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We study the boundedness of the difference equation xn+1 = (pxn + qxn−1)/(1 + xn), n = 0, 1, . . . ,
where q > 1 + p > 1 and the initial values x−1, x0 ∈ (0,+∞). We show that the solution {xn}∞n=−1 of
this equation converges to x = q + p − 1 if xn ≥ x or xn ≤ x for all n ≥ −1; otherwise {xn}∞n=−1 is
unbounded. Besides, we obtain the set of all initial values (x−1, x0) ∈ (0,+∞)×(0,+∞) such that the
positive solutions {xn}∞n=−1 of this equation are bounded, which answers the open problem 6.10.12
proposed by Kulenović and Ladas (2002) .
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1. Introduction

In this paper, we study the following difference equation:

xn+1 =
pxn + qxn−1

1 + xn
, n = 0, 1, . . . , (1.1)

where p, q ∈ (0,+∞)with q > 1 + p and the initial values x−1, x0 ∈ (0,+∞).
The global behavior of (1.1) for the case p + q < 1 is certainly folklore. It can be found,

for example, in [1] (see also a precise result in [2]).
The global stability of (1.1) for the case p+q = 1 follows from the main result in [3] (see

also Lemma1 in Stević’s paper [4]). Some generalizations of Copson’s result can be found,
for example, in papers [5–8]. Some more sophisticated results, such as finding the asymptotic
behavior of solutions of (1.1) for the case p + q = 1 (even when p = 0) can be found, for
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example, in papers [4](see also [8–11]). Some other properties of (1.1) have been also treated
in [4].

The case q = 1+pwas treated for the first time by Stević’s in paper [12]. The main trick
from [12] has been later used with a success for many times; see, for example, [13–15].

Some existing results for (1.1) are summarized as follows[16].

Theorem A. (1) If p + q ≤ 1, then the zero equilibrium of (1.1) is globally asymptotically stable.
(2) If q = 1, then the equilibrium x = p of (1.1) is globally asymptotically stable.
(3) If 1 < q < 1 + p, then every positive solution of (1.1) converges to the positive equilibrium

x = p + q − 1.
(4) If q = 1 + p, then every positive solution of (1.1) converges to a period-two solution.
(5) If q > 1 + p, then (1.1) has unbounded solutions.

In [16], Kulenović and Ladas proposed the following open problem.

Open problem B (see Open problem 6.10.12of [16])

Assume that q ∈ (1,+∞).

(a) Find the set B of all initial conditions (x−1, x0) ∈ (0,+∞) × (0,+∞) such that the
solutions {xn}∞n=−1 of (1.1) are bounded.

(b) Let (x−1, x0) ∈ B. Investigate the asymptotic behavior of {xn}∞n=−1.

In this paper, we will obtain the following results: let p, q ∈ (0,+∞)with q > 1 + p, and
let {xn}∞n=−1 be a positive solution of (1.1) with the initial values (x−1, x0) ∈ (0,+∞) × (0,+∞).
If xn ≥ x for all n ≥ −1 (or xn ≤ x for all n ≥ −1), then {xn}∞n=−1 converges to x = q + p − 1.
Otherwise {xn}∞n=−1 is unbounded.

For closely related results see [17–34].

2. Some Definitions and Lemmas

In this section, let q > 1 + p > 1 and x = q + p − 1 be the positive equilibrium of (1.1). Write
D = (0,+∞) × (0,+∞) and define f : D → D by, for all (x, y) ∈ D,

f
(
x, y

)
=
(
y,

py + qx

1 + y

)
. (2.1)

It is easy to see that if {xn}∞n=−1 is a solution of (1.1), then fn(x−1, x0) = (xn−1, xn) for any n ≥ 0.
Let

A1 = (0, x) × (0, x), A2 = (x,+∞) × (x,+∞),

A3 = (0, x) × (x,+∞), A4 = (x,+∞) × (0, x),

R0 = {x} × (0, x), L0 = {x} × (x,+∞),

R1 = (0, x) × {x}, L1 = (x,+∞) × {x}.

