(t)− a22(t)x2(t)

)
+D2(t)

(
x1(t)− x2(t)

)
,

ẋ3(t)= x3(t)

(
− a3(t) +

a31(t)x1(t− τ)
m(t)x3(t− τ) + x1(t− τ)

)
,

(1.1)

where xi(t) represents the prey population in the ith patch (i= 1,2), and x3(t) represents
the predator population, τ > 0 is a constant delay due to gestation, and Di(t) denotes the
dispersal rate of the prey in the ith patch (i= 1,2). Di(t) (i= 1,2), ai(t) (i= 1,2,3), a11(t),
a13(t), a22(t), a31(t), and m(t) are strictly positive continuous ω-periodic functions. They
proved that system (1.1) has at least one positive ω-periodic solution if the conditions
a31(t) > a3(t) and m(t)a1(t) > a13(t) are satisfied.
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One question arises naturally. Does the discrete analog of system (1.1) have a posi-
tive periodic solution? The purpose of this paper is to answer this question to some ex-
tent. More precisely, we consider the following discrete-time diffusion system governed
by backward difference equations:

x1(k)= x1(k− 1)exp

{
a1(k)− a11(k)x1(k)− a13(k)x3(k)

m(k)x3(k) + x1(k)
+D1(k)

x2(k)− x1(k)
x1(k)

}
,

x2(k)= x2(k− 1)exp

{
a2(k)− a22(k)x2(k) +D2(k)

x1(k)− x2(k)
x2(k)

}
,

x3(k)= x3(k− 1)exp

{
− a3(k) +

a31(k)x1(k− l)
m(k)x3(k− l) + x1(k− l)

}

(1.2)

with initial condition

xi(−m)≥ 0, m= 1,2, . . . , l; xi(0) > 0 (i= 1,2,3), (1.3)

where Di(k) (i = 1,2), ai(k) (i = 1,2,3), a11(k), a13(k), a22(k), a31(k), m(k) are strictly
positive ω-periodic sequence, that is,

Di(k+ω)=Di(k), i= 1,2,

ai(k+ω)= ai(k), i= 1,2,3,

a11(k+ω)= a11(k), a13(k+ω)= a13(k),

a22(k+ω)= a22(k), a31(k+ω)= a31(k),

m(k+ω)=m(k)

(1.4)

for arbitrary integer k, where ω, a fixed positive integer, denotes the prescribed common
period of the parameters in (1.2).

It is well known that, compared to the continuous-time systems, the discrete-time ones
are more difficult to deal with. To the best of our knowledge, no work has been done for
the discrete-time system analogue of (1.1). Our purpose in this paper is, by using the
continuation theorem of coincidence degree theory [9], to establish sufficient conditions
for the existence of at least one positive ω-periodic solution of system (1.2).

Let Z, Z+, R, R+, and R3 denote the sets of all integers, nonnegative integers, real
numbers, nonnegative real numbers, and the three-dimensional Euclidean vector space,
respectively.
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For convenience, we introduce the following notation:

Iω = {1,2, . . . ,ω}, ū= 1
ω

ω∑
k=1

u(k),

uL =min
k∈Iω

u(k), uM =max
k∈Iω

u(k),
(1.5)

where u(k) is an ω-periodic sequence of real numbers defined for k ∈ Z.
Our main result in this paper is the following theorem.

Theorem 1.1. Assume the following conditions are satisfied:
(H1) ā31 > ā3;
(H2) m(k)a1(k) > a13(k).

Then system (1.2) has at least one ω-periodic solution, say x∗(k) = (x∗1 (k),x∗2 (k),x∗3 (k))T

and there exist positive constants αi and βi, i= 1,2,3, such that

αi ≤ x∗i (k)≤ βi, i= 1,2,3, k ∈ Z. (1.6)

The proof of the theorem is based on the continuation theorem of coincidence degree
theory [9]. For the sake of convenience, we introduce this theorem as follows.

