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1. Introduction

Multipoint boundary value problems (BVPs) for second-order differential equations in a
finite interval have been studied extensively and many results for the existence of solutions,
positive solutions, multiple solutions are obtained by use of the Leray-Schauder continuation
theorem, Guo-Krasnosel’skii fixed point theorem, and so on; for details see [1–4] and the
references therein.

In the last several years, boundary value problems in an infinite interval have been
arisen in many applications and received much attention; see [5, 6]. Due to the fact that
an infinite interval is noncompact, the discussion about BVPs on the half-line is more
complicated, see [5–14] and the references therein. Recently, in [15], Lian and Ge studied
the following three-point boundary value problem:

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, 0 < t < +∞,

x(0) = αx
(
η
)
, lim

t→+∞
x′(t) = 0,

(1.1)
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where α ∈ R, α/= 1, and η ∈ (0,+∞) are given. In this paper, we will study the following
m-point boundary value problems:

x′′(t) + f
(
t, x(t), x′(t)

)
= 0, 0 < t < +∞,

x(0) =
m−2∑

i=1

αix
(
ηi
)
, lim

t→+∞
x′(t) = 0,

(1.2)

where αi ∈ R,
∑m−2

i=1 αi /= 1, αi have the same signal, and 0 < η1 < η2 < · · · < ηm−2 < +∞ are
given. We first present the Green function for second-order multipoint BVPs on the half-line
and then give the existence results for (1.2) using the properties of this Green function and
the Leray-Schauder continuation theorem.

We use the spaceC1
∞[0,+∞) = {x ∈ C1[0,+∞), limt→+∞x(t) exists, limt→+∞x′(t) exists}

with the norm ‖x‖ = max{‖x‖∞, ‖x′‖∞}, where ‖ · ‖∞ is supremum norm on the half-line, and
L1[0,+∞) = {x : [0,+∞) → R is absolutely integrable on [0,+∞)} with the norm ‖x‖L1 =∫∞
0 |x(t)|dt.

We set

P =
∫+∞

0
p(s)ds, P1 =

∫+∞

0
sp(s)ds, Q =

∫+∞

0
q(s)dt, (1.3)

and we suppose αi, i = 1, 2, . . . , m − 2 are the same signal in this paper and we always assume
α =
∑m−2

i=1 αi.

2. Preliminary Results

In this section, we present some definitions and lemmas, which will be needed in the proof
of the main results.

Definition 2.1 (see [15]). It holds that f : [0,+∞) × R2 �−→ R is called an S-Carathéodory
function if and only if

(i) for each (u, v) ∈ R2, t �→ f(t, u, v) is measurable on [0,+∞),

(ii) for almost every t ∈ [0,+∞), (u, v) �→ f(t, u, v) is continuous on R2,

(iii) for each r > 0, there exists ϕr(t) ∈ L1[0,+∞) with tϕr(t) ∈ L1[0,+∞), ϕr(t) > 0 on
(0,+∞) such that max{|u|, |v|} ≤ r implies |f(t, u, v)| ≤ ϕr(t), for a.e. t ∈ [0,+∞).

Lemma 2.2. Suppose
∑m−2

i=1 αi /= 1, if for any v(t) ∈ L1[0,+∞) with tv(t) ∈ L1[0,+∞), then the
BVP,

x′′(t) + v(t) = 0, 0 < t < +∞,

x(0) =
m−2∑

i=1

αix
(
ηi
)
, lim

t→+∞
x′(t) = 0,

(2.1)
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has a unique solution. Moreover, this unique solution can be expressed in the form

x(t) =
∫+∞

0
G(t, s)v(s)ds, (2.2)

where G(t, s) is defined by

G(t, s) =
1
Λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−2∑

i=1

αis + Λs, s ≤ η1, s ≤ t,

m−2∑

i=1

αis + Λt, s ≤ η1, t ≤ s,

i∑

k=1

αkηk +
m−2∑

k=i+1

αks + Λs, 0 < ηi ≤ s ≤ ηi+1, s ≤ t, i = 1, 2, . . . , m − 3,

i∑

k=1

αkηk +
m−2∑

k=i+1

αks + Λt, 0 < ηi ≤ s ≤ ηi+1, t ≤ s, i = 1, 2, . . . , m − 3,

m−2∑

i=1

αiηi + Λs, s ≥ ηm−2, s ≤ t,

m−2∑

i=1

αiηi + Λt, s ≥ ηm−2, t ≤ s,

(2.3)

here note Λ = 1 −∑m−2
i=1 αi.

