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We consider the system in the title where the initial condition (xo,y9) € R?. We show that the
system has exactly two prime period-5 solutions and a unique equilibrium point (0, -1). We also

show that every solution of the system is eventually one of the two prime period-5 solutions or
else the unique equilibrium point.

1. Introduction
In this paper, we consider the system of piecewise linear difference equations
Xn+l = |xn| —Yn— 1,

n=0,1,2,..., (1.1)
Yni1 = Xn — |yn|/

where the initial condition (xo, o) € R?. We show that every solution of System (1.1) is even-
tually either one of two prime period-5 solutions or else the unique equilibrium point (0, -1).
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System (1.1) was motivated by Devaney’s Gingerbread man map [1, 2]

Xpa1 = |Xn| — X1 + 1 (1.2)

or its equivalent system of piecewise linear difference equations [3, 4]

Xn+l = |xn| —Ynt 1,
n=0,1,2,.... (13)
Ynel = Xn,

We believe that the methods and techniques used in this paper will be useful in
discovering the global character of solutions of similar systems, including the Gingerbread
man map.

2. The Global Behavior of the Solutions of System (1.1)

System (1.1) has the equilibrium point (X, ) € R? given by
(x,y) = (0,-1). (2.1)
System (1.1) has two prime period-5 solutions,
x0=0, yo =1
x1=-2, y1 =-1

Pl=]| xx=2, y» =-3
x3=4, y; =-1

1
w
/;\/

xs=4, 1y
1
/ X0 = 0/ Yo = ? (22)
8 1
X1 = 7 = 7
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P = Xy = 7 Y2 = 7
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X3=o, Y3= -1
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{(xy):x=0,y20},
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(x,y) :x<0,y=0},
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(x,y) :x>0,y>0},
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(x,y):x<0,y>0

Qi
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Qs (x,y):x<0,y <0},
Q4

{ J
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{ J
{ J

(x,y) :x>0,y <0}
Theorem 2.1. Let (xo,y0) € R® Then there exists an integer N > 0 such that the solution

{(Xn, Yn) Yooy is eventually either the prime period-5 solution P3, the prime period-5 solution PZ, or
else the unique equilibrium point (0,-1).

The proof is a direct consequence of the following lemmas.

Lemma 2.2. Suppose there exists an integer M > 0 such that =1 < xp < 0and yp = —xap—1. Then
(enm1, Yma) = (0,-1), and so { (xn, Yn) Yoerren 15 the equilibrium solution.

Proof. Note that

xm = [xml—ym—1=-xpm - (-xm -1)-1=0, 2.4)
yma =xm - |ym| =xpm - (xpm +1) = -1,

and so the proof is complete. O

Lemma 2.3. Suppose there exists an integer M > 0 such that xp > 1 and yp = xm — 1. Then
(xM+1/yM+1) = (0,1), and so {(xn, yn)};;o:Mﬂ is P51.

Proof. We have
Xyva =Ml —ym—l=xpm—(xpm—1)-1=0,

2.5)
Yme =xm— |ym| =xm - (xm-1) =1,

and so the proof is complete. O

Lemma 2.4. Suppose there exists an integer M > 0 such that xpr = 0and yag > 0. Then the following
statements are true.

(1) xpm45 = 0.
) If ym > 1/4, then {(xXu, Yu) )2 ps5 i P2
(3) If0 < ym < 1/4, then ypes = 8ym — 1.
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Proof. We have xp = 0 and yu > 0. Then
Xm+ = lxml-ym—-1=-ym-1<0,

Yme1 = xm — |ym| = -ym <0,

Xm+2 = [Xme1| —yma —1=2ym 20,

Yme2 = Xpme1 — |yma| = 2ym -1 <0,
XM+3 = [Xpma2] = Ym2 =1 =4ym >0, (2.6)
Yms = Xna2 — |Ymez| = -1,

XM = |XMe3] —Ymez — 1 =4ynm >0,
YMea = X3 — |ymas| =4ym - 1,
XM+5 = [Xmea| = Yma—1=0,
and so statement (1) is true.
If yp > 1/4, then yars = xpa — |[Ymea| = 1. That is, (x5, yames) = (0,1) and so

statement (2) is true.
If 0 < ym < 1/4, then yaris = Xpea — [Ym+a| = 8ym — 1, and so statement (3) is true. O

Lemma 2.5. Suppose there exists an integer M > 0 such that xp = 0 and yp < —1. Then the
following statements are true.