Let X , Y be normed vector spaces, let L : DomL⊂ X → Y be a linear mapping, and let
N : X → Y be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL = codimImL < +∞ and ImL is closed in Y . Suppose L is a
Fredholm mapping of index zero and there exist continuous projectors P : X → X and
Q : Y → Y such that ImP = KerL, ImL = KerQ = Im(I −Q). Then L | DomL∩KerP :
(I − P)X → ImL is invertible. We denote the inverse of that map by KP . If Ω is an open
bounded subset of X , the mapping N will be called L-compact on Ω̄ if QN(Ω̄) is bounded
and KP(I −Q)N : Ω̄→ X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ→ KerL.

Lemma 1.2 (continuation theorem). Let L be a Fredholm mapping of index zero and let N
be L-compact on Ω̄. Suppose

(a) for each λ∈ (0,1), x ∈ ∂Ω∩DomL, Lx 	= λNx;
(b) QNx 	= 0 for each x ∈ ∂Ω∩KerL;
(c) deg{JQN ,Ω∩KerL,0} 	= 0.

Then the operator equation LX =Nx has at least one solution lying in DomL∩ Ω̄.

Lemma 1.3 [8]. Let u : Z→R be ω-periodic, that is, u(k+ω)= u(k). Then for any fixed k1,
k2 ∈ Iω, and for any k ∈ Z, it holds that

u(k)≤ u
(
k1
)

+
ω∑
s=1

∣∣u(s)−u(s− 1)
∣∣,

u(k)≥ u
(
k2
)− ω∑

s=1

∣∣u(s)−u(s− 1)
∣∣.

(1.7)
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Lemma 1.4. If the condition (H1) holds, then the system of algebraic equations

ā1− ā11v1 = 0,

ā2− ā22v2 = 0,

ā3− v1

ω

ω∑
k=1

a31(k)
m(k)v3 + v1

= 0

(1.8)

has a unique solution (v∗1 ,v∗2 ,v∗3 )∈ R3 with v∗i > 0.

Proof. From the first two equations of (1.8), we have

v∗1 =
ā1

ā11
> 0, v∗2 =

ā2

ā22
> 0. (1.9)

Consider the function

f (u)= ā3− 1
ω

ω∑
k=1

a31(k)
m(k)u+ 1

, u≥ 0. (1.10)

Obviously, limu→+∞ f (u)= ā3 > 0. Since (H1) implies ā31 > ā3, it follows that

f (0)= ā3− ā31 < 0. (1.11)

Then, by the zero-point theorem and the monotonicity of f (u), there exists a unique
u∗ > 0 such that f (u∗)= 0. Let v∗3 = u∗v∗1 > 0. Then it is easy to see that (v∗1 ,v∗2 ,v∗3 )T is
the unique positive solution of (1.8). The proof is complete. �

2. Priori estimates

In this section, we will give some priori estimates which are crucial in the proof of our
theorem.

Lemma 2.1. Suppose λ∈ (0,1] is a parameter, the conditions (H1)-(H2) hold, (y1(k), y2(k),
y3(k))T is an ω-periodic solution of the system

y1(k)− y1(k− 1)

= λ

[
a1(k)−D1(k)− a11(k)exp

{
y1(k)

}− a13(k)exp
{
y3(k)

}
m(k)exp

{
y3(k)

}
+ exp

{
y1(k)

}

+D1(k)exp
{
y2(k)− y1(k)

}]
,

y2(k)− y2(k− 1)

= λ
[
a2(k)−D2(k)− a22(k)exp

{
y2(k)

}
+D2(k)exp

{
y1(k)− y2(k)

}]
,

y3(k)− y3(k− 1)= λ

[
− a3(k) +

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

}
]
.