Proof. Integrate the differential equation from t to +∞, noticing that v(t), tv(t) ∈ L1[0,+∞),
then from 0 to t and one has

x(t) = x(0) +
∫ t

0

∫+∞

s

v(τ)dτ ds. (2.4)

Since x(0) =
∑m−2

i=1 αix(ηi), from (2.4), it holds that

x(t) =
1

1 −∑m−2
i=1 αi

[
m−2∑

i=1

αiηi

∫+∞

ηi

v(s)ds +
m−2∑

i=1

αi

∫ηi

0
sv(s)ds

]

+ t

∫+∞

t

v(s)ds +
∫ t

0
sv(s)ds.

(2.5)

For 0 ≤ t ≤ η1, the unique solution of (2.1) can be stated by

x(t) =
∫ t

0

( ∑m−2
i=1 αis

1 −∑m−2
i=1 αi

+ s

)

v(s)ds +
∫η1

t

( ∑m−2
i=1 αis

1 −∑m−2
i=1 αi

+ t

)

v(s)ds

+
m−3∑

i=1

∫ηi+1

ηi

(∑i
k=1 αkηk +

∑m−2
k=i+1 αks + Λt

1 −∑m−2
i=1 αi

)

v(s)ds +
∫+∞

ηm−2

( ∑m−2
i=1 αiηi

1 −∑m−2
i=1 αi

+ t

)

v(s)ds.

(2.6)
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If ηi ≤ t ≤ ηi+1, 1 ≤ i ≤ m − 3, the unique solution of (2.1) can be stated by

x(t) =
∫η1

0

( ∑m−2
i=1 αis

1 −∑m−2
i=1 αi

+ s

)

v(s)ds

+
i−1∑

j=1

∫ηj+1

ηj

⎛

⎝

∑j

k=1 αkηk +
∑m−2

k=j+1 αks + Λs

1 −∑m−2
i=1 αi

⎞

⎠v(s)ds

+
∫ t

ηi

(∑i
k=1 αkηk +

∑m−2
k=i+1 αks + Λs

1 −∑m−2
i=1 αi

)

v(s)ds

+
∫ηi+1

t

(∑i
k=1 αkηk +

∑m−2
k=i+1 αks + Λt

1 −∑m−2
i=1 αi

)

v(s)ds

+
m−3∑

j=i+1

∫ηj+1

ηj

⎛

⎝

∑j

k=1 αkηk +
∑m−2

k=j+1 αks + Λt

1 −∑m−2
i=1 αi

⎞

⎠v(s)ds

+
∫+∞

ηm−2

( ∑m−2
i=1 αiηi

1 −∑m−2
i=1 αi

+ t

)

v(s)ds.

(2.7)

If ηm−2 ≤ t < +∞, the unique solution of (2.1) can be stated by

x(t) =
∫η1

0

( ∑m−2
i=1 αis

1 −∑m−2
i=1 αi

+ s

)

v(s)ds +
m−3∑

i=1

∫ηi+1

ηi

(∑i
k=1 αkηk +

∑m−2
k=i+1 αks + Λs

1 −∑m−2
i=1 αi

)

v(s)ds

+
∫ t

ηm−2

( ∑m−2
i=1 αiηi

1 −∑m−2
i=1 αi

+ s

)

v(s)ds +
∫+∞

t

( ∑m−2
i=1 αiηi

1 −∑m−2
i=1 αi

+ t

)

v(s)ds.