(2.2)
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Then D = (∪4
i=1Ai) ∪ L0 ∪ L1 ∪ R0 ∪ R1 ∪ {(x, x)}. The proof of Lemma 2.1 is quite similar to

that of Lemma1 in [35] and hence is omitted.

Lemma 2.1. The following statements are true.

(1) f : D → f(D) is a homeomorphism.

(2) f(L1) = L0 and f(L0) ⊂ A4.

(3) f(R1) = {x} × (p, x) and f(R0) ⊂ A3.

(4) f(A3) ⊂ A4 and f(A4) ⊂ A3.

(5) A2 ∪ L1 ⊂ f(A2) ⊂ A2 ∪ L1 ∪A4 and A1 ∪ R1 ⊂ f(A1) ⊂ A1 ∪ R1 ∪A3.

Lemma 2.2. Let q > 1 + p > 1, and let {xn}∞n=−1 be a positive solution of (1.1).

(1) If limn→+∞x2n = a ∈ (0,+∞) and a/= p, then limn→+∞x2n+1 = a = x.

(2) If limn→+∞x2n−1 = b ∈ (0,+∞) and b /= p, then limn→+∞x2n = b = x.

Proof. We show only (1) because the proof of (2) follows from (1) by using the change yn =
xn−1 and the fact that (1) is autonomous. Since limn→+∞x2n = a ∈ (0,+∞) and a/= p, by (1.1)
we have

lim
n→+∞

x2n+1 = lim
n→+∞

qx2n − x2n+2

x2n+2 − p
=

(
q − 1

)
a

a − p
. (2.3)

Also it follows from (1.1) that

a = lim
n→+∞

x2n = lim
n→+∞

qx2n−1 − x2n+1

x2n+1 − p
=

(
q − 1

)2
a

(
q − 1

)
a − p

(
a − p

) , (2.4)

from which we have a = x and limn→+∞x2n+1 = a = x. This completes the proof.

Lemma 2.3. Let q > 1 + p > 1, and let {xn}∞n=−1 be a positive solution of (1.1) with the initial values
(x−1, x0) ∈ A4. If there exists some n ≥ 0 such that x2n−1 ≥ x2n+1, then x2n ≥ x2n+2.

Proof. Since (x−1, x0) ∈ A4, it follows from Lemma 2.1 that (x2n−1, x2n) ∈ A4 for any n ≥ 0.
Without loss of generality we may assume that n = 0, that is, x−1 ≥ x1. Now we show x0 ≥ x2.
Suppose for the sake of contradiction that x0 < x2, then

x−1 ≥ x1 =
px0 + qx−1
1 + x0

, (2.5)

x0 < x2 =
px1 + qx0

1 + x1
. (2.6)

By (2.5)we have

x0 ≥
x−1

(
q − 1

)

x−1 − p
, (2.7)
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and by (2.6) we get

(
q − 1 − p

)
x2
0 +

(
p2 + q − 1 − qx−1

)
x0 + pqx−1 > 0. (2.8)

Claim 1. If x−1 ≥ x, then

(
p2 + q − 1 − qx−1

)2 − 4
(
q − 1 − p

)
pqx−1 ≥ 0. (2.9)

Proof of Claim 1

Let g(x) = (p2 + q − 1 − qx)2 − 4(q − 1 − p)pqx (x ≥ x), then we have

g ′(x) = 2q
(
1 + qx − p2 − q

)
− 4pq

(
q − 1 − p

)

≥ 2q
[(
q − 1

)2 + p2 + p
(
1 − q

)
+ p

]

= 2q
[(
q − 1

)(
q − p − 1

)
+ p2 + p

]

> 0.

(2.10)

Since x−1 ≥ x, it follows

(
p2 + q − 1 − qx−1

)2 − 4
(
q − 1 − p

)
pqx−1

≥
(
q2 + qp − 2q + 1 − p2

)2 − 4
(
q − 1 − p

)
qp

(
q + p − 1

)

=
(
q2 − 2q + 1 − p2

)2
+ 2qp

(
q2 − 2q + 1 − p2

)

+
(
qp

)2 − 4
(
q2 − 2q + 1 − p2

)
pq

=
(
q2 − 2q + 1 − p2 − pq

)2

≥ 0.