(2.1)
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Then

∣∣y1(k)
∣∣+

∣∣y2(k)
∣∣+

∣∣y3(k)
∣∣≤ R1, (2.2)

where R1 = 2M1 +M2 and

M1 =max

{∣∣∣∣∣ ln

(
a1

a11

)M∣∣∣∣∣,

∣∣∣∣∣ ln

(
a2

a22

)M∣∣∣∣∣,

∣∣∣∣∣ ln

(
a2

a22

)L∣∣∣∣∣,

∣∣∣∣∣ ln

(
ma1− a13

ma11

)L∣∣∣∣∣
}

,

M2 =max

{∣∣∣∣∣ ln
1
ā3

(
a31

m

)
+M1 + 2ā3ω

∣∣∣∣∣,

∣∣∣∣∣ ln
ā31− ā3

ā3mM
−M1− 2ā3ω

∣∣∣∣∣
}
.

(2.3)

Proof. Since yi(k) (i= 1,2,3) are ω-periodic sequences, we only need to prove the result
in Iω. Choose ξi ∈ Iω such that

yi
(
ξi
)=max

k∈Iω
yi(k), i= 1,2,3. (2.4)

Then it is clear that

∇yi
(
ξi
)≥ 0, i= 1,2,3, (2.5)

where∇ denotes the backward difference operator∇y(k)= y(k)− y(k− 1).
In view of this and the first two equations of (2.1), we obtain

a1
(
ξ1
)−D1

(
ξ1
)− a11

(
ξ1
)

exp
{
y1
(
ξ1
)}

− a13
(
ξ1
)

exp
{
y3
(
ξ1
)}

m
(
ξ1
)

exp
{
y3
(
ξ1
)}

+ exp
{
y1
(
ξ1
)} +D1

(
ξ1
)

exp
{
y2
(
ξ1
)− y1

(
ξ1
)}≥ 0,

a2
(
ξ2
)−D2

(
ξ2
)− a22

(
ξ2
)

exp
{
y2
(
ξ2
)}

+D2
(
ξ2
)

exp
{
y1
(
ξ2
)− y2

(
ξ2
)}≥ 0.

(2.6)

If y1(ξ1)≥ y2(ξ2), then y1(ξ1)≥ y2(ξ1). So from the first equation of (2.6), we have

a11
(
ξ1
)

exp
{
y1
(
ξ1
)}≤ a1

(
ξ1
)−D1

(
ξ1
)

+D1
(
ξ1
)

exp
{
y2
(
ξ1
)− y1

(
ξ1
)}≤ a1

(
ξ1
)
,

(2.7)

which implies

y2
(
ξ2
)≤ y1

(
ξ1
)≤ ln

a1
(
ξ1
)

a11
(
ξ1
) ≤ ln

(
a1

a11

)M
. (2.8)
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Similarly, if y1(ξ1) < y2(ξ2), then we will have

y1
(
ξ1
)
< y2

(
ξ2
)≤ ln

a2
(
ξ2
)

a22
(
ξ2
) ≤ ln

(
a2

a22

)M
. (2.9)

Now choose ηi ∈ Iω (i= 1,2,3), such that

yi
(
ηi
)=min

k∈Iω
yi(k), i= 1,2,3. (2.10)

Then

∇yi
(
ηi
)≤ 0, i= 1,2,3. (2.11)

A similar argument as that for∇yi(ξi)≥ 0 will give us

y1
(
η1
)≥ y2

(
η2
)≥ ln

(
a2

a22

)L
,

y2
(
η2
)≥ y1

(
η1
)≥ ln

(
ma1− a13

ma11

)L
.

(2.12)

In summary, we have shown

∣∣yi(k)
∣∣≤M1, i= 1,2. (2.13)

On the other hand, summing both sides of the third equation of (2.1) from 1 to ω with
respect to k, we reach

ω∑
k=1

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

} = ā3ω. (2.14)

It follows from the third equation of (2.1) and (2.14) that

ω∑
k=1

∣∣y3(k)− y3(k− 1)
∣∣≤ ā3ω+

ω∑
k=1

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

}
= 2ā3ω.