(2.8)

We note Λ = 1 −∑m−2
i=1 αi, then

G(t, s) =
1
Λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m−2∑

i=1

αis + Λs, s ≤ η1, s ≤ t,

m−2∑

i=1

αis + Λt, s ≤ η1, t ≤ s,

i∑

k=1

αkηk +
m−2∑

k=i+1

αks + Λs, 0 < ηi ≤ s ≤ ηi+1, s ≤ t, i = 1, 2, . . . , m − 3,

i∑

k=1

αkηk +
m−2∑

k=i+1

αks + Λt, 0 < ηi ≤ s ≤ ηi+1, t ≤ s, i = 1, 2, . . . , m − 3,

m−2∑

i=1

αiηi + Λs, s ≥ ηm−2, s ≤ t,

m−2∑

i=1

αiηi + Λt, s ≥ ηm−2, t ≤ s.

(2.9)
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Therefore, the unique solution of (2.1) is x(t) =
∫+∞
0 G(t, s)v(s)ds, which completes the

proof.

Remark of Lemma 2.2.Obviously G(t, s) satisfies the properties of a Green function, so we call
G(t, s) the Green function of the corresponding homogeneous multipoint BVP of (2.1) on the
half-line.

Lemma 2.3. For all t, s ∈ [0,+∞), it holds that

|G(t, s)| ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s,
m−2∑

i=1

αi < 0,

s

Λ
, 0 ≤

m−2∑

i=1

αi < 1,

max

⎧
⎨

⎩

∑m−2
i=1

αis

−Λ ,

∑m−2
i=1

αiηm−2
−Λ

⎫
⎬

⎭
,

m−2∑

i=1

αi > 1.

(2.10)

Proof. For each s ∈ [0,+∞), G(t, s) is nondecreasing in t. Immediately, we have

min

{∑m−2
i=1 αis

Λ
,

∑i
k=1 αkηk +

∑m−2
k=i+1 αks

Λ
,

∑m−2
i=1 αiηi
Λ

}

≤ G(t, s) ≤ G(s, s)

=
1
Λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

s, s ≤ η1,

i∑

k=1

αkηk +

(
m−2∑

k=i+1

αk + Λ

)

s, ηi ≤ s ≤ ηi+1 < +∞, i = 1, 2, . . . , m − 3,

m−2∑

i=1

αiηi + Λs, s ≥ ηm−2.

(2.11)

Further, we have

∑m−2
i=1 αis

Λ
≤ G(t, s) ≤ s,

m−2∑

i=1

αi < 0,

0 < min

{∑m−2
i=1 αis

Λ
,

∑m−2
i=1 αiη1
Λ

}

≤ G(t, s) ≤ s

Λ
, 0 ≤

m−2∑

i=1

αi < 1,

min

{∑m−2
i=1 αis

Λ
,

∑m−2
i=1 αiηm−2

Λ

}

≤ G(t, s) ≤ s,
m−2∑

i=1

αi > 1.

(2.12)

Therefore, we get the result.



6 Advances in Difference Equations

Lemma 2.4. For the Green function G(t, s), it holds that

lim
t→+∞

G(t, s) = G(s)

=
1
Λ

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s, s ≤ η1,

i∑

k=1

αkηk +

(
m−2∑

k=i+1

αk + Λ

)

s, ηi ≤ s ≤ ηi+1 < +∞, i = 1, 2, . . . , m − 3

m−2∑

i=1

αiηi + Λs, s ≥ ηm−2.

(2.13)

Lemma 2.5. For the function x ∈ C1[0,+∞), it is satisfied that

x(0) =
m−2∑

i=1

αix
(
ηi
)

(2.14)

and αi (i = 1, 2, . . . , m − 2) have the same signal, 0 < η1 < η2 < · · · < ηm−2 < +∞, then there exists
η ∈ [η1, ηm−2] satisfying

x(0) = αx
(
η
)
, (2.15)

where α =
∑m−2

i=1 αi.