(2.11)

This completes the proof of Claim 1.
By (2.8), we have

x0 > λ1 =

(
1 + qx−1 − p2 − q

)
+
√(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

2
(
q − 1 − p

) (2.12)
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or

x0 < λ2 =

(
1 + qx−1 − p2 − q

) −
√(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

2
(
q − 1 − p

) . (2.13)

Claim 2. We have

λ1 ≥ x, (2.14)

λ2 ≤
x−1

(
q − 1

)

x−1 − p
. (2.15)

Proof of Claim 2

Since

√[
1 + q(q + p − 1) − p2 − q

]2 − 4pq
(
q − 1 − p

)(
p + q − 1

)

= q2 − p2 − 2q + 1 − qp

= 2
(
q + p − 1

)(
q − 1 − p

) −
[
1 + q

(
q + p − 1

) − p2 − q
]
,

(2.16)

we have

λ1 =

(
1 + qx−1 − p2 − q

)
+
√(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

2
(
q − 1 − p

)

≥
(
1 + qx − p2 − q

)
+
√(

1 + qx − p2 − q
)2 − 4pq

(
q − 1 − p

)
x

2
(
q − 1 − p

)

=

[
1 + q

(
q + p − 1

) − p2 − q
]
+
√[

1 + q(q + p − 1) − p2 − q
]2 − 4pq

(
q − 1 − p

)(
p + q − 1

)

2
(
q − 1 − p

)

≥ (
q + p − 1

)
= x.

(2.17)

The proof of (2.14) is completed.
Now we show (2.15). Let

h(x) = pq
(
x − p

)2 − (
x − p

)(
q − 1

)(
1 + qx − p2 − q

)
+
(
q − 1

)2(
q − 1 − p

)
x. (2.18)
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Note that 2pq − 2q(q − 1) < 0; it follows that if x ≥ x, then

h′(x) = 2pq
(
x − p

) −
[(
q − 1

)(
1 + qx − p2 − q

)
+ q

(
q − 1

)(
x − p

) − (
q − 1

)2(
q − 1 − p

)]

≤ 2pq
(
q − 1

) −
[(
q − 1

)(
2pq − q − p2 + q2 − p

)]

=
(
q − 1

)(
q + p

)(
p + 1 − q

)
< 0,

(2.19)

which implies that h(x) is decreasing for x ≥ x. Since x−1 ≥ x and

h(x) = pq
(
q − 1

)2 − (
q − 1

)(
q − 1

)[
1 + q

(
q + p − 1

) − p2 − q
]

+
(
q − 1

)2(
q − 1 − p

)(
q + p − 1

)
= 0,

(2.20)

it follows that

h(x−1) = pq
(
x−1 − p

)2 − (
x−1 − p

)(
q − 1

)(
1 + qx−1 − p2 − q

)

+
(
q − 1

)2(
q − 1 − p

)
x−1 ≤ h(x) = 0.

(2.21)

Thus

(
q − 1

)2
[(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

]

≥ 4p2q2
(
x−1 − p

)2 − 4pq
(
x−1 − p

)(
q − 1

)(
1 + qx−1 − p2 − q

)

+
(
q − 1

)2(1 + qx−1 − p2 − q
)2
.

(2.22)

This implies that

(
q − 1

)√(
1 + qx−1 − p2 − q

)2 − 4pq
(
q − 1 − p

)
x−1

≥ 2pq
(
x−1 − p

) − (
q − 1

)(
1 + qx−1 − p2 − q

)
.

(2.23)

Finally we have

x−1
(
q − 1

)

x−1 − p
≥ 4

(
q − 1 − p

)
pqx−1

2
(
q − 1 − p

)
[
(
1 + qx−1 − p2 − q

)
+
√(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

]

=

(
1 + qx−1 − p2 − q

) −
√(

1 + qx−1 − p2 − q
)2 − 4pq

(
q − 1 − p

)
x−1

2
(
q − 1 − p

) = λ2.

(2.24)

The proof of (2.15) is completed.
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Note that x0 < x since (x−1, x0) ∈ A4. By (2.12), (2.13), (2.14), and (2.15), we see x0 <
x−1(q − 1)/(x−1 − p),which contradicts to (2.7). The proof of Lemma 2.3 is completed.