(1) xp44 = 0.
(2) If -3/2 < ym < -1, then yara = —4ypm — 5.
(3) If ymr < =3/2, then { (X, Yn) )2 prea 5 PR

Proof. We have xpr =0 and yym < —1. Then

Xma = |xm|l-ym—1=-ym—-1>0,
Yme =xm — |ym| =ym <0,
X2 = [ XMt = ymer — 1= 2ypm —2>0,
Yma2 = Xae — |Yma| = -1, (2.7)
XMa3 = [ XMl —Ym2 =1 = 2ypm -2 >0,
YM3 = Xn2 — |Ymez| = 2ym -3,
XM+a = [Xma3| = Ym3 —1=0,
and so statement (1) is true.
Now if -3/2 < ym < =1, then ypmiz = —2ym — 3 < 0. Thus yares = Xpm43 — [Ymas| =
—4ym — 5, and so statement (2) is true.

Lastly, if ypr < -3/2, then yare3 = —2ypm —3 > 0. Thus yava = xp43 — [Ymas] = 1; that is,
(xmM+4, Ym+4) = (0,1) and so statement (3) is true. O
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Lemma 2.6. Suppose there exists an integer M > 0 such that xpg > 0and ya = 0. Then the following

statements are true.

(1) If xar > 1, then { (Xn, Yn) }2pran i PL.
(2) If 1/4 < xn < 1, then {(Xn, Yu) Vi piag 85 P2
(3) IfO <xpm <1/4, then xpre6 = 0 and Y = 8xpr — 1.

Proof. First consider the case x); > 1 and ypr = 0. Then

XMl = lxml—-ym—-1=xm-120,
Yme1 = xm — |ym| =xm >0,
Xme2 = [Xpe1| —Yme1 —1=-2,

YMe2 = Xpe1 — |Yma| = -1,

and so statement (1) is true.
Next consider the case 0 < xp; < 1and ypr = 0. Then

XMl = lxm|—ym—1=xm-1<0,
Yme1 = xm — |ym| =xm >0,
Xme2 = [Xme1| = Yme1 —1 = 2xpm <0,
YMe2 = Xpe1 — |Yma| = -1,
XM+3 = [Xma2| = Ym2 —1=2x0 20,
YM+3 = Xve2 — |[Ymaz| = 220 -1 <0,
XM+s = |Xma3| —Ymez —1=4x0m >0,
YMes = Xme3 — |Ymes| = -1,
XM45 = | XMaa] — Ymea — 1 =4xp 20,
YM+5 = XMed — |Ymea]| = 4xpm - 1,

XM+ = |XMas| — Ymes —1=0.

(2.8)

(2.9)

If1/4 < xp < 1, then ypmis = 4xp — 1 > 0 and 50 Yamve = Xm+5 — [Ymas| = 1. That is,

(xm+6,Ym+6) = (0,1) and so statement (2) is true.

If 0 < xym <174, then ymas = 4xp — 1 < 0. Thus yaes = Xmas — [ymas| = 8xm — 1, and

so statement (3) is true.

O

Lemma 2.7. Suppose there exists an integer M > 0 such that xp < =1 and yp = 0. Then the

following statements are true.
(1) xpr44 = 0.
(2) If -3/2 < xp < -1, then ypreq = —4xp — 5.
(3) If xpm < =3/2, then { (X, Yn) )2 p1ea iS PL.
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Proof. Let xpr < =1 and ypr = 0. Then

XM+t = xm|—ym—1=-xp—-1>0,
Yme1 = xm — |ym| =xm <0,
Xme2 = XMt —yYma —1=-2xm-2>0,
YMa2 = Xpe1 — |Yma| = -1, (2.10)
XM+3 = [XMa2| —Yme2 —1=-2xm-2>0,
YMmi3 = Xna2 — [Ymaz| = —2xm = 3,
XM+a = [Xma3]| —Ym3 —1=0,
and so statement (1) is true.
If -3/2 < xp < -1, then ypre3 = —2xp — 3 < 0. Thus yaresa = Xpe3 — [Ymes| = —4xpm = 5,
and so statement (2) is true.