Proof. Let αi (i = 1, 2, . . . , m − 2) are positive, and note M∗ = max{x(t) | t ∈ [η1, ηm−2]}, m∗ =
min{x(t) | t ∈ [η1, ηm−2]}, then for every i (i = 1, 2, . . . , m − 2), we have m∗ ≤ x(ηi) ≤ M∗,
so m∗∑m−2

i=1 αi ≤ ∑m−2
i=1 αix(ηi) ≤ M∗∑m−2

i=1 αi, that is, m∗ ≤ ∑m−2
i=1 αix(ηi)/

∑m−2
i=1 αix ≤ M∗.

Because x(t) is continuous on the interval [η1, ηm−2], there exists η ∈ [η1, ηm−2] satisfying
x(0) = αx(η), where α =

∑m−2
i=1 αi.

Theorem 2.6 (see [5]). Let M ⊂ C∞[0,+∞) = {x ∈ C[0,+∞), limt→+∞x(t) exists}. Then M is
relatively compact in X if the following conditions hold:

(a) M is uniformly bounded in C∞[0,+∞);

(b) the functions from M are equicontinuous on any compact interval of [0,+∞);

(c) the functions from M are equiconvergent, that is, for any given ε > 0, there exists a T =
T(ε) > 0 such that |f(t) − f(+∞)| < ε, for any t > T, f ∈ M.

3. Main Results

Consider the space X = {x ∈ C1
∞[0,+∞), x(0) =

∑m−2
i=1 αix(ηi), limt→+∞ x′(t) = 0} and define

the operator T : X × [0, 1] → X by

T(x, λ)(t) = λ

∫+∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds, 0 ≤ t < +∞. (3.1)

The main result of this paper is following.
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Theorem 3.1. Let f : [0,+∞) × R2 �→ R be an S-Carathéodory function. Suppose further that there
exists functions p(t), q(t)r(t) ∈ L1[0,+∞) with tp(t), tq(t)tr(t) ∈ L1[0,+∞) such that

∣
∣f(t, u, v)

∣
∣ ≤ p(t)|u| + q(t)|v| + r(t) (3.2)

for almost every t ∈ [0,+∞) and all (u, v) ∈ R2. Then (1.2) has at least one solution provided:

ηm−2P + P1 +Q < 1, α < 0,

αηm−2
1 − α

P + P1 +Q < 1, 0 ≤ α < 1,

max
{
αηm−2
α − 1

P + P1 +Q,
αP1

α − 1
+
αηm−2P
α − 1

}

< 1, α > 1.

(3.3)

Lemma 3.2. Let f : [0,+∞) × R2 → R be an S-Carathéodory function. Then, for each λ ∈
[0, 1], T(x, λ) is completely continuous in X.

Proof. First we show T is well defined. Let x ∈ X; then there exists r > 0 such that ‖x‖ ≤ r. For
each λ ∈ [0, 1], it holds that

T(x, λ)(t) = λ

∫+∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

≤
∫+∞

0
|G(t, s)|ϕr(s)ds < +∞, ∀t ∈ [0,∞).

(3.4)

Further, G(t, s) is continuous in t so the Lebesgue dominated convergence theorem implies
that

|T(x, λ)(t1) − T(x, λ)(t2)| ≤ λ

∫+∞

0
|G(t1, s) −G(t2, s)|

∣
∣f
(
s, x(s), x′(s)

)∣
∣ds

≤ λ

∫+∞

0
|G(t1, s) −G(t2, s)|ϕr(s)ds

−→ 0, as t1 −→ t2,

(3.5)

∣
∣T(x, λ)′(t1) − T(x, λ)′(t2)

∣
∣ ≤ λ

∫ t2

t1

∣
∣f
(
s, x(s), x′(s)

)∣
∣ds

≤
∫ t2

t1

ϕr(s)ds −→ 0 as t1 −→ t2,

(3.6)

where 0 ≤ t1, t2 < +∞. Thus, Tx ∈ C1[0,+∞).
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Obviously, T(x, λ)(0) =
∑m−2

i=1 αiT(x, λ)(ηi). Notice that

lim
t→+∞

T(x, λ)′(t) = lim
t→+∞

∫+∞

t

f
(
s, x(s), x′(s)