3. Main Results

In this section, we investigate the boundedness of solutions of (1.1). Let q > 1 + p > 1, and
let {xn}∞n=−1 be a positive solution of (1.1) with the initial values (x−1, x0) ∈ (0,+∞) × (0,+∞),
then we see that (xn+1 − x)(xn − x) < 0 for some n ≥ −1 or xn ≥ x for all n ≥ −1 or xn ≤ x for
all n ≥ −1.

Theorem 3.1. Let q > 1 + p > 1, and let {xn}∞n=−1 be a positive solution of (1.1) such that xn ≥ x for
all n ≥ −1 or xn ≤ x for all n ≥ −1, then {xn}∞n=−1 converges to x = q + p − 1.

Proof.

Case 1. 0 < xn ≤ x for any n ≥ −1. If 0 < x2n ≤ q − 1 for some n, then

x2n+1 − x2n−1 =
px2n + qx2n−1 − x2n−1 − x2n−1x2n

1 + x2n
> 0. (3.1)

If q − 1 < x2n ≤ x for some n, then

px2n

x2n − q + 1
≥ px

x − q + 1
= x ≥ x2n−1, (3.2)

which implies that px2n ≥ x2n−1(x2n − q + 1) and

x2n+1 − x2n−1 =
px2n + qx2n−1 − x2n−1 − x2n−1x2n

1 + x2n
≥ 0. (3.3)

Thus x ≥ x2n+1 ≥ x2n−1 for any n ≥ 0. In similar fashion, we can show x ≥ x2n+2 ≥ x2n for any
n ≥ 0. Let limn→+∞x2n+1 = a and limn→+∞x2n = b, then

a =
pb + qa

1 + b
, b =

pa + qb

1 + a
, (3.4)

which implies a = b = x.
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Case 2. xn ≥ x = p + q − 1 for any n ≥ −1. Since f(x, y) = (py + qx)/(1 + y) (x > p/q) is
decreasing in y, it follows that for any n ≥ −1,

xn+2 =
pxn+1 + qxn

1 + xn+1

≤ px + qxn

1 + x
≤ xn.

(3.5)

In similar fashion, we can show that limn→+∞x2n+1 = limn→+∞x2n = x. This completes the
proof.

Lemma 3.2 (see [20, Theorem5]). Let I be a set, and let F : I × I → I be a function F(u, v)
which decreases in u and increases in v, then for every positive solution {xn}+∞n=−1 of equation xn+1 =
F(xn, xn−1), {x2n}∞n=0 and {x2n−1}∞n=0 do exactly one of the following.

(1) They are both monotonically increasing.

(2) They are both monotonically decreasing.

(3) Eventually, one of them is monotonically increasing, and the other is monotonically
decreasing.

Remark 3.3. Using arguments similar to ones in the proof of Lemma 3.2, Stević proved
Theorem2 in [25]. Beside this, this trick have been used by Stević in [18, 28, 29].

Theorem 3.4. Let q > 1 + p > 1, and let {xn}∞n=−1 be a positive solution of (1.1) such that (xn+1 −
x)(xn − x) < 0 for some n ≥ −1, then {xn}∞n=−1 is unbounded.

Proof. We may assume without loss of generality that (x0 − x)(x−1 − x) < 0 and (x−1, x0) ∈ A4

(the proof for (x−1, x0) ∈ A3 is similar). From Lemma 2.1 we see (x2n−1, x2n) ∈ A4 for all
n ≥ 0.If {x2n}∞n=0 is eventually increasing, then it follows from Lemma 2.3 that {x2n−1}∞n=0 is
eventually increasing. Thus limn→+∞x2n−1 = b > x and limn→+∞x2n = a ≤ x, it follows from
Lemma 2.2 that b = ∞.

