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We consider the family of nonlinear difference equations: xn+1 = (
∑ 3

i=1fi(xn, . . . , xn−k) + f4(xn, . . . ,

xn−k)f5(xn, . . . , xn−k))/(f1(xn, . . . , xn−k)f2(xn, . . . , xn−k) +
∑ 5

i=3fi(xn, . . . , xn−k)), n = 0, 1, . . . , where
fi ∈ C((0,+∞)k+1, (0,+∞)), for i ∈ {1, 2, 4, 5}, f3 ∈ C([0,+∞)k+1, (0,+∞)), k ∈ {1, 2, . . . } and the
initial values x−k, x−k+1, . . . , x0 ∈ (0,+∞). We give sufficient conditions under which the unique
equilibrium x = 1 of these equations is globally asymptotically stable, which extends and includes
corresponding results obtained in the cited references.
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1. Introduction

In [1], Papaschinopoulos and Schinas investigated the global asymptotic stability of the fol-
lowing nonlinear difference equation:

xn+1 =

∑
i∈Zk −{j−1,j}xn−i + xn−jxn−j+1 + 1

∑
i∈Zk

xn−i
, n = 0, 1, . . . , (1.1)

where k ∈ {1, 2, 3, . . .}, {j, j − 1} ⊂ Zk ≡ {0, 1, . . . , k}, and the initial values x−k, x−k+1, . . . , x0 ∈
R+ ≡ (0,+∞).

Moreover, Kruse and Nesemann [2] studied the global asymptotic stability of the unique
equilibrium of a discrete dynamical system, and as a special result they proved that the unique
equilibrium x = 1 of the Putnam difference equation
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xn+1 =
xn + xn−1 + xn−2xn−3
xnxn−1 + xn−2 + xn−3

, n = 0, 1, . . . , (1.2)

is globally asymptotically stable, where the initial values x−3, x−2, x−1, x0 ∈ R+ .
In [3], Çinar et al. investigated the global asymptotic stability of the following nonlinear

difference equation:

xn+1 =
xn

∑k
i=1 xn−i + 1

xn + xn−1 + xn
∑k

i=2xn−i
, n = 0, 1, . . . , (1.3)

where k ∈ {1, 2, 3, . . .} and the initial values x−k, x−k+1, . . . , x0 ∈ R+ . For closely related results,
see [4–10].

In this paper, we consider the family of nonlinear difference equations:

xn+1 =
∑3

i=1fi(xn, . . . , xn−k) + f4(xn, . . . , xn−k)f5(xn, . . . , xn−k)

f1(xn, . . . , xn−k)f2(xn, . . . , xn−k) +
∑5

i=3fi(xn, . . . , xn−k)
, n = 0, 1, . . . , (1.4)

where fi ∈ C((0,+∞)k+1, (0,+∞)), for i ∈ {1, 2, 4, 5}, f3 ∈ C([0,+∞)k+1, [0,+∞)), k ∈ {1, 2, . . .},
and the initial values x−k, x−k+1, . . . , x0 ∈ (0,+∞). Our main result is the following theorem.

Theorem 1.1. Let u∗ = max{u, 1/u}, for any u ∈ R+ . If [fi(u0, u1, . . . , uk)]
∗ ≤ max{u∗

0, u
∗
1, . . . ,

u∗
k
}, for i = 1, 2, 4, 5, then x = 1 is the unique positive equilibrium of (1.4) which is globally asymptot-

ically stable.

2. The proof of Theorem 1.1

In this section, we will prove Theorem 1.1. To do this, we need the following lemma.

Lemma 2.1. Let (a, b, c, d) ∈ R
4
+ − {(1, 1, 1, 1)}, e ∈ [0,∞), and α = max{a∗, b∗, c∗, d∗}. Then,

1
α
<
c + d + e + ab

cd + e + a + b
< α. (2.1)

Proof. Since (a, b, c, d) ∈ R
4
+ − {(1, 1, 1, 1)}, e ∈ [0,∞), and α = max{a∗, b∗, c∗, d∗}, we have

α > 1 and either α ≥ β > 1/α or α > β ≥ 1/α, for every β ∈ {a, b, c, d}. If c < 1 or d < 1, then

αcd + αa + αb + αe > ab + c + d + e. (2.2)

It follows that

c + d + e + ab

cd + e + a + b
< α. (2.3)

If c ≥ 1 and d ≥ 1, then α ≥ c > 1 or α > c ≥ 1 and α ≥ d > 1 or α > d ≥ 1. Thus, we have
the following inequalities:

α(a + b) ≥ 2ab,

αcd + αa ≥ αc + 1 > 2c,

αcd + αb ≥ αd + 1 > 2d.