If xp < =3/2, then ypmez = —2xm — 3 > 0 and yaea = Xpe3 — [ymas| = 1. That is,
(xM+4, Ym+a) = (0,1) and s0 { (2, Yn) }oprea is P2 and the proof is complete. O

We now give the proof of Theorem 2.1 when (xa, ypm) isinlo = {(x,y) : x =0,y > 0}.

Lemma 2.8. Suppose there exists an integer M > 0 such that (xpr, ym) € lo. Then the following
statements are true.

(1) If 0 < ym < 1/7, then {(xn, Yn) }oepg s eventually the equilibrium solution.
(2) If ym = 1/7, then the solution {(xu, Yn) V5o p1s2 18 P2.
(3) If ym > 1/7, then the solution {(xy, Yn) }yep is eventually P51.

Proof. (1) We will first show that statement (1) is true. Suppose 0 < yp < 1/7; for each n > 0,
let

2% _ 1
an = W. (2.11)
Observe that
1 . 1
O=ay<ayy<ap<---<-, lima,=-. (2.12)
7" n—oow 7

Thus there exists a unique integer K > 0 such that yur € [ak, ak+1)-
We first consider the case K = 0; that is, ypr € [0,1/8). By statements (1) and (3) of
Lemma 2.4, xp15 = 0 and ypr45 = 8ym — 1. Clearly yar.5 < 0, and so

XM+6 = |Xma5| — Ymes — 1 ==8ym <0,
(2.13)

YM+e = X5 — |Ymes| = 8ym — 1.
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Now -1 < xp6 < 0 and yame = —xXme6 — 1, and so by Lemma 2.2, {(xn, Yn) }peprsy 1S the
equilibrium solution.

Without loss of generality, we may assume K > 1.

For each integer n such that n > 0, let J(n) be the following statement:

XM5n45 = 0,

3(n+l) _ (2.14)
Ynasnes = 220Dy - <—2 7 1> > 0.
Claim 1. P(n) istruefor0<n < K -1.

The proof Claim 1 will be by induction on n. We will first show that p(0) is true.

Recall that xpr = 0 and yp € [ak, ak+1) C [1/8,1/7). Then by statements (1) and (3)
of Lemma 2.4, we have xp.500)+5 = 0 and ya+5(0)+5 = 8ym — 1.

Note that,

23(0+1) _ 1
YMmss0)ss = Sym — 1= 230Dy <T >0 (2.15)

and so P(0) is true. Thus if K = 1, then we have shown that for 0 <n < K -1, P(n) is true. It
remains to consider the case K > 2. So assume that K > 2. Let n be an integer such that
0 <n < K -2 and suppose f(n) is true. We will show that f(n + 1) is true.

Since pP(n) is true, we know

23(n+1) -1
XMsn+5 = 0, YM+5n+5 = 23(n+1)]/M N7 > 0. (2.16)

It is easy to verify that for yy € [1/8,1/7),
3(n+l) _
Yatssmss = 20Dy - <%> <3 (2.17)

Thus by statements (1) and (3) of Lemma 2.4,

XM+5(n+1)+5 = 0,

YM+5(n+1)+5 = 8(]/M+5n+5) -1

3(n+l) _
— 93 [23(n+1)yM 3 <2 _ 1>] _1
(2.18)

— 23n+6

- <
ym=-———+7

23(n+2) -1
— 23(n+2) Ym — <T .
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Recall that yur € [ak, ak+1) = [(23K = 1) /(7 - 2%K), (23K+D — 1) /(7 - 23(K+D)y),
In particular,

23(n+2) -1
YM+5(n+1)+5 = 23(n+2)]/M - <T

. 23(n+2) 23K -1 ~ 23(n+2) -1
- 7.23K 7

23n+3K+6 23n+6 23n+6 1 (2‘19)
T 3K 7.pK 7 7
_1 sin-(K-2)]\ s L
7(1—2 >z§(1—1)
= 0,

and so O(n + 1) is true. Thus the proof of the claim is complete. That is, (n) is true for 0 <
n < K —1. Specifically, D(K - 1) is true, and so

23K _q
XMas5(k-1)+5 = 0, Ymask-1)+5 = 25Ky — < > > >0. (2.20)

In particular,

23K -1 23K -1 23K+3 -1 23K -1
23K< 7. 93K > - < 7 > < YM+5(K-1)+5 < 23K<W> - <T> (2'21)

That is, 0 < ymusk-1)+5 < 1/8, and so by case K = 0, {(xn, Yn) }pertisks7 1S the equilibrium
solution, and the proof of statement (1) is complete.

