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We discuss conditions for the existence of at least one positive solution to a nonlinear
second-order Sturm-Liouville-type multipoint eigenvalue problem on time scales. The
results extend previous work on both the continuous case and more general time scales,
and are based on the Guo-Krasnosel’skii fixed point theorem.
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1. Introduction

We are interested in the second-order multipoint time-scale eigenvalue problem

(p V)A(t)—q(t)y(t)+/\h(t)f(y) =0, f<t<t, (1.1)

ay(t) —Bp(t)y Zay t),  yy(ta) +0p(ta)y Zby ), (1.2)
where

2,q: [t ta] — (0,00), p € Ct,ty), q € Clt1,tnl; (1.3)

the points t; € T& fori € {1,2,...,n} witht) <t < - -+ <ty;
a,B,9,6 € [0,0), ay+ad+py>0, ai,b;€[0,0), i€ {2,...,n—1}. (1.4)

The continuous function f : [0,00) — [0, 00) is such that the following exist:

fy:= lim f(y fu i tim L0, (1.5)

y=—07 ymooy
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2 Second-order n-point eigenvalue problems on time scales

and the right-dense continuous function h: [t;,t,] — [0, %) satisfies some suitable con-
ditions to be developed. Problem (1.1), (1.2) is a generalization to time scales of the prob-
lem when T is restricted to R on the unit interval in Ma and Thompson [19], and extends
the type of time-scale boundary value problem found in Anderson [2], Atici and Gu-
seinov [6], Kaufmann [15], Kaufmann and Raffoul [16], and Sun and Li [21, 22]. Other
related three-point problems on time scales include Anderson and Avery [4], Anderson
etal. [5], Peterson et al. [20], and a singular problem in DaCunha et al. [12]. Some of the
work on multipoint time-scale problems includes Anderson [1, 3] and Kong and Kong
[17], and a recent singular multipoint problem in Bohner and Luo [8]. For more general
information concerning dynamic equations on time scales, introduced by Aulbach and
Hilger [7] and Hilger [14], see the excellent text by Bohner and Peterson [9] and their
edited text [10].

2. Time-scale primer

Any arbitrary nonempty closed subset of the reals R can serve as a time-scale T; see [9,
10]. For t € T define the forward jump operator 0: T — T by 0(¢) = inf{s € T: s> t},
and the backward jump operator p: T — T by p(t) = sup{s € T: s < t}. The graininess
operators pig, i, : T — [0, 0) are defined by p,(t) = o(t) — t and p, (¢) = p(t) — ¢.

A function f : T — R is right-dense continuous (rd-continuous) provided it is con-
tinuous at all right-dense points of T and its left-sided limit exists (is finite) at left-
dense points of T. The set of all right-dense continuous functions on T is denoted by
Ca= Crd(—u—) = Cra(T,R).

Define the set T, by T, = T — {m} if T has a right scattered minimum m and T, =T
otherwise. In a similar vein, T = T — {M} if T has a left scattered maximum M and
T* =T otherwise. We take T& = T, N T*.

Definition 2.1 (delta derivative). Assume f: T — R is a function and let t € T*. Define
f2(t) to be the number (provided it exists) with the property that given any € > 0, there
is a neighborhood U C T of t such that

[[f(a(®) = f(5)] = fAO)[a(t) —s]| <€|a(t)—s| VseU. (2.1)

The function f2(t) is the delta derivative of f at ¢.

Definition 2.2 (nabla derivative). For f : T — Rand t € T, define fV () to be the number
(provided it exists) with the property that given any € > 0, there is a neighborhood U of ¢
such that

| F(p(t)) = f(s)— fFY(t)pt) —s]| <€|p(t)—s| VseU. (2.2)

The function fV(¢) is the nabla derivative of f at t.

In the case T =R, f2(t) = f'(t) = fV(¢). When T =7, f2(t) = f(t+1) — f(t) and
Y@ =f) - f-1.
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Definition 2.3 (delta integral). Let f : T — R be a function, and let a,b € T. If there exists
a function F: T — R such that FA(¢) = f(t) for all t € T*, then F is a delta antiderivative
of f.In this case the integral is given by the formula

b
J F()At = F(b)— F(a) forabeT. (2.3)

All right-dense continuous functions are delta integrable; see [9, Theorem 1.74].

