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1. Introduction

Let Z and R be the sets of all integers and real numbers, respectively. For a,b ∈ Z, define
Z(a)= {a,a+ 1, . . .} and Z(a,b)= {a,a+ 1, . . . ,b} when a≤ b. Let A be an n×m matrix.
Aτ denotes the transpose ofA. When n=m, σ(A) and det(A) denote the set of eigenvalues
and the determinant of A, respectively.

In this paper, we study the existence of multiple p-periodic solutions to the following
discrete Hamiltonian systems:

Δx(n)= J∇H(
Lx(n)

)
, n∈ Z, (1.1)

where p > 2 is a prime integer, Δx(n) = x(n+ 1)− x(n), x(n) =
(
x1(n)
x2(n)

)
with xi(n) ∈ Rd,

i = 1,2, L is defined by Lx(n) =
(
x1(n+1)
x2(n)

)
, J =

(
0 −Id
Id 0

)
is the standard symplectic matrix

with Id the identity matrix on Rd, H ∈ C1(R2d,R), and∇H(z) denotes the gradient of H
in z.

We may think of systems (1.1) as being a discrete analog of the following Hamiltonian
systems:

ẋ = J∇H(
x(t)

)
, t ∈R, (1.2)
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which has been studied extensively by many scholars. For example, by using the critical
point theory, some significant results for the existence and multiplicity of periodic and
subharmonic solutions to (1.2) were obtained in [1–5].

Some authors have also contributed to the study of (1.1) for the disconjugacy, bound-
ary value problems, oscillations, and asymptotic behavior, see, for example, [6–9]. In
recent years, existence and multiplicity results of periodic solutions to discrete Hamil-
tonian systems employing the minimax theory and the geometrical index theory have
appeared in the literature. For example, for the case that H is superquadratic both at zero
and at infinity, by using the Z2 geometrical index theory and the linking theorem, some
sufficient conditions for the existence of multiple periodic solutions and subharmonic
solutions to (1.1) were obtained in [10]. For the case that H is subquadratic at infinity,
some sufficient conditions on the existence of periodic solutions to (1.1) were proved in
[11] by using the saddle point theorem. Recently, in [12], the authors have obtained some
sufficient conditions on the multiplicity results of periodic solutions to a class of second
difference equation by using the Zp geometrical index theory. Our main purpose in this
paper is to give a lower bound of the number of p-periodic solutions to (1.1) by using the
Morse index theory and a multiplicity result in [12].

The rest of this paper is organized as follows. In Section 2, we present some useful
preliminary results. In Section 3, we firstly introduce the Morse index theory for the p-
periodic linear Hamiltonian systems:

Δx(n)= JS(n)Lx(n), n∈ Z, (1.3)

where S(n) is a real symmetric positive definite 2d× 2d matrix with S(n+ p) = S(n) for
every n∈ Z, and then, for any real symmetric positive definite matrix S, we define a pair
of index functions (i(S, p),ν(S, p))∈ Z(0,2dp)×Z(0,2dp) and obtain the formulae of the
computations of index functions for a diagonal positive definite matrix. In Section 4, by
using the Morse index theory and a multiplicity result in [12], we establish a result on
the existence of multiple periodic solutions to (1.1) where H satisfies the asymptotically
linear conditions.

2. Preliminaries

In order to apply the Morse index theory to study the existence of multiple p-periodic
solutions to (1.1), we now state some basic notations and useful lemmas.

Let Ω be the set of sequences x = {x(n)}n∈Z, that is,

Ω=
{

x = {
x(n)

} | x(n)=
(
x1(n)
x2(n)

)

∈R2d, xj(n)∈Rd, j = 1,2, n∈ Z
}

. (2.1)

x can be rewritten as x = (. . . ,xτ(−n), . . . ,xτ(−1),xτ(0),xτ(1), . . . ,xτ(n), . . .)τ . For any
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x, y ∈Ω, a,b ∈R, ax+ by is defined by

ax+ by �
{
ax(n) + by(n)

}

= (
. . . ,axτ(−n) + byτ(−n), . . . ,axτ(−1) + byτ(−1),axτ(0) + byτ(0),

axτ(1) + byτ(1), . . . ,axτ(n) + byτ(n), . . .
)τ
.