(2.15)

From (2.13) and (2.14), we can derive that

ā3ω ≤
ω∑

k=1

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}

≤
ω∑

k=1

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3
(
η3
)}

≤ exp
{
M1
}

exp
{
y3
(
η3
)}( a31

m

)
ω.

(2.16)
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Hence

y3
(
η3
)≤ ln

1
ā3

(
a31

m

)
+M1. (2.17)

This, combined with (2.15) and Lemma 1.3, yields

y3(k)≤ y3
(
η3
)

+
ω∑

k=1

∣∣y3(k)− y3(k− 1)
∣∣

≤ ln
1
ā3

(
a31

m

)
+M1 + 2ā3ω.

(2.18)

We can derive from (2.13) and (2.14) that

ā3ω =
ω∑

k=1

a31(k)exp
{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

}

≥
ω∑

k=1

a31(k)exp
{
y1(k− l)

}
mM exp

{
y3
(
ξ3
)}+ exp

{
y1(k− l)

}

≥ exp
{−M1

}
mM exp

{
y3
(
ξ3
)}

+ exp
{−M1

} ā31ω.

(2.19)

Then, it follows that

y3
(
ξ3
)≥ ln

ā31− ā3

mMā3
−M1. (2.20)

Again, this, combined with (2.15) and Lemma 1.3, yields

y3(k)≥ y3
(
ξ3
)− ω∑

k=1

∣∣y3(k)− y3(k− 1)
∣∣

≥ ln
ā31− ā3

mMā3
−M1− 2ā3ω.

(2.21)

Therefore, we have shown

∣∣y3(k)
∣∣≤max

{∣∣∣∣ ln
1
ā3

(
a31

m

)
+M1 + 2ā3ω

∣∣∣∣,
∣∣∣∣ ln

ā31− ā3

mMā3
−M1− 2ā3ω

∣∣∣∣
}
=M2.

(2.22)
Now, it follows from (2.13) and (2.22) that

∣∣y1(k)
∣∣+

∣∣y2(k)
∣∣+

∣∣y3(k)
∣∣≤ R1. (2.23)

The proof is complete. �
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The following result can be proved in a similar way as for Lemma 2.1.

Lemma 2.2. Suppose µ ∈ [0,1] is a parameter, the conditions (H1)-(H2) hold, and
(y1, y2, y3)T is a constant solution to the system of the equations

ā1− ā11 exp
{
y1
}

+µ

(
− D̄1− 1

ω
exp

{
y3
} ω∑
k=1

a13(k)
m(k)exp

{
y3
}

+ exp
{
y1
} + D̄1 exp

{
y2− y1

})= 0,

ā2− ā22 exp
{
y2
}

+µ
(− D̄2 + D̄2 exp

{
y1− y2

})= 0,

− ā3 +
exp

{
y1
}

ω

ω∑
k=1

a31(k)
m(k)exp

{
y3
}

+ exp
{
y1
} = 0.

(2.24)

Then

∣∣y1
∣∣+

∣∣y2
∣∣+

∣∣y3
∣∣≤ R2, (2.25)

where R2 = 2M3 +M4 and

M3 =max
{∣∣∣∣ ln

ā1

ā11

∣∣∣∣,
∣∣∣∣ ln

ā2

ā22

∣∣∣∣,
∣∣∣∣ ln

ā1−
(
a13/m

)
ā11

∣∣∣∣
}

,

M4 =max
{∣∣∣∣ ln

ā31− ā3

mMā3
−M3

∣∣∣∣,
∣∣∣∣ ln

ā31− ā3

mLā3
+M3

∣∣∣∣
}
.