3. Linear preliminaries

We first construct Green’s function for the second-order boundary value problem

(py¥) () = q(t)y(t) +u(t) =0, t;<t<ty, (3.1)
ay(t) = Bp(t)y¥ () =0, yy(ta) +8p(ta)y¥ (£a) = 0, (3.2)

where «, f, y, & are real numbers such that |a| + [B]| # 0, |y| + || # 0. The techniques
here are similar to those found in [6, 19].
Denote by ¢ and y the solutions of the corresponding homogeneous equation

(py™)2(6) = q(t)y(t) =0, t € [ti,ty), (3.3)

under the initial conditions

y(t) =B plt)y"(t) =a (3.4)
8 p(t)¢Y (ta) = -, (3.5)

so that y and ¢ satisfy the first and second boundary conditions in (3.2), respectively. Set

d=—-Wi(y,¢) = p(t)y" ()p(t) — y () p()$Y (1). (3.6)

Since the Wronskian of any two solutions is independent of ¢, evaluating at t = £;, t = t,,,
and using the boundary conditions (3.4), (3.5) yields

d=a¢(tr) —Bp(t)¢Y (t1) = yy(ta) +8p(ta)y¥ (1) (3.7)

In addition d # 0 if and only if the homogeneous equation (3.3) has only the trivial so-
lution satisfying the boundary conditions (3.2). For the proof of the following theorem,
see [6, Theorem 4.2].

LemMA 3.1. Assume (1.3) and (1.4). If d # 0, then the nonhomogeneous boundary value
problem (3.1)-(3.2) has a unique solution y for which the formula

ty
y(t)=L Gt 9)u(s)ds, e [p(t)t] (3.8)
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holds, where the function G(t,s) is given by

1 |v@®es), p(h) <t=<s<t,
Gt =5 (3.9)
d | y)(t), plt) <s<ts<tn

and G(t,s) is Green’s function of the boundary value problem (3.1)-(3.2). Furthermore
Green’s function is symmetric, that is, G(t,s) = G(s,t) for t,s € [p(t1),t,].

LEmMA 3.2. Assume (1.3) and (1.4). Then the functions y and ¢ satisfy
() =0, telp(t)t,]

() >0, te(p(h)tal,
pOyY(t) =0,

tep(t),tal,  ¢(t) =0, tep(tr),tul,

(3.10)
$(t)>0, te[p(ti).ta),  p(H$T(H) <0, tE[p(ti)tal.
Proof. The proof is very similar to the proof of [6, Lemma 5.1] and is omitted O
Set
n—1
Zal// t; d—Zai(/)(tl)
Di=| "2 S : (3.11)
d— > biy(t) - bip(t)
i=2

i=2

LemMa 3.3. Assume (1.3) and (1.4). If D # 0 and u € C,q(t1,t,], then the nonhomogeneous
dynamic equation (3.1) with boundary conditions (1.2) has a unique solution y for which
the formula

ty

(1) t G(t,s)u(s)As+A(u)y(t) + B(u)¢(1),

te[p(t),tal, (3.12)

holds, where the function G(t,s) is Green’s function (3.9) of the boundary value problem
(3.1)-(3.2) and the functionals A and B are defined by

ty
a, Gt,, u(s)As d-— Zagbt,

Au) % , (3.13)
Z b; G (ti,s)u(s)As  — Z big(t;)
i=2
n—1
) - ZaiW(ti) J (tirs)
Buw=5| 7, ;:21 : (3.14)
d— Zz‘ b,‘l//(ti) Z J’ tl,S
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Proof. It can be verified that for a solution y of the nonhomogeneous equation (3.1)
under the nonhomogeneous boundary conditions (1.2), the formula (3.12) holds, where
G(t,s) is given by (3.9). We thus show that the function y given in (3.12) is a solution of
(3.1) with conditions (1.2) only if A and B are given by (3.13) and (3.14), respectively. If
y asin (3.12) is a solution of (3.1), (1.2), then

t ty
= 2| poyuns+ L [ wwseutsns+ ayn +Bo) (3.15)

for some constants A and B. Taking the nabla derivative and multiplying by p yields

py¥ = p¢v J y(s)u(s)As+ % Jtn(/ﬁ(s)u(s)As+Ap1//v +Bp¢Y; (3.16)

the delta derivative of this expression is

\v o(t)
(057 = (B5) [ vouns+ P2y + Apy™) "+ B(pg")”

t

o (3.17)
(p‘” ) s - P g(tyuce).