(2.2)

Then Ω is a vector space.
For any given prime integer p > 2, Ep is defined as a subspace of Ω by

Ep =
{
x = {

x(n)
}∈Ω | x(n+ p)= x(n), n∈ Z}. (2.3)

Ep can be equipped with the norm ‖ · ‖Ep and the inner product 〈·,·〉Ep as follows:

‖x‖Ep =
( p∑

n=1

∣
∣x(n)

∣
∣2
)1/2

, 〈x, y〉Ep =
p∑

n=1

(
x(n), y(n)

)
, (2.4)

where | · | denotes the usual Euclidean norm and (·,·) denotes the usual scalar product
in R2d.

Define a linear map Γ : Ep →R2dp by

Γx = (
x1

1(1), . . . ,xd1 (1),x1
1(2), . . . ,xd1 (2), . . . ,x1

1(p), . . . ,xd1 (p),

x1
2(1), . . . ,xd2 (1),x1

2(2), . . . ,xd2 (2), . . . ,x1
2(p), . . . ,xd2 (p)

)τ
,

(2.5)

where x = {x(n)} and x(i) = (x1
1(i), . . . ,xd1 (i),x1

2(i), . . . ,xd2 (i))τ for i ∈ Z(1, p). It is easy to
see that the map Γ is a linear homeomorphism with ‖x‖Ep = |Γx| and (Ep,〈·,·〉Ep) is a
Hilbert space which can be identified with R2dp.

To get a decomposition of the Hilbert space Ep, in the following we discuss the eigen-
value problem:

Δx(n)= λJLx(n), n∈ Z, x(n+ p)= x(n), (2.6)

where λ∈R.
It is obvious that λ= 0 is an eigenvalue of (2.6) whose eigenfunction can be given by

η0(n)= (
a1,a2, . . . ,a2d

)τ
, ai ∈R, i= 1,2, . . . ,2d, n= 1,2, . . . , p. (2.7)

By a simple computation, (2.6) is equivalent to

Δx1(n)=−λx2(n), x1(n+ p)= x1(n),

Δx2(n− 1)= λx1(n), x2(n+ p)= x2(n).
(2.8)

If λ 	= 0, then (2.8) is equivalent to

Δ2x1(n− 1) + λ2x1(n)= 0, x1(n+ p)= x1(n),

Δ2x2(n− 1) + λ2x2(n)= 0, x2(n+ p)= x2(n).
(2.9)
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It is known that (2.9) has a nontrivial solution if and only if λ2 = λ2
k = 4sin2(kπ/p) with

k ∈ Z(1,(p− 1)/2), see, for example, [13, 14]. So in this case (2.6) has a nontrivial solu-
tion if and only if λ = λk = 2sin(kπ/p) with k ∈ Z(−(p− 1)/2,(p− 1)/2)\{0}. It is easy
to see that the multiplicities of λk for each k ∈ Z(−(p− 1)/2,(p− 1)/2) are of the same
number 2d.

To get an explicit decomposition of the Hilbert space Ep, in the following, we also need
to compute eigenfunctions of (2.6) corresponding to each λk, k 	= 0.

Fix a k ∈ Z(−(p− 1)/2,−1)∪Z(1,(p− 1)/2), any solutions to (2.9) can be written as

x1(n)= c1 cos(kwn) + c2 sin(kwn), x2(n)= d1 cos(kwn) +d2 sin(kwn), (2.10)

where w = 2π/p and c1, c2, d1, d2 are constant vectors in Rd. Using the relation between
x1, x2, that is, (2.8) with λ= λk, we have

c1 sin
(
kw

2

)
− c2 cos

(
kw

2

)
= d1,

c2 sin
(
kw

2

)
+ c1 cos

(
kw

2

)
= d2.

(2.11)

If we choose c1 = ej , c2 = 0, then d1 = sin(kw/2)ej , d2 = cos(kw/2)ej ; if we choose c1 = 0,
c2 = ej , then d1 = −cos(kw/2)ej , d2 = sin(kw/2)ej , where ej , j = 1,2, . . . ,d denotes the
canonical basis of Rd. So, eigenfunctions of (2.6) corresponding to each λk(k 	= 0) can be
given as

η(1)
k, j (n)=

⎛

⎜
⎝

cos(kwn)ej

sin
(
kw

(
n+

1
2

))
ej

⎞

⎟
⎠ , n= 1,2, . . . , p,

η(2)
k, j (n)=

⎛

⎜
⎝

sin(kwn)ej

−cos
(
kw

(
n+

1
2

))
ej

⎞

⎟
⎠ , n= 1,2, . . . , p.