(2.4)
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It follows from (2.4) that

αcd + αa + αb + αe > ab + c + d + e, (2.5)

which implies

c + d + e + ab

cd + e + a + b
< α. (2.6)

By the symmetry, we have also that

1
α
<
c + d + e + ab

cd + e + a + b
. (2.7)

This completes the proof.

Proof of Theorem 1.1. Let {xn}∞n=−k be a positive solution of (1.4) with the initial values x−k,
x−k+1, . . . , x0 ∈ R+ . For any n > 0, write

pn = max{x∗
n, x

∗
n−1, . . . , x

∗
n−k}. (2.8)

From Lemma 2.1, it follows that for any n ≥ 0,

xn+1 =
∑3

i=1 fi
(
xn, . . . , xn−k

)
+ f4

(
xn, . . . , xn−k

)
f5
(
xn, . . . , xn−k

)

f1
(
xn, . . . , xn−k

)
f2
(
xn, . . . , xn−k

)
+
∑5

i=3fi
(
xn, . . . , xn−k

)

≤ max
{[
fi
(
xn, . . . , xn−k

)]∗ : i = 1, 2, 4, 5
}

≤ max
{
x∗
n−i : 0 ≤ i ≤ k

}
= pn,

xn + 1 =
∑3

i=1fi
(
xn, . . . , xn−k

)
+ f4

(
xn, . . . , xn−k

)
f5
(
xn, . . . , xn−k

)

f1
(
xn, . . . , xn−k

)
f2
(
xn, . . . , xn−k

)
+
∑5

i=3fi
(
xn, . . . , xn−k

)

≥ 1
max

{[
fi
(
xn, . . . , xn−k

)]∗ : i = 1, 2, 4, 5
}

≥ 1
max

{
x∗
n−i : 0 ≤ i ≤ k

} =
1
pn

.

(2.9)

By (2.9), we have that for any n ≥ 0,

1 ≤ x∗
n+1 ≤ pn, pn+1 ≤ pn. (2.10)

From (2.10), we may assume that

lim
n→∞

pn = M ≥ 1. (2.11)

Then,

1
M

≤ lim
n→∞

infxn ≤ lim
n→∞

supxn ≤ M. (2.12)
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Since pn = max{x∗
n, x

∗
n−1, . . . , x

∗
n−k}, there exists a sequence ls → ∞ such that

lim
s→∞

xls = M (2.13)

or

lim
s→∞

xls =
1
M

. (2.14)

We may suppose (by taking a subsequence) that for 1 ≤ i ≤ k + 1,

lim
s→∞

xls−i = Mi. (2.15)

From (2.12), it follows that 1/M ≤ Mi ≤ M.
We claim that M = 1. Indeed, if M > 1, then fi(M1, . . . ,Mk+1)/=1, for some i ∈ {1, 2, 4, 5}.
If lims→∞xls = M, then it follows from Lemma 2.1 and (1.4) that

M =
∑3

i=1 fi
(
M1, . . . ,Mk+1

)
+ f4

(
M1, . . . ,Mk+1

)
f5
(
M1, . . . ,Mk+1

)

f1
(
M1, . . . ,Mk+1

)
f2
(
M1, . . . ,Mk+1

)
+
∑5

i=3 fi
(
M1, . . . ,Mk+1

)

< max
{[
fi
(
M1, . . . ,Mk+1

)]∗ : i = 1, 2, 4, 5
}

≤ max
{
Mi : 1 ≤ i ≤ k + 1

} ≤ M,

(2.16)

which is a contradiction.
If lims→∞xls = 1/M, then it follows from Lemma 2.1 and (1.4) that

1
M

=
∑3

i=1 fi
(
M1, . . . ,Mk+1

)
+ f4

(
M1, . . . ,Mk+1

)
f5
(
M1, . . . ,Mk+1

)

f1
(
M1, . . . ,Mk+1

)
f2
(
M1, . . . ,Mk+1

)
+
∑5

i=3 fi
(
M1, . . . ,Mk+1

)

>
1

max
{[
fi
(
M1, . . . ,Mk+1

)]∗ : i = 1, 2, 4, 5
}

≥ 1
max

{
Mi : 1 ≤ i ≤ k + 1

} ≥ 1
M

,

(2.17)

which is a contradiction. This completes the proof of the claim.
By (1.4) and (2.12), it follows that limn→∞xn = 1 and