(2.26)

3. Proof of the main result

Define

l3 =
{
y = {y(k)

}
: y(k)∈ R3, k ∈ Z}. (3.1)

Let lω ⊂ l3 denote the subspace of all ω-periodic sequences equipped with the norm ‖ · ‖
defined by ‖y‖ = maxk∈Iω(|y1(k)| + |y2(k)| + |y3(k)|) for y = {y(k)} = {(y1(k), y2(k),
y3(k))T} ∈ lω. It is not difficult to show that lω is a finite-dimensional Banach space.

Let

lω0 =
{
y = y(k)∈ lω :

ω∑
k=1

y(k)= 0

}
,

lωc =
{
y = y(k)∈ lω : y(k)= (y1, y2, y3

)T ∈ R3, k ∈ Z
}
.

(3.2)
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Then, obviously, lω0 and lωc are both closed linear subspaces of lω. Moreover,

lω = lω0
⊕

lωc , dim lωc = 3. (3.3)

Now we reach the position to prove our main result.
Let xi(k)= exp{yi(k)}, i= 1,2,3. Then system (1.2) can be rewritten as

y1(k)− y1(k− 1)

= a1(k)−D1(k)− a11(k)exp
{
y1(k)

}

− a13(k)exp
{
y3(k)

}
m(k)exp

{
y3(k)

}
+ exp

{
y1(k)

} +D1(k)exp
{
y2(k)− y1(k)

}
,

y2(k)− y2(k− 1)

= a2(k)−D2(k)− a22(k)exp
{
y2(k)

}
+D2(k)exp

{
y1(k)− y2(k)

}
,

y3(k)− y3(k− 1)

=−a3(k) +
a31(k)exp

{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

} .

(3.4)

So to complete the proof, it suffices to show that system (3.4) has at least one ω-periodic
solution. To this end, we take X = Y = lω, (Ly)(k)=∇y(k)= y(k)− y(k− 1), and

(Ny)(k)

=




a1(k)−D1(k)− a11(k)exp
{
y1(k)

}

− a13(k)exp
{
y3(k)

}
m(k)exp

{
y3(k)

}
+ exp

{
y1(k)

} +D1(k)exp
{
y2(k)− y1(k)

}

a2(k)−D2(k)− a22(k)exp
{
y2(k)

}
+D2(k)exp

{
y1(k)− y2(k)

}

− a3(k) +
a31(k)exp

{
y1(k− l)

}
m(k)exp

{
y3(k− l)

}
+ exp

{
y1(k− l)

}




(3.5)

for any y ∈ X and k ∈ Z. It is trivial to see that L is a bounded linear operator and

KerL= lωc , ImL= lω0 , (3.6)

as well as

dimKerL= codimImL= 3. (3.7)

So L is a Fredholm mapping of index zero.
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Define

Py = 1
ω

ω∑
k=1

y(k), y ∈ X , Qz = 1
ω

ω∑
k=1

z(k), z ∈ Y. (3.8)

It is not difficult to show that P and Q are continuous projectors such that

ImP = KerL, ImL= KerQ = Im(I −Q). (3.9)

Furthermore, the generalized inverse (to L) KP : ImL→ KerP∩DomL exists and is given
by

KP(z)=
k∑

s=1

z(s)− 1
ω

k∑
s=1

(ω− s+ 1)z(s). (3.10)

Obviously, QN and KP(I −Q)N are continuous. Since X is a finite-dimensional Banach
space, and KP(I −Q)N is continuous, it follows that KP(I −Q)N(Ω̄) is compact for any
open bounded set Ω ⊂ X . Moreover, QN(Ω̄) is bounded. Thus, N is L-compact on Ω̄
with any open bounded set Ω∈ X . Particularly we take