(2.12)

Hereto, Ep can be decomposed as Ep = X ⊕X1⊕X2 with

X ={
x ={

x(n)
} | x(n)= c1e1 + c2e2 +···+c2de2d, ci ∈R, i=1,2, . . . ,2d, n=1,2, . . . , p

}
,

X1 =
{

x = {
x(n)

} | x(n)=
d∑

j=1

(p−1)/2∑

k=1

αk, jη
(1)
k, j (n) +

d∑

j=1

−1∑

k=−(p−1)/2

αk, jη
(1)
k, j (n), αk, j ∈R

}

,

X2 =
{

x = {
x(n)

} | x(n)=
d∑

j=1

(p−1)/2∑

k=1

βk, jη
(2)
k, j (n) +

d∑

j=1

−1∑

k=−(p−1)/2

βk, jη
(2)
k, j (n), βk, j ∈R

}

.

(2.13)

Finally, we briefly introduce the Zp geometrical index theory which can be found in [12].
Define a linear operator μ : Ep → Ep as follows. For any x ∈ Ep,

μx(n)= x(n+ 1), ∀n∈ Z. (2.14)
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Clearly, for any x ∈ Ep, μpx = x and ‖μx‖Ep = ‖x‖Ep . So μ is an isometric action of group
Zp on Ep. It is easy to see that Fixμ := {x ∈ Ep | μx = x} = X .

Note that if x is a periodic solution to (1.1) with period p, then μx is also a periodic
solution to (1.1) with period p. We call 
x� = {μx,μ2x, . . . ,μpx} a Zp-orbit of period so-
lution x to (1.1) with period p.

Let E be a Banach space and let μ be a linear isometric action of Zp on E. Namely, μ is
a linear operator on E satisfying ‖μx‖ = ‖x‖ for any x ∈ E and μp = idE, where Zp is the
cyclic group with order p and idE is the identity map on E.

A subset A⊂ E is called μ-invariant if μ(A)⊂ A. A continuous map f : A→ E is called
μ-equivariant if f (μx)= μ f (x) for any x ∈ A. A continuous functional F : E→ R is said
to be μ-invariant if for any x ∈ E, F(μx)= F(x).

Let us recall the definition of the Palais-Smale condition.
Let E be a real Banach space and F ∈ C1(E,R). F is said to satisfy the Palais-Smale

condition ((PS) condition) if any sequence {x(m)} ⊂ E for which {F(x(m))} is bounded
and F′(x(m))→ 0(m→∞) possesses a convergent subsequence in E.

Our result is based on the following theorem (see [12, Theorem 2.1]).

Theorem 2.1. Let F ∈ C1(E,R) be a μ-invariant functional satisfying the “PS” condition.
Let Y and Z be closed μ-invariant subspaces of E with codimY and dimZ finite and

codimY < dimZ. (2.15)

Assume that the following conditions are satisfied.
(F1) Fixμ ⊂ Y , Z∩Fixμ = {0};
(F2) infx∈Y F(x) >−∞;
(F3) there exist r > 0 and c < 0 such that F(x)≤ c whenever x ∈ Z and ‖x‖ = r;
(F4) if x ∈ Fixμ and F′(x)= 0, then F(x)≥ 0.

Then there exist at least dimZ− codimY distinct Zp-orbits of critical points of F outside of
Fixμ with critical value less or equal to c.

The following estimate will be useful in the subsequent sections.

Proposition 2.2. For any x ∈ Ep, the following inequality holds:

p∑

n=1

∣
∣Δx(n)

∣
∣2 ≤ 2

(
1 + cos

π

p

) p∑

n=1

∣
∣x(n)

∣
∣2
. (2.16)

Proof. We note that

p∑

n=1

∣
∣Δx(n)

∣
∣2 = 2

p∑

n=1

[(
x(n),x(n)

)− (
x(n+ 1),x(n)

)]= (AΓx,Γx), (2.17)
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where

A=

⎛

⎜
⎜
⎜
⎜
⎝

B 0
B

. . .
0 B

⎞

⎟
⎟
⎟
⎟
⎠

2dp×2dp

with B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 ··· 0 −1
−1 2 −1 ··· 0 0
0 −1 2 ··· 0 0
··· ··· ··· ··· ··· ···

0 0 0 ··· 2 −1
−1 0 0 ··· −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

p×p

.