(2) We will next show that statement (2) is true. Suppose (xm,ym) = (0,1/7). Note
that (0,1/7) € PZ. Thus the solution {(xy, ¥n) }eps is Ps.

(3) Finally, we will show that statement (3) is true. Suppose yar > 1/7.

First consider yar > 1/4. By statement (2) of Lemma 2.4, the solution { (X, Yn) }peprss

is Pg.
Next consider the case yyr € (1/7,1/4]. For eachn > 1, let
28n-1 43
Observe that
1 1 . 1
Z:b1>b2>b3>"'>§, nlgl’;obnza (223)

Thus there exists a unique integer K > 1 such that y € (bxs1, bx].
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Note that the statement /() which we stated and proved in the proof of statement
(1) of this lemma still holds. Specifically (K — 1) is true, and so

23K _q
XM5(k-1)+5 = 0, YMask-1)+5 = 22Ky — < 7 > > 0. (2.24)

Recall that for ya € (brs1, bx].
In particular,

23K -1 23K+2 +3 23K -1 1
_ 3K 3K —
YMis5K =2 }/M—< 7 > >2 <7,23K+2>_< 7 > T3 (2.25)

By statement (2) of Lemma 2.4, the solution { (X, Yu) } meaa5K45 1S P51. O

We now give the proof of Theorem 2.1 when (xp, yp) isinly = {(x,y) : x =0,y < 0}.

Lemma 2.9. Suppose there exists an integer M > 0 such that (xam, ym) € la. Then the following
statements are true.

(1) If -9/7 < ym < O, then {(xn, Yn) } 5o 1S eventually the equilibrium solution.

(2) If ym = =9/7, then the solution { (X, Yn) } 52 p11 15 P2.

(3) If ym < =9/7, then the solution {(xy, Yn) }re s is eventually Ps.

Proof. (1) We will first show that statement (1) is true. So suppose —9/7 < yu < 0.

Case 1. Suppose -1 < ym < 0. Then

Xme1 = xm|—ym—1=-ym —-1<0,
(2.26)
Ml = xXm — |ym| = ym.

In particular, -1 < xp41 < 0 and Yy = —xape1 — 1, and so by Lemma 2.2, {(xy, Yn) } oo 1S
the equilibrium solution.

Case 2. Suppose —5/4 < ypm < —1. By statements (1) and (2) of Lemma 2.5, xp4 = 0 and
Ym+a = —4ym — 5. Then

XM+5 = |XMaal — Ymaa —1=4ym +4 <0,
(2.27)

YM+5 = XnMea — |Ymaa| = —4ym - 5.

Thus -1 < x5 < 0 and yars = —Xaes — 1, and so by Lemma 2.2, { (x4, Yu) }oipieg 1S
the equilibrium solution.

Case 3. Suppose -9/7 < ym < —-5/4. By statements (1) and (2) of Lemma 2.5, xpp44 = 0
and ypr+4 = —4ym — 5. Note that 0 < ypma < 1/7 and so by statement (1) of Lemma 2.8,
{(Xn, Yn) } o psa 1s eventually equilibrium solution.
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(2) We will next show that statement (2) is true. Suppose ym = —9/7. By direct calcu-
lations we have (xar1, Ym+1) = (2/7,-9/7). So the solution {(x,, Yu) }mepri1 1S Pg.
(3) Finally, we will show that statement (3) is true. Suppose xp = 0 and yp < -9/7.

Case 1. Suppose -3/2 < yym < —9/7. By statements (1) and (2) of Lemma 2.5, we have xp.4 =
0 and ya+4 = —4ym — 5. Note that 1/7 < ya4 < 1 and so by statement (3) of Lemma 2.8, the
solution {(xy, Yn) }yemsa is eventually Py.

Case 2. Suppose ypm < —-3/2. By statement (3) of Lemma 2.5, the solution {(x,, Yn) }peprsa 1S
Pl 0

We now give the proof of Theorem 2.1 when (xp, ym) isinly = {(x,y) : x >0,y = 0}.

Lemma 2.10. Suppose there exists an integer M > 0 such that (xp1, ym) € L. Then the following
statements are true.

(1) If 0 < xpp < 1/7, then {(xn, Yn) } o pp 1S eventually the equilibrium solution.
(2) If xpp = 1/7, then the solution {(xXp, Yn) }seps3 15 P2
() If xpm > 1/7, then the solution {(x,, Yn) } e is eventually Pg.