)
ds = 0, (3.7)

so we can get T(x, λ)(t) ∈ X.
We claim that T(x, λ) is completely continuous in X, that is, for each λ ∈ [0, 1], T(x, λ)

is continuous in X and maps a bounded subset of X into a relatively compact set.
Let xn → x as n → +∞ inX. Next we prove that for each λ ∈ [0, 1], T(xn, λ) → T(x, λ)

as n → +∞ in X. Because f is a S-Carathéodory function and

∣
∣
∣
∣

∫+∞

0
G(s)

(
f
(
s, xn(s), x′

n(s)
) − f

(
s, x(s), x′(s)

))
ds

∣
∣
∣
∣ ≤ 2

∫+∞

0

∣
∣
∣G(s)

∣
∣
∣ϕr0(s)ds < +∞, (3.8)

where r0 > 0 is a real number such that max{maxn∈N\{0} ‖xn‖, ‖x‖} ≤ r0, we have

|T(xn, λ)(+∞) − T(x, λ)(+∞)| ≤ λ

∫+∞

0

∣
∣
∣G(s)

∣
∣
∣
∣
∣f
(
s, xn(s), x′

n(s)
) − f

(
s, x(s), x′(s)

)∣
∣ds

−→ 0, as n −→ +∞.

(3.9)

Also, we can get

|T(xn, λ)(t) − T(xn, λ)(+∞)| ≤ λ

∫+∞

0

∣
∣
∣G(t, s) −G(s)

∣
∣
∣
∣
∣f
(
s, xn(s), x′

n(s)
)∣
∣ds

≤
∫+∞

0

∣
∣
∣G(t, s) −G(s)

∣
∣
∣ϕr0(s)ds

−→ 0, as t −→ +∞,

(3.10)

∣
∣T(xn, λ)

′(t) − T(xn, λ)
′(+∞)

∣
∣ ≤
∫+∞

t

∣
∣f
(
s, xn(s), x′

n(s)
)∣
∣ds

≤
∫+∞

t

ϕr0(s)ds −→ 0, as t −→ +∞.

(3.11)

Similarly, we have

|T(x, λ)(t) − T(x, λ)(+∞)| −→ 0, as t −→ +∞,

∣
∣T(x, λ)′(t) − T(x, λ)′(+∞)

∣
∣ −→ 0, as t −→ +∞.

(3.12)
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For any positive number T0 < +∞, when t ∈ [0, T0], we have

|T(xn, λ)(t) − T(x, λ)(t)| ≤
∫+∞

0
|G(t, s)|∣∣f(s, xn(s), x′

n(s)
) − f

(
s, x(s), x′(s)

)∣
∣ds

−→ 0, as n −→ +∞,

∣
∣T(xn, λ)

′(t) − T(x, λ)′(t)
∣
∣ ≤
∫+∞

t

∣
∣f
(
s, xn(s), x′

n(s)
) − f

(
s, x(s), x′(s)

)∣
∣ds

−→ 0, as n −→ +∞.

(3.13)

Combining (3.9)–(3.13), we can see that T(·, λ) is continuous. Let B ⊂ X be a bounded
subset; it is easy to prove that TB is uniformly bounded. In the same way, we can prove
(3.5),(3.6), and (3.12), we can also show that TB is equicontinuous and equiconvergent. Thus,
by Theorem 2.6, T(·, λ) : X×[0, 1] → X is completely continuous. The proof is completed.

Proof of Theorem 3.1. In view of Lemma 2.2, it is clear that x ∈ X is a solution of the BVP (1.2) if
and only if x is a fixed point of T(·, 1). Clearly, T(x, 0) = 0 for each x ∈ X. If for each λ ∈ [0, 1]
the fixed points T(·, λ) in X belong to a closed ball of X independent of λ, then the Leray-
Schauder continuation theorem completes the proof. We have known T(·, λ) is completely
continuous by Lemma 3.2. Next we show that the fixed point of T(·, λ) has a priori bound M
independently of λ. Assume x = T(x, λ) and set

Q1 =
∫+∞

0
sq(s)ds, R =

∫+∞

0
r(s)ds, R1 =

∫+∞

0
sr(s)dt. (3.14)

According to Lemma 2.5, we know that for any x ∈ X, there exists η ∈ [η1, ηm−2] satisfying
x(0) = αx(η). Hence, there are three cases as follow.