(2.18)

It follows from [15] that p distinct eigenvalues of matrix B are λk = 4sin2(kπ/p) with
k ∈ Z(0, p − 1) and λmax = max{λk | k ∈ Z(0, p − 1)} = 2(1 + cos(π/p)). Since |Γx|2 =
‖x‖2

Ep
=∑T

n=1 |x(n)|2, inequality (2.16) now follows from (2.17). �

Remark 2.3. Noticing that the set of eigenvalues {λk | k ∈ Z(−(p− 1)/2,(p− 1)/2)} is
bounded from below by −2 and bounded from above by 2 which are different from the
differential case. So, we can avoid the fussy process of finding the dual action which is
necessary for the differential case (see [4, Chapter 7]).

3. The Morse index of a linear positive definite Hamiltonian systems

In this section, we define a pair of index functions (i(S, p),ν(S, p))∈ Z(0,2dp)×Z(0,2dp)
for any real symmetric positive definite matrix S and obtain the formulae of the compu-
tations of index functions for a diagonal positive definite matrix.

As stated in [10, 11], the corresponding action functional of (1.3) is defined on Ep by

FS(x)= 1
2

p∑

n=1

[(
JΔx(n),Lx(n)

)
+
(
S(n)Lx(n),Lx(n)

)]
. (3.1)

Definition 3.1. The index i(S, p) is the Morse index of FS, that is, the supremum of the
dimensions of the subspaces of Ep on which FS is negative definite.

Our assumption follows the existence of δp > 0 such that (S(n)x,x) ≥ δp|x|2 for ev-
ery n∈ Z and x ∈R2d. The symmetric bilinear form given by (x, y)S =

∑p
n=1(S(n)Lx(n),

Ly(n)) defines an inner product on Ep. The corresponding norm ‖ · ‖S is such that

‖x‖2
S ≥ δp

p∑

n=1

∣
∣Lx(n)

∣
∣2 = δp

p∑

n=1

∣
∣x(n)

∣
∣2
. (3.2)
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For any x, y ∈ Ep, if we define a bilinear function as a(x, y) =∑p
n=1(Jx(n),ΔLy(n− 1)),

then by Proposition 2.2 and (3.2) we have

∣
∣a(x, y)

∣
∣≤

( p∑

n=1

∣
∣Jx(n)

∣
∣2
)1/2( p∑

n=1

∣
∣ΔLy(n− 1)

∣
∣2
)1/2

=
( p∑

n=1

∣
∣x(n)

∣
∣2
)1/2( p∑

n=1

∣
∣Δy(n)

∣
∣2
)1/2

≤
√

2
(

1 + cos
(
π

p

))( p∑

n=1

∣
∣x(n)

∣
∣2
)1/2( p∑

n=1

∣
∣y(n)

∣
∣2
)1/2

≤
√

2
(
1 + cos(π/p)

)

δp
‖x‖S‖y‖S.

(3.3)

So, by [16, Theorem 2.2.2], we can define the unique continuous linear operator K on Ep

by (Kx, y)S =
∑p

n=1(Jx(n),ΔLy(n− 1)). Since

p∑

n=1

(
Jx(n),ΔLy(n− 1)

)=−
p∑

n=1

(
JΔx(n),Ly(n)

)
, (3.4)

we have

2FS(x)= (x−Kx,x)S. (3.5)

It is obvious that K is self-adjoint. So, it follows from (3.5) that Ep will be the orthogonal
sum of ker(I −K)=H0(S), H−(S) and H+(S) with I −K positive definite (resp., negative
definite) on H+(S) (resp., H−(S)). Clearly, i(S, p)= dimH−(S)∈ Z(0,2dp). On the other
hand, there exists δ > 0 such that

(x−Kx,x)S ≥ δ‖x‖2
S, x ∈H+(S),

(x−Kx,x)S ≤−δ‖x‖2
S, x ∈H−(S).

(3.6)

Setting δ = δδp > 0, we deduce from (3.2) and (3.5) the estimates

FS(x)≥ δ

2

p∑

n=1

∣
∣x(n)

∣
∣2

, x ∈H+(S), (3.7)

FS(x)≤−δ

2

p∑

n=1

∣
∣x(n)

∣
∣2

, x ∈H−(S). (3.8)

Definition 3.2. The nullity v(S, p) is the dimension of ker(I −K).