If {x2n}∞n=0 is not eventually increasing, then there exists some N ≥ 0 such that

x2N ≥ x2N+2 =
px2N+1 + qx2N

1 + x2N+1
, (3.6)

from which we obtain x2N ≥ px2N+1/(1 + x2N+1 − q) ≥ p, since x2N+1 ≥ x = p + q − 1 and q > 1.
Since f(y, x) = (py + qx)/(1 + y) = p + (qx − p)/(1 + y) (x ≥ p, y ≥ p) is increasing

in x and is decreasing in y, we have that x2n ≥ p for any n ≥ N. It follows from Lemma 3.2
that {x2n}∞n=0 is eventually decreasing. Thus limn→+∞x2n = a < x and limn→+∞x2n−1 = b ≥ x.
It follows from Lemma 2.2 that b = ∞. This completes the proof.

By Theorems 3.1 and 3.4 we have the following.

Corollary 3.5. Let q > 1 + p > 1, and let {xn}∞n=−1 be a positive bounded solution of (1.1), then
xn−1 ≥ xn ≥ x for all n ≥ 0 or x ≥ xn ≥ xn−1 for all n ≥ 0.
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Now one can find out the set of all initial values (x−1, x0) ∈ (0,+∞) × (0,+∞) such that
the positive solutions of (1.1) are bounded. Let P0 = A2, Q0 = A1. For any n ≥ 1, let

Pn = f−1(Pn−1), Qn = f−1(Qn−1). (3.7)

It follows from Lemma 2.1 that P1 = f−1(P0) ⊂ P0, Q1 = f−1(Q0) ⊂ Q0, which implies

Pn ⊂ Pn−1, Qn ⊂ Qn−1 (3.8)

for any n ≥ 1.
Let S be the set of all initial values (x−1, x0) ∈ (0,+∞) × (0,+∞) such that the positive

solutions {xn}∞n=−1 of (1.1) are bounded. Then we have the following theorem.

Theorem 3.6. S = [
⋂∞

n=0Qn] ∪ [
⋂∞

n=0Pn] (⊂ A1 ∪A2 ∪ {(x, x)}).

Proof. Let {xn}∞n=−1 be a positive solution of (1.1) with the initial values (x−1, x0) ∈ S.
If (x−1, x0) ∈ ⋂∞

n=0Qn, then fn(x−1, x0) = (xn−1, xn) ∈ A1 for any n ≥ 0, which implies
xn ≤ x for any n ≥ −1. It follows from Theorem 3.1 that limn→∞xn = x.

If (x−1, x0) ∈
⋂∞

n=0Pn, then fn(x−1, x0) = (xn−1, xn) ∈ A2, which implies xn ≥ x for any
n ≥ −1. It follows from Theorem 3.1 that limn→∞xn = x.

Now assume that {xn}∞n=−1 is a positive solution of (1.1) with the initial values
(x−1, x0) ∈ D − S.

If (x−1, x0) ∈ A3
⋃
A4

⋃
L0

⋃
L1

⋃
R0

⋃
R1, then it follows from Lemma 2.1 that

f2 (x−1, x0) = (x1, x2) ∈ {(x, y) : (x − x)(y − x) < 0}, which along with Theorem 3.4 implies
that {xn} is unbounded.

If (x−1, x0) ∈ A2 −
⋂∞

n=0Pn, then there exists n ≥ 0 such that (x−1, x0) ∈ Pn − Pn+1 =
f−n(A2) − f−n−1(A2). Thus fn(x−1, x0) = (xn−1, xn) ∈ A2 − f−1(A2). By Lemma 2.1, we obtain
fn+1(x−1, x0) ∈ L1

⋃
A4 and fn+3(x−1, x0) = (xn+2, xn+3) ∈ A4, which along with Theorem 3.4

implies that {xn} is unbounded.
If (x−1, x0) ∈ A1 −

⋂∞
n=1Qn, then there exists n ≥ 0 such that (x−1, x0) ∈ Qn −Qn+1 = Qn −

f−1(Qn) and fn(x−1, x0) = (xn−1, xn) ∈ A1 − f−1(A1). Again by Lemma 2.1 and Theorem 3.4,
we have that {xn} is unbounded. This completes the proof.
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[1] M. R. Tasković, Nonlinear Functional Analysis. Vol. I: Fundamental Elements of Theory, Zavod, za
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[11] S. Stević, “Existence of nontrivial solutions of a rational difference equation,” Applied Mathematics

Letters, vol. 20, no. 1, pp. 28–31, 2007.
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