Case 1 (α < 0). For any x ∈ X, x(0)x(η) ≤ 0 holds and, therefore, there exists a t0 ∈ [0, η] such
that x(t0) = 0. Then, we have

|x(t)| =
∣
∣
∣
∣
∣

∫ t

t0

x′(s)ds

∣
∣
∣
∣
∣
≤ (t + η

)∥
∥x′∥∥

∞ ≤ (t + ηm−2
)∥
∥x′∥∥

∞, t ∈ [0,∞), (3.15)

and so it holds that

∥
∥x′∥∥

∞ ≤ ∥∥λf(t, x, x′)
∥
∥
L1 ≤

∥
∥f(t, x, x′)

∥
∥
L1

≤ ∥∥p(t)|x(t)| + q(t)|x′(t)| + r(t)
∥
∥
L1

≤ (ηm−2P + P1 +Q
)∥
∥x′∥∥

∞ + R,

(3.16)

therefore,

∥
∥x′∥∥

∞ ≤ R

1 − ηm−2P − P1 −Q
= M′

1. (3.17)
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At the same time, we have

|x(t)| ≤ λ

∣
∣
∣
∣

∫∞

0
G(t, s)f

(
s, x(s), x′(s)

)
ds

∣
∣
∣
∣

≤
∫∞

0

∣
∣sf
(
s, x(s), x′(s)

)∣
∣ds

≤ P1‖x‖∞ +Q1M
′
1 + R1, t ∈ [0,∞),

(3.18)

and so

‖x‖∞ ≤ Q1M
′
1 + R1

1 − P1
= M1. (3.19)

Set M = max{M′
1,M1}, which is independent of λ.

Case 2 (0 ≤ α < 1). For any x ∈ X, we have

|x(t)| =
∣
∣
∣
∣
∣
αx
(
η
)
+
∫ t

0
x′(s)ds

∣
∣
∣
∣
∣
≤ α
∣
∣x
(
η
)∣
∣ + t
∥
∥x′∥∥

∞, t ∈ [0,∞), (3.20)

which implies that |x(t)| ≤ (αη/(1 − α) + t)‖x′‖∞ ≤ (αηm−2/(1 − α) + t)‖x′‖∞ for all t ∈ [0,∞).
In the same way as for Case 1, we can get

∥
∥x′∥∥

∞ ≤ (1 − α)R
(1 − α)(1 − P1 −Q) − αηm−2P

= M′
2,

‖x‖∞ ≤ Q1M
′
2 + R1

1 − α − P1
= M2.

(3.21)

Set M = max{M′
2,M2}, which is independent of λ and is what we need.

Case 3 (α > 1). For x ∈ X, we have

|x(t)| =
∣
∣
∣
∣
∣
x
(
η
)
+
∫ t

η

x′(s)ds

∣
∣
∣
∣
∣
≤ 1

α
|x(0)| + ∣∣t − η

∥
∥x′∥∥

∞ , t ∈ [0,∞), (3.22)

and so |x(t)| ≤ (αη/(α − 1) + t)‖x′‖∞ ≤ (αηm−2/(α − 1) + t)‖x′‖∞ for all t ∈ [0,∞).
Similarly, we obtain

∥
∥x′∥∥

∞ ≤ (α − 1)R
(α − 1)(1 − P1 −Q) − αηm−2P

= M′
3,

‖x‖∞ ≤ α
(
Q1M

′
3 + R1

)
+ αηm−2

(
QM′

3 + R
)

α − 1 − αηm−2P
= M3.

(3.23)

Set M = max{M′
3,M3} and which is we need. So (1.2) has at least one solution.
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