Proof. (1) We will first show that statement (1) is true. So suppose 0 < xp < 1/7 and yp = 0.
By statement (3) of Lemma 2.6, xp146 = 0 and yam6 = 8xym — 1. In particular, =1 < yar4e < 1/7
and so by statement (1) of Lemma 2.8 and statement (1) of Lemma 2.9, { (X, Yn) }5eprs6 1S
eventually the equilibrium solution.

(2) We will next show that statement (2) is true. Suppose x) = 1/7. By direct
calculations we have (xp:3, Yms3) = (2/7,-9/7). Thus the solution { (X, Yn) }yeprss 1S P52.

(3) Finally, we will show statement (3) is true.

First consider the case 1/7 < xp < 1/4. By statement (3) of Lemma 2.6, xp146 = 0 and
Ym+e = 8xp — 1. Now, 1/7 < ypse < 1 and so by statement (3) of Lemma 2.8, the solution
{(Xn, Yn) }sense is eventually P2

Next consider the case x) > 1/4. Then by statements (1) and (2) of Lemma 2.6, if
xp > 1then { (x4, Yn) b popien is P2, and if 1/4 < xp < 1 then {(x4, Yu) b peniee 18 Pr. O

We next give the proof of Theorem 2.1 when (xp, ysm) isinlz = {(x,y) : x <0,y = 0}.

Lemma 2.11. Suppose there exists an integer M > 0 such that (xp1, ya) € 3. Then the following
statements are true.

(1) If -9/7 < xpm < 0, then {(xn, Yn) } e 1S eventually the equilibrium solution.

(2) If xpm = —9/7, then the solution {(Xn, Yn) }ersr 15 P2

(3) If xp1 < =9/7, then the solution {(xy, Yn) }reps 1S eventually P51.

Proof. (1) We will first prove statement (1) is true. Suppose -9/7 < xp < 0.
First consider the case —1 < xp; < 0. Then

Xmel = lxm|l-ym-1=-xpm -1,
(2.28)
Yma = Xm — |ym| = xm.
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In particular, -1 < xpr+1 < 0 and Yy = —xp — 1 and so by Lemma 2.2, {(xp, Yn) }oeprso 1S the
equilibrium solution.

Next consider the case —-9/7 < xm < —1. By statements (1) and (2) of Lemma 2.7,
Xm+4=0 and ymia = —4xp — 5. In particular, -1 < ymea < 1/7 and so by statement (1) of
Lemma 2.8 and statement (1) of Lemma 2.9, {(xy,, Yu) }ropiea 1S eventually the equilibrium
solution.

(2) We will next show that statement (2) is true. Suppose xp = -9/7. By direct
calculations, we have (xp41, Yme1) = (2/7,-9/7). Thatis, {(Xn, Yn) }mepien 1S P52.

(3) Lastly, we will show that statement (3) is true. Suppose xp < -9/7.

First consider the case -3/2 < x)1 < -9/7. By statements (1) and (2) of Lemma 2.7,
Xm+a = 0 and yaps = —4xp — 5. In particular, 1/7 < ymes < 1 and so by statement (3) of
Lemma 2.8, the solution {(x,, ) }5 1.4 is eventually Py.

Next consider the case xp < —-3/2. By statement (3) of Lemma 2.7, the solution
{(xn, Yn) };?;MJA is P;‘ O

We next give the proof of Theorem 2.1 when (xp, yp) isin Q1 = {(x,y) : x>0,y > 0}.

Lemma 2.12. Suppose there exists an integer M > 0 such that (xam, ym) € Qi. Then the following
statements are true.

(1) If ym < xp — 1, then the solution {(xp, Yu) oo pran 5 P2

(2) If ym > xp — 1, then there exists an integer N such that (XN, Ym+N) € b U ly.

Proof. Suppose xp1 > 0 and yp > 0.
Then

XMl = lxml-ym—-1l=xm—-ym -1,
(2.29)
Yme1 = XM — |ym| = xm — ym.

Case 1. Suppose yar < xp—1. Then, in particular, xpr4 = xp—ym—1 > 0and Yy =xp—ym >
0. Thus

Xme2 = [Xme1| —Yme1 —1=-2,
(2.30)
YM+2 = XM+1 — |]/M+1| =-1,

and so statement (1) is true.
Case 2. Suppose yp > xpr — 1. Then, in particular, xp1 = xpm —ym —1 < 0.