Using [9, Theorem 1.75], and the fact that y and ¢ are solutions to (3.3), we obtain

(1) q(t)

d

u(t)

(0570 = L2 | gtowoucoas+ 17 = P09 Oy

(s () (Hu(t) +

q()

jw u(s)As — Ty (tus (p(tyut)

_ Ei)p(t)w (D9() +a(1) (Ay (1) + b(1)).

(3.18)
Recall that d is in terms of the Wronskian of ¢ and ¢ in (3.6); it follows that
(py™)"(1) = 4(0)y(6) ~ u(t) (3.19)
Now
tn
y(h) = @ . d(s)u(s)As+ Ay (t;) + Bo(t),
(3.20)
p(t)yY (1)

p(tl)yv(t1)=# ¢>(s)u ()As+Ap(t)y¥ (1) +Bp () 9" (11);
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multiply the first line by « and the second by —f3, and use (1.2) and (3.4) to see that

Blag(t;) —Bp(t1)oY (t1)] Zu,( G(t;,s) (s)As+A1//(ti)+B¢(t,-)). (3.21)

At the other end,

(tn) = ¢(;") tnw(s)u(s)As+Aw(tn) +B¢(tu),
1 (3.22)
v tn
ple)y® (1) = PEOEE (% act Ap(1)y7 () + Bp(6)9° (1)
consequently
ALy (6) +8p () y 2 b (J G(t,-,s)u(s)As+Aw(t,-) +B¢(t,-)>. (3.23)

Combining (3.21) and (3.23) and using (3.6), we arrive at the system of equations

n—1 n—1
—Azaﬂ//(fi)+3[0¢¢(t1) —Bp(t)¢7 (0) = > aig ] Z J G(tis)u(s)As,
i=2 i=2
n—1
|:yl//(tn)+8p t)w wa t; ]—BZblxp t;) Zb G (t;,5)u(s)As
- (3.24)

Again using (3.6) at both ¢, and t,,, we verify (3.13) and (3.14). O
LEmMA 3.4. Let (1.3) and (1.4) hold, and assume

n—1
D <0, d-> aip(t;) >0, d— > biy(t) >0 (3.25)
i=2

i=2
for D and d given in (3.11) and (3.6), respectively. If u € C,4[t1,t,] with u > 0, the unique
solution y as in (3.12) of the problem (3.1), (1.2) satisfies y(t) = 0 for t € [t1,1,].

Proof. From the previous lemmas and assumptions we know that Green’s function (3.9)
satisfies G(t,s) = 0 on [p(t1),t,] X [p(t1),t,]. Hypotheses (1.3), (1.4), and (3.25) applied
to (3.13) and (3.14) imply that A(u),B(u) = 0. O

Suppose (3.25) does not hold. For example,letn =3, p(t) =l =a=y,q(t) =0= =
0 =a»,and t; = 0. Then (3.1), (1.2) becomes

YA +u(t) =0, ti<t<ts, y(t)=0, y(5)=by(t). (3.26)
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Note that y(t) = t, d = t3, and D = t3(byt, — t3). If D >0, then b,t, > t3, and there is no
positive solution; see [15, Lemma 4].

LemMa 3.5. Let (1.3), (1.4), and (3.25) hold, and fix
fl,fz S —U—Z, p(tl) < fl < fz <ty (3.27)

If u € Cralti,t,] with u > 0, the unique solution y as in (3.12) of the time-scale boundary
value problem (3.1), (1.2) satisfies

ter[rgnz y@&) =Tlyll, iyl = te[rp(;c})ftn]y(t), (3.28)

where

o) (&)
I:= mm{¢(l)(t1)),1//(tn)} e (0,1). (3.29)
Proof. From (1.3), (3.9), and Lemma 3.2,

0 < G(t,s) <G(s,s), te[p(tr),tul, (3.30)

so that
y(t) < ' G(s,s)u(s)As+ A(w)y(t,) +Bw)p(p(t1)) VYte [p(t),tul (3.31)

t

For t € [£1,&,], Green’s function (3.9) satisfies

AOMN I ¢ (%) -
Gty _| o’ Pyt P =
G(s,s) | w(t) a Bl '
> %1 plt)<t<s<t, 522)) plh) <t<s<t,
forI'asin (3.29), and
y(t) = : gg:z;G(s,s)u(s)As+A( Jw(t) +B(u)d(t)
> LnFG(s s)u(s)As+A(w)y (&) + B(u)¢ (&) (3.33)
> F( tn G(s,8)u(s)As+ A(u)y () +B(u)¢>(p(t1))> > Tyl -

4. Eigenvalue intervals

To establish eigenvalue intervals we will employ the following fixed point theorem due to
Krasnosel’skii [18]; for more on the establishment of eigenvalue intervals for time-scale
boundary value problems, see, for example, Chyan and Henderson [11] and Davis et al.
[13].