We now state and prove a result which offers another interpretation of the nullity
ν(S, p).



8 Advances in Difference Equations

Proposition 3.3. ker(I −K) is isomorphic to the space of solutions to (1.3).

Proof. By the fact that JΔx(n)= ΔJx(n) we have

x ∈ ker(I −K)⇐⇒ (
(I −K)x, y

)
S = 0, ∀y ∈ Ep,

⇐⇒
p∑

n=1

[(
S(n)Lx(n),Ly(n)

)− (
Jx(n),ΔLy(n− 1)

)]= 0, ∀y ∈ Ep,

⇐⇒
p∑

n=1

(
ΔJx(n) + S(n)Lx(n),Ly(n)

)= 0, ∀y ∈ Ep,

⇐⇒ JΔx(n) + S(n)Lx(n)= 0, n∈ Z(1, p),
(3.9)

which implies that ker(I −K) is isomorphic to the space of solutions to (1.3). �

To get more information on the index functions, in the following we will compute the
index and the nullity of the diagonal positive definite matrix. By direct computation, it is
easy to get the following.

Proposition 3.4. Let A= diag{a1,a2, . . . ,a2d}with ai > 0, i∈ Z(1,2d). Then, all the eigen-
values of JA must be pure imaginary and

σ(JA)= {± iαj | αj > 0, j = 1,2, . . . ,d
}

(3.10)

with αj =√ajaj+d.

On the formulae of the computations of the index and the nullity, we have the follow-
ing.

Proposition 3.5. For the above matrix A, one has

i(A, p)= 2
d∑

j=1

�
{
k ∈ Z

(
1,

p− 1
2

)
| αj < 2sin

kπ

p

}
,

ν(A, p)= 2
d∑

j=1

�
{
k ∈ Z

(
1,

p− 1
2

)
| αj = 2sin

kπ

p

}
.

(3.11)

Proof. If (I −K)x = λx with x ∈ Ep, then for all y ∈ Ep, we have

p∑

n=1

(
JΔx(n),Ly(n)

)
+
(
ALx(n),Ly(n)

)=
p∑

n=1

(
AλLx(n),Ly(n)

)
(3.12)

which implies that

Δx(n)= JA(1− λ)Lx(n), n∈ Z, x(n)= x(n+ p). (3.13)
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Assume that the general solutions to (3.13) are of the form

x(n)= μnξ = μn
(
ξ1

ξ2

)

, (3.14)

where ξ1, ξ2 are vectors in Rd. By x(0)= x(p), we have μp = 1, so μ= eikw, k = 0,1,2, . . . ,
p− 1, where w = 2π/p. Therefore, any nontrivial solution to (3.13) can be expressed as

x(n)= eikwn
(
ξ1

ξ2

)

. (3.15)

Substituting (3.15) into (3.13), we have

2isin
kw

2

(
ξ1

ξ2

)

= JA(1− λ)

(
eikw/2Id 0

0 e−ikw/2Id

)(
ξ1

ξ2

)

. (3.16)

Noticing that

σ

(

JA

(
eikw/2Id 0

0 e−ikw/2Id

))

= σ(JA), (3.17)

by Definitions 3.1 and 3.2 and Proposition 3.4, we get the conclusion. �

4. Periodic solutions to convex asymptotically linear autonomous discrete
Hamiltonian systems

In this section, we consider the existence of multiple p-periodic solutions to (1.1) where
H ∈ C1(R2d,R) is strictly convex and satisfies the following asymptotically linear condi-
tions:

∇H(x)= A0x+ o
(|x|) as |x| −→ 0, (4.1)

∇H(x)= A∞x+ o
(|x|) as |x| −→∞ (4.2)

with real symmetric positive definite matrices A0, A∞. Our main result is the following.

Theorem 4.1. Assume that
(A1) v(A∞, p)= 0,
(A2) i(A0, p) > i(A∞, p).

Then (1.1) has at least i(A0, p)− i(A∞, p) distinct nonconstant Zp-periodic orbits.