1 =
∑3

i=1 fi(1, . . . , 1) + f4(1, . . . , 1)f5(1, . . . , 1)

f1(1, . . . , 1)f2(1, . . . , 1) +
∑5

i=3 fi(1, . . . , 1)
. (2.18)

Thus, x = 1 is the unique positive equilibrium of (1.4).
For any 0 < ε < 1, choose δ = ε/(ε + 1) and let {xn}∞n=−k be a solution of (1.4) with the

initial values x−k, x−k+1, . . . , x0 ∈ (1 − δ, 1 + δ). Then, for any −k ≤ i ≤ 0, we have that xi < 1 + ε
and 1/xi < 1/(1 − δ) = 1 + ε. By (2.9) it follows that for any n ≥ 0,

1 − ε <
1
p0

≤ 1
pn

≤ xn+1 ≤ pn ≤ p0 < 1 + ε, (2.19)

which implies that x = 1 is globally asymptotically stable. This completes the proof.
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3. Example

In this section, we will give an application of Theorem 1.1.

Example 3.1. Consider the following equation:

xn+1 =
xn−i + xn−j + g

(
xn, . . . , xn−k

)
+ xn−sxn−t

xn−ixn−j + g
(
xn, . . . , xn−k

)
+ xn−s + xn−t

, n = 0, 1, . . . , (3.1)

where k ∈ {1, 2, . . .}, i, j, s, t ∈ {0, 1 . . . , k}, the initial conditions x−k, x−k+1, . . . , x0 ∈ R+ , and
g ∈ C([0,+∞)k+1, [0,+∞)). Then, x = 1 is the unique positive equilibrium of (3.1) which is
globally asymptotically stable.

Proof. Let f1(u0, u1, . . . , uk) = ui, f2(u0, u1, . . . , uk) = uj, f3(u0, u1, . . . , uk) = g(u0, u1, . . . , uk),
f4(u0, u1, . . . , uk) = us, and f5(u0, u1, . . . , uk) = ut. It is easy to verify that [fi(u0, u1, . . . , uk)]

∗ ≤
max{u∗

0, u
∗
1, . . . , u

∗
k
}, for i = 1, 2, 4, 5. By Theorem 1.1, we know that x = 1 is the unique positive

equilibrium of (3.1)which is globally asymptotically stable.

Remark 3.2. Let k ≥ 3, f1(u0, u1, . . . , uk) = 1, f2(u0, u1, . . . , uk) = ut, for some t ∈ Zk − {j − 1, j},
f3(u0, u1, . . . , uk) =

∑
i∈ Zk −{j−1,j,t}ui, f4(u0, u1, . . . , uk) = uj−1, and f5(u0, u1, . . . , uk) = uj . Then,

(1.4) is (1.1), since [fi(u0, u1, . . . , uk)]
∗ ≤ max{u∗

0, u
∗
1, . . . , u

∗
k
}, for i = 1, 2, 4, 5. By Theorem 1.1,

we know that the unique positive equilibrium x = 1 of (1.1) is globally asymptotically stable.

Remark 3.3. Let k = 3, f1(u0, u1, u2, u3) = u0, f2(u0, u1, u2, u3) = u1, f3(u0, u1, u2, u3) = 0,
f4(u0, u1, u2, u3) = u2, and f5(u0, u1, u2, u3) = u3. Then, (1.4) is (1.2), since [fi(u0, u1, . . . , uk)]

∗ ≤
max{u∗

0, u
∗
1, . . . , u

∗
k
}, for i = 1, 2, 4, 5. By Theorem 1.1, we know that the unique positive equilib-

rium x = 1 of (1.2) is globally asymptotically stable.

Remark 3.4. Let f1(u0, u1, . . . , uk) = 1/u0, f2(u0, u1, . . . , uk) = u1, f3(u0, u1, . . . , uk) = u2+· · ·+uk−1,
f4(u0, u1, . . . , uk) = uk, and f5(u0, u1, . . . , uk) = 1. Then, (1.4) is (1.3), since [fi(u0, u1, . . . , uk)]

∗

≤ max{u∗
0, u

∗
1, · · · , u∗

k
}, for i = 1, 2, 4, 5. By Theorem 1.1, we know that the unique positive equi-

librium x = 1 of (1.3) is globally asymptotically stable.
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[3] C. Çinar, S. Stević, and I. Yalçinkaya, “A note on global asymptotic stability of a family of rational
equations,” Rostocker Mathematisches Kolloquium, no. 59, pp. 41–49, 2005.
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