8  Second-order n-point eigenvalue problems on time scales

THEOREM 4.1. Let E be a Banach space, P € E a cone, and suppose that Oy, Q, are bounded
open balls of E centered at the origin with Q; C Q,. Suppose further that L: PN (Qy \ Q) —
P is a completely continuous operator such that either

@) Lyl < liyll, y e PN oQy and |ILyll = llyll, y € PN 0Q,, or

(i) ILyll = lyll, y € PN oy andMyll <llyll, ye PN o,
holds. Then L has a fixed point in P N0 (Qy \ Q).

Assume that the right-dense continuous function h satisfies
h:lt,t,] — [0,00), 3ty € (a(t1),p(ts)) D h(ts) >0. (4.1)

Then there exist &}, & as in Lemma 3.5 such that

&
£ <ty <b L Gt h(s)As >0, 1€ (p(t), ). (4.2)

In the following, let T be the constant defined in (3.29) with respect to such constants
&1, &. Let 7 € [p(t1),t,] be determined by

& &
G(1,s)h(s)As = max G(t,s)h(s)As > 0. (4.3)

& plt)<t<t, J§,

For G(t,s) in (3.9) and A, B as in (3.13), (3.14), respectively, define the constant

tn
K:=| G(s,9)h(s)As+Ah)y(t,) + B(h)¢(p(t1)). (4.4)

51

Let 9 denote the Banach space C[p(t;),t,] with the norm || y|| = SUP; e [p(1),t,] [y(t)]. De-
fine the cone % C & by

P={yeB:y(t)=00n[p(t1),ta], y(t) = Tllyll on [&,&]}, (4.5)

where I' is given in (3.29). Since y is a solution of (1.1), (1.2) if and only if

tn
y(t):A( t G(t,s)h(s)f(y(s))As+A(hf(y))w(t)+B(hf(y))¢(t)), te[p(t)tal,
(4.6)
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define for y € P the operator T : % — % by

(Ty)(t): (J G(t,s h(S)f(y(S))AS+A(hf()/))1//(t)+B(hf()/))</>(t))- (4.7)
We seek a fixed point of T in P by establishing the hypotheses of Theorem 4.1.
THEOREM 4.2. Suppose (1.3), (1.4), (3.25), (4.1), and (4.3) hold. Then for each A satisfying

1 1
<A< —,
foT Jg G(1,5)h(s)As foK

(4.8)

there exists at least one positive solution of (1.1), (1.2) in P.

Proof. Let &, & be as in Lemma 3.5, let 7 be as in (4.3), let K be as in (4.4), let A be as in
(4.8), and let € > 0 be such that

! P YT S (4.9)

(fo -~ L[ G(r,9)h(s)as — (for€e)K

Consider the integral operator T in (4.7). If y € %, then by (3.30) we have

tn
(170 =3( [ G0 £ 95+ AGSO)¥i0)+ B0

< A( :n G(s,8)h(s) f (y(s))As+A(hf () (ta) +B(hf(y))¢(p(t1))>,
(4.10)

so that for t € [}, &],

(Ty)(t) = (J G(t,5)h( )f()/(S))ASJrA(hf()’))I//(t)+B(hf()’))¢(t)>

ZA( , ii“i Gls,9h(s)f (y(s))A”A(hf(y))W(fl)+B(hf(y))¢(€z)>

zAF( :ﬂ G(s,s>h(s)f(y(s))A5+A(hf(y))w(tn)+B(hf(y))</>(p(t1))> =TTyl
(4.11)

Therefore T : % — P. Moreover, T is completely continuous by a typical application of
the Ascoli-Arzela theorem.
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Now consider f;. There exists an R; >0 such that f(y) < (fo+€)y for 0 < y <R, by
the definition of f. Pick y € @ with || y|l = R,. From (3.13) and (3.14),

[A(fFON | <AWIFDIL - [B(FG)) | = BMIIf (). (4.12)

Using (3.30), we have

(Ty)(t) = (J G(t, () f (y(s)) As + A(RF () w t)+B(hfy))¢(t>

n 4.13
<A J] csomonscatute) rsmoeun) 4
<AMfo+e)llyllK < Iyl
from the right-hand side of (4.9). As a result, [Tyl < || y|l. Thus, take
Qr:={yeB:llyl <R} (4.14)

so that [[Tyll < |lyll for y € P N 0Q;.