Remark 4.2. (1) It follows from (A1) and Proposition 3.3 that the linear systems

JΔx(n) +A∞Lx(n)= 0, n∈ Z (4.3)

do not have any nontrivial p-periodic solutions. Thus (A1) is a nonresonance condition
at infinity.
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(2) Since H is strictly convex and ∇H(0) = 0 by (4.1), 0 is the unique equilibrium
point of (1.1). Without loss of generality, we can assume that H(0)= 0. The action func-
tional of (1.1) defined by

FH(x)=
p∑

n=1

[
1
2

(
JΔx(n),Lx(n)

)
+H

(
Lx(n)

)]
(4.4)

is continuously differentiable on Ep. Since FH is a μ-invariant functional, we are in a
position to apply Theorem 2.1.

(3) It is convenient in this section to use the inner product (x, y)A∞ =
∑p

n=1(A∞Lx(n),
Ly(n)) and the corresponding norm ‖ · ‖A∞ in Ep. The norm is equivalent to the standard
norm of Ep.

The proof of Theorem 4.1 depends on the following lemmas. The first one implies that
FH satisfies the “PS” condition.

Lemma 4.3. Every sequence {x( j)} in Ep such that F′H(x( j))→ 0( j →∞) contains a conver-
gent subsequence.

Proof. Let us define the operator Q over Ep, using the Riesz theorem, by the formula

(Qx, y)A∞ =
p∑

n=1

(∇H(
Lx(n)

)−A∞Lx(n),Ly(n)
)
. (4.5)

Since

〈
F′H(x), y

〉=
p∑

n=1

(
JΔx(n),Ly(n)

)
+
(∇H(

Lx(n),Ly(n)
))

, (4.6)

we have

〈
F′H(x), y

〉= (x−Kx+Qx, y)A∞ . (4.7)

Let f ( j) = x( j)−Kx( j) +Qx( j). Then by assumption F′H(x( j))→ 0( j →∞), we have f ( j) →
0 as j →∞. In particular, there exists R > 0 such that ‖ f ( j)‖ ≤ R for every j. Assumption
(A1) implies that P = I −K is invertible. Thus, it follows from (4.2) that there exists some
c > 0 such that ‖Qx‖ ≤ 1/2‖P−1‖−1‖x‖+ c for all x ∈ Ep. Therefore, we have

∥
∥x( j)

∥
∥= ∥

∥P−1Px( j)
∥
∥≤ ∥

∥P−1
∥
∥(

∥
∥ f ( j)

∥
∥+

∥
∥Qx( j)

∥
∥)≤ 1

2

∥
∥x( j)

∥
∥+

∥
∥P−1

∥
∥(c+R) (4.8)

and hence {x( j)} is bounded. The proof is complete since Ep is a finite dimensional space.
�

We now verify the condition (F2) of Theorem 2.1 for FH .

Lemma 4.4. The functional FH is bounded from below on a closed μ-invariant subspace Y
of Ep with codimension i(A∞, p).
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Proof. By assumption (A1), Ep is the orthogonal direct sum of H+(A∞) and H−(A∞).
Hence, codimH+(A∞) = dimH−(A∞) = i(A∞, p) and there exists a closed μ-invariant
subspace Y =H+(A∞) of Ep with codimension i(A∞, p). By (3.7), there exists δ > 0 such
that for each x ∈ Y ,

FA∞(x)= 1
2

p∑

n=1

[(
JΔLx(n− 1),x(n)

)
+
(
A∞Lx(n),Lx(n)

)]≥ δ

2

p∑

n=1

∣
∣x(n)

∣
∣2
. (4.9)

It follows from (4.2) that there exists c > 0 such that |∇H(x)−A∞x| ≤ δ|x|/2 + c for each
x ∈R2d. Hence, by direct integrating, we have

∣
∣
∣
∣H(x)− 1

2

(
A∞x,x

)
∣
∣
∣
∣≤

∫ 1

0

∣
∣(∇H(tx)−A∞tx,x

)∣∣dt

≤
∫ 1

0

(
δ

2
t|x|2 + c|x|

)
dt

= δ

4
|x|2 + c|x|.

(4.10)

Consequently, we have, for x ∈ Y ,

FH(x)= FA∞(x) +
p∑

n=1

(
H
(
Lx(n)

)− 1
2

(
A∞Lx(n),Lx(n)

)
)

≥ δ

2

p∑

n=1

∣
∣x(n)

∣
∣2−

p∑

n=1

[
δ

4

∣
∣Lx(n)

∣
∣2

+ c
∣
∣Lx(n)

∣
∣
]

≥ δ

4

p∑

n=1

∣
∣x(n)

∣
∣2− cp1/2

( p∑

n=1

∣
∣x(n)

∣
∣2
)1/2

(4.11)

and hence FH is bounded from below on Y . �

Now, we show that the condition (F3) of Theorem 2.1 holds for FH .