Ω := {y = y(k)∈ X : ‖y‖ < R1 +R2
}

, (3.11)

whereR1 andR2 are as in Lemma 2.1 and Lemma 2.2. It is clear thatΩ is an open bounded
set in X , N is L-compact on Ω̄. Now we check the remaining three conditions of the
continuation theorem of coincidence degree theory. Due to Lemma 2.1, we conclude
that for each λ ∈ (0,1), y ∈ ∂Ω∩DomL, Ly 	= λN y. When y = (y1(k), y2(k), y3(k))T ∈
∂Ω∩KerL, (y1(k), y2(k), y3(k))T is a constant vector in R3, we denote it by (y1, y2, y3)T

and ‖(y1, y2, y3)T‖ = R1 +R2. If QNy = 0, then (y1, y2, y3)T is a constant solution to the
following system of equations:

ā1− ā11 exp
{
y1
}

+

(
− D̄1− 1

ω
exp

{
y3
} ω∑
k=1

a13(k)
m(k)exp

{
y3
}

+ exp
{
y1
} + D̄1 exp

{
y2− y1

})= 0,

ā2− ā22 exp
{
y2
}

+
(− D̄2 + D̄2 exp

{
y1− y2

})= 0,

− ā3 +
exp

{
y1
}

ω

ω∑
k=1

a31(k)
m(k)exp

{
y3
}

+ exp
{
y1
} = 0.

(3.12)

From Lemma 2.2 with µ= 1, we have ‖(y1, y2, y3)T‖ ≤ R2. This contradiction implies for
each y ∈ ∂Ω∩KerL, QNy 	= 0.
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We select J , the isomorphism of ImQ onto KerL as the identity mapping since ImQ =
KerL. In order to verify the condition (c) in the continuation theorem, we define φ :
(DomL∩KerL)× [0,1]→ X by

φ
(
y1, y2, y3,µ

)

=




ā1− ā11 exp
{
y1
}

ā2− ā22 exp
{
y2
}

−ā3 +
exp

{
y1
}

ω

ω∑
k=1

a31(k)
m(k)exp

{
y3
}

+ exp
{
y1
}




+µ




−D̄1− 1
ω

exp
{
y3
} ω∑
k=1

a13(k)
m(k)exp

{
y3
}

+ exp
{
y1
} + D̄1 exp

{
y2− y1

}

−D̄2 + D̄2 exp
{
y1− y2

}
0




,

(3.13)

where µ∈ [0,1] is a parameter. When y = (y1, y2, y3)T ∈ ∂Ω∩KerL, (y1, y2, y3)T is a con-
stant vector with ‖(y1, y2, y3)T‖ = R1 +R2. From Lemma 2.2 we know φ(y1, y2, y3,µ) 	= 0
on ∂Ω∩KerL. So, due to homotopy invariance theorem of topology degree we have

deg{JQN ,Ω∩KerL,0} = deg
{
φ(·,1),Ω∩KerL,0

}
= deg

{
φ(·,0),Ω∩KerL,0

}
.

(3.14)

By Lemma 1.4, the algebraic equation (1.8) has a unique solution (y∗1 , y∗2 , y∗3 )T ∈ Ω∩
KerL. Thus, we have

deg{JQN ,Ω∩KerL,0}

= sign

(
− ā1ā2

exp
{
y∗1 + y∗3

}
ω

ω∑
k=1

m(k)a13(k)(
m(k)exp

{
y∗3
}

+ exp
{
y∗1
})2

)
	= 0.

(3.15)

By now, we have proved that Ω satisfies all the requirements of Lemma 1.2. So it fol-
lows that Ly =Nx has at least one solution in DomL∩ Ω̄, that is to say, (3.4) has at least
one ω-periodic solution in DomL∩ Ω̄, say y∗ = {y∗(k)} = {(y∗1 (k), y∗2 (k), y∗3 (k))T}. Let
x∗i (k)= exp{y∗i (k)}. Then x∗ = {x∗(k)} = {(x∗1 (k),x∗2 (k),x∗3 (k))T} is an ω-periodic so-
lution of system (1.2). The existence of positive constants αi and βi directly follows from
the above discussion. The proof is complete.
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