Next consider f.. Again by definition, there exists an R} > R; such that f(y) > (fe —
€)y for y > R5; take R, = max{2R;,R5/T}. If y € P with ||y|| = Ry, then for s € [§;, &]
we have

y(s) =Tllyll =TR,. (4.15)

Define O, := {y € B: [l yll < Ry}; using (4.3) and (4.15) for s € [&;, & ], we get

(Ty)(r)=)t< G(1,9)h(s) f (y(s))As+A(hf(y))y( +B(hf(y))¢>(r)>

>AI G(2,9)h(s) f (y()) As = A(f. —eJ G(r,9)h(s)y(s)As (4.16)

&
> M(fu — €)TR, | G(r,9)h(s)As = Ry = Iy,

1

where we have used the left-hand side of (4.9). Hence we have shown that
ITyll = liyl, ye®non,, (4.17)

An application of Theorem 4.1 yields the conclusion of the theorem; in other words, T
has a fixed point y in P N (Q, \ Q;) with Ry < ||yl < R,. O
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THEOREM 4.3. Suppose (1.3), (1.4), (3.25), (4.1), and (4.3) hold. Then for each A satisfying

1 1

<A< , (4.18)
AL Grh(s)as — foK
there exists at least one positive solution of (1.1), (1.2) in P.
Proof. Let A be as in (4.18) and let # > 0 be such that
1 1
<A< . (4.19)
(fo— ML [ G(z,9)h(s)As (fo +mK

Again let T be the operator defined in (4.7). We once more seek a fixed point of T in &P
by establishing the hypotheses of Theorem 4.1.

First, consider f;. There exists an R; > 0 such that f(y) = (fo —#)y for 0 < y <R; by
the definition of fy. Pick y € P with [|y|l = R;. For s € [&, & ], where &, & are as in
Lemma 3.5, we have

y(s) = Tllyll =TR;. (4.20)

Using the left-hand side of (4.19) and (4.20) we get, for s € [, & ],

(Ty)(r)=A ( Jtn G(7,9)h(s) f (y(s)) As+ A(hf(y)) y(7) + B(hf(y))sb(f))

2 & (4.21)
= A(fo—n) L G(7,9)h(s)y(s)As = A( fo — 71)RJL G(1,5)h(s)As
>Ry = [lyll.
Therefore | Tyll = || y||. This motivates us to define
Q= {yeB:llyll <R}, (4.22)
whereby our work above confirms
ITyll=lyll, y€PnoQ,. (4.23)

Next consider fe. Again by definition there exists an R, > R; such that f(y) < (fo +7)y
for y = R;. If f is bounded, there exists M >0 with f(y) < M forall y € (0,00). Let

R, := max {ZR'Z,/\M( ¥ G(s,s)h(s)As+ A(h)y (t,) +B(h)¢>(p(t1))> } (4.24)
t
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If y € P with || yll = Ry, then we have

(Ty)(t) < A( " Gls, h(5) £ (1) As + AT ) (1) +B(hf(y))¢>(p(t1)))

sAM( " Gls,)h(s)As + ARy (1) +B(h)¢(p(t1))) <Ry =yl

ty

(4.25)
As aresult, [Tyl < |lyll. Thus, take
Q={yeB:llyl <Ry} (4.26)

so that | Ty|l < [lyll for y € P N dQ,. If f is unbounded, take R, := max{2R;,R}} such
that f(y) < f(Ry) for 0 < y < R,. If y € % with || y|| = R;, then we have

(Ty)(t) =Af(Ry) (L G(s,s)h(s)As+A(h)y (t,) +B(h)¢(p(t1))>

(4.27)
<Mfo+n)RK <Ry = |lyll,
where we have used the left-hand side of (4.19). Hence we have shown that
ITyll <llyll, y€Pno, (4.28)
if we take
Q:={yeB:lyll <R} (4.29)

As before, an application of Theorem 4.1 yields the conclusion that T has a fixed point y
in@ﬂ(ﬁz\ﬂl)witth < ||y|| <R,. |

CoROLLARY 4.4. Suppose (1.3), (1.4), (3.25), and (4.1) hold. If f is sublinear (i.e., fo = co
and fo = 0), or if f is superlinear (i.e., fo = 0 and fo = ), then for any A >0 the boundary
value problem (1.1)-(1.2) has at least one positive solution in P.