Lemma 4.5. There exists a closed μ-invariant subspace Z of Ep with dimension i(A0, p) and
some r > 0 such that F(x) < 0 whenever x ∈ Z and ‖x‖A∞ = r.

Proof. By (3.8), there exists a μ-invariant subspace Z = H−(A0) of Ep with dimension
i(A0, p) and some δ > 0 such that

FA0 (x)= 1
2

p∑

n=1

[(
JΔLx(n− 1),x(n)

)
+
(
A0Lx(n),Lx(n)

)]≤−δ

2

p∑

n=1

∣
∣x(n)

∣
∣2

(4.12)

whenever x ∈ Z. By (4.1), there exists r > 0 such that |∇H(x)−A0x| ≤ δ|x|/2 for each
x ∈R2d with ‖x‖A∞ ≤ r. Hence, by direct integrating, we have

∣
∣
∣
∣H(x)− 1

2

(
A0x,x

)
∣
∣
∣
∣≤

∫ 1

0

∣
∣(∇H(tx)−A0tx,x

)∣∣dt ≤
∫ 1

0

δ

2
t|x|2dt = δ

4
|x|2 (4.13)
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whenever ‖x‖A∞ ≤ r. Consequently, if x ∈ Z and 0 < ‖x‖A∞ ≤ r, we get

FH(x)= FA0 (x) +
p∑

n=1

(
H
(
Lx(n)

)− 1
2

(
A0Lx(n),Lx(n)

)
)

≤−δ

2

p∑

n=1

∣
∣x(n)

∣
∣2

+
δ

4

p∑

n=1

∣
∣x(n)

∣
∣2 =−δ

4

p∑

n=1

∣
∣x(n)

∣
∣2

(4.14)

and the proof is complete. �

Proof of Theorem 4.1. We apply Theorem 2.1 to FH which is μ-invariant and satisfies the
“PS” condition by Lemma 4.3. The spacesY and Z introduced, respectively, in Lemma 4.4
and Lemma 4.5 satisfy the assumption i(A∞, p) = codimY < dimZ = i(A0, p). Since
Fixμ = X for all 0 	= x ∈ X , we have FA∞(x) = 1/2

∑p
n=1(A∞Lx(n),Lx(n)) > 0, so x ∈

H+(A∞) = Y . At the same time, it is easy to verify that Fixμ∩Z = Fixμ∩H−(A0) = {0}.
So, the condition (F1) of Theorem 2.1 holds for FH . Finally, if x ∈ Fixμ and F′H(x) = 0,

then 〈F′H(x), y〉 =∑p
n=1(∇H(Lx(n)),Ly(n))= 0. By (2) of Remark 4.2 we have x = 0, so

FH(0)= 0 and the condition (F4) of Theorem 2.1 holds for FH . Thus, all the conditions
of Theorem 2.1 are satisfied. Then there exist at least i(A0, p)− i(A∞, p) distinct noncon-
stant Zp-orbits of critical points of FH and the proof is complete. �

Remark 4.6. In addition to the assumptions in Theorem 4.1, if we further assume that the
Hamiltonian function is odd on R2N , then for any prime integer p > 2, (1.1) possesses at
least 2[i(A0, p)− i(A∞, p)] distinct Zp-orbits of solutions with period p(see [12, Corollary
1.1]).

Example 4.7. Let H ∈ C1(R2d,R) be strictly convex such that H(0)= 0 and ∇H(0)= 0.
Let p > 0 be a prime integer. Assume that there exists γ > 2 such that

∇H(x)= γx+ o
(|x|) as |x| −→∞ (4.15)

and some 1≤ j ≤ (p− 1)/2 and 2sin(( j− 1)π/p) < β < 2sin( jπ/p) such that

∇H(x)= βx+ o
(|x|) as |x| −→ 0. (4.16)

By Proposition 3.5, we get ν(γId, p)= 0, i(γId, p)= 0, and i(βId, p)= d(p− 2 j + 1). Then,
the problem

JΔx(n) +∇H(
Lx(n)

)= 0, n∈ Z, x(n+ p)= x(n) (4.17)

has at least d(p− 2 j + 1) distinct nonconstant Zp-periodic orbits.
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