Proof. For the superlinear claim, use (4.8) of Theorem 4.2; for the sublinear claim, use
(4.18) of Theorem 4.3. O

5. Examples
Example 5.1. Let T = R, and consider the three-point boundary value problem
Yy ' —y+Af(y)=0, -1<t<]1,
(5.1)
y(=1) =ay(0) = y(1),

where a := sinh(2)/4sinh(1) and f € C([0, ), [0, 0)) such that f, and f. exist.
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1-t _ -1

y = S =sinh(1+0), (1) = — sinh(1 - 1),

ey h(2)

Tley y| T

Since
— d_
=1, WO S dmaO0N e <o
—ay(0) —a¢(0) 2
d—a¢(0) =d—ay(0) = Zsinh(Z) >0,

(3.25) holds. We take [£1,&,] = [—

T=

AQl) =

B(1) :%

- o

min {SU2) ¥C12))_

s)ds+A(1)y(1) +B(1)¢(-1) =

1/2,1/2], so that

sinh(1/2)
sinh(2) ’

o(-1)" w(1)

1
aJ G(0,9)ds d— ag(0)
-1

_ (e—1)
- . h bl

aJl GO5ds  —ap0) | " 2
-1

1
~ap) af GO0

~ 2esinh(2)’

1
d— ay(0) aL G(0,5)ds

cosh(2 )+ +1
sinh(2)

2
>

Note that 7 in (4.3) is determined by

max{ [-1-2]: %
(-1

which is

¢(0) (°
d J—I/Z y(s)ds+

] 0) Jl/z V(5)ds,

1/2

kal fl [l

t) 1/2
[ v 5 [ o)

@Lﬂng( )ds —2smh(1)( osh(l)—cosh(%)).

h(2)

13

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Applying (5.4) and (5.6), we can find the interval in (4.8):

2
sinh’(2) <d<-L (5.9)
2sinh(1)sinh(1/2) (cosh(1) — cosh(1/2)) fw K fo
approximately
25.8511 0.615962
<A< . (5.10)
oo Jo

Example 5.2. Let T = hZ for h = 27'°, and consider the four-point boundary value prob-
lem

(py") (O +Af(y) =0, 0<t<l,

)
y(0) = p(0)y¥(0) = %(yG) +y(2)> (5.11)

y+py 0 =2(3(5)+x(3)),

where p(t) := 1/(t+h)(t+2h) and f € C([0,),[0,c0)) such that f; and f. exist.

Then direct calculation verifies that

w(t) = %(t+h)(t+2h)(t+3h) 11— 20,

o) = 1+h)(1+2h)(1+3h)+1—%(t+h)(t+2h)(t+3h)

d=y(1)+p(1) (y(D) _;’l’(l —h) _ l(11hZ+6h+7), (5.12)

S (@) asl)0)]

263G 2R | T

Moreover, since

w

2 (0(2) +w(2)) = & 5o vaumram) -0
(5.13)

d—%(qﬁ(i) +¢<Z)) = %(53+36h+88h2) >0
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(3.25) holds. Let [£1,&,] = [0,1/2], so that

r:min{ﬁil—/fzz;’ﬁ?;} N ﬁ(l); RSV +36h+4’
1/h—1 1/h—1
[EE a2 S e o-262) )
Ay =—| °7 - )
TS e IS e 26() ()
Jh— Jhe
. S ORI I FROTEED S AT
a2 (o(2)o(2) 28 oaee? S o]
1/th1//(sh)¢>(sh)h+A(1)1//(1) +B(1)¢(—h) = 3.02392.
s=0

As in the previous example, we determine 7 in (4.3) from

(1/2h)— 1/2h) 1

max{te[ ho ‘”(t)h > ), re[s]: 29t Z w(sh),

t/h=1 (1/2h)-
te (0,%) : $(0h > y(sh)+ w(;)h > cp(sh)},

d s=0 s=t/h

which is

289 (1/2h)—1
(290h Z (sh) + (290’1 S (sh) ~0.284188,

§=290
Applying (5.14) and (5.15), we can find an approximate interval for (4.8):

4.69862 0.330697
<A< .

fes fo
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