Subcase 1. Suppose xpr — yp < 0.
Then yap+1 = xp —ym < 0. It follows by a straight forward computation, which will be
omitted, that xpr.5 = 0. Hence (xa145, Ymas) € I Uly.

Subcase 2. Suppose xpr — ym > 0.
Then yma = xpm — ym > 0. It follows by a straight forward computation, which will
be omitted, that xpr.6 = 0. Hence (xpr+6, Ym+6) € l2 Uly, and the proof is complete. 0

We next give the proof of Theorem 2.1 when (xpr, ym) isin Qs = {(x, y) : x <0, y < 0}.
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Lemma 2.13. Suppose there exists an integer M > 0 such that (xn, ym) € Qs. Then the following
statements are true.

(1) If ym > —xpm — 1, then the solution {(xn, Yn) } meptso 1S the equilibrium solution.
(2) If ym < —xnm — 1, then (Xpe4, Ymesa) € L U L.

Proof. By assumption, we have x) < 0 and yu < 0.
If ypr > —xp — 1, then

XMl = |xml-ym—1=-xm—-ym—1<0,
=Xnp— =Xp+ <0,
Ymel = XM — |ym| = xm + ym 231)
xM+2:|xM+1|_]/M+1_1:0/

Yme2 = Xve1 — |yma| = -1

Hence {(xn, Yn) } mepiso 1S the equilibrium solution and statement (1) is true.
If ymr < —xp — 1, then it follows by a straight forward computation, which will be
omitted, that xpr.4 = 0. Thus (xpr+4, Ym+a) € I Uly and statement (2) is true. O

We next give the proof of Theorem 2.1 when (xar, ym) isin Q2 = {(x,y) : x <0, y > 0}.

Lemma 2.14. Suppose there exists an integer M > 0 such that (xp, ym) € Qo. Then the following
statements are true.
(1) Ifym > —xm — 1, then (xp41, Yms1) € Qs Uls.
(2) If ym < —xp —3/2, then (xp43, yms3) € Q1 UL
G)Ifym <-xm -1, ym > —xpm —3/2 and xp < =5/4, then (Xpea, Ymea) € Q1 UL
4) Ifym < —xm—1, ym > —xm=3/2, xp > =5/4and yay < xpp+5/4, then (X5, Ymss) €
Q3 U ly.
5) Ifym < —xm-1, ym > —xm=3/2, xpm > =5/4and ym > xpi+5/4, then (X6, Ymss) €
Qs Uly.

Proof. Now xpr < 0 and ypr > 0.
(1) If Ym > —XM — 1, then

x =-XM— -1<0,
M+1 M~ YM (232)

ym+1 = xpm —ym <0.

Thus (X1, yme) € Q3 Uly.
(2) f ym £ —xpm —3/2, then xp11 = —xpm — ym — 1 > 0. It follows by a straight forward
computation, which will be omitted, that

xM+3=—2xM+2yM—2>O, (233)

Ymz = —2xpm = 2ym —3 > 0.

Hence (X143, Yme3) € Q1 UL
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G)fym <-xm—1,ym > —xm—3/2,and xp < =5/4, then xp01 = —xm —ym — 1> 0.
It follows by a straight forward computation, which will be omitted, that

x =4 >0,
M+4 = 4YM (234)

YMs = —4xp —5>0.

Thus (x4, Y1) € Q1 U L.

@) fym <—xm—1, ym > —xpm —3/2, xp > =5/4, and yp < xpm + 5/4, then xpp41 =
-xm — ym — 1 > 0. It follows by a straight forward computation, which will be
omitted, that

XMmass = 4xpm +4]/M +4 <0,
(2.35)
Ym+s = —4xM +4yM -5 < 0.

Thus (xam45, Ymas) € Q3 Uly.

(5) Finally, suppose that ypr < —xm—1, ypm > —xpm=3/2, xp > =5/4, and yum > xp+5/4.
Then xp41 = —xpm —ym —1 > 0. It follows by a straight forward computation, which
will be omitted, that

XM+5 =4xM+4yM +4 <0,

Yaiss = —4xy + 4yp — 5 > 0. (2:30)

Note that
Ymss = —4xy +4ynm —5> —dxp —4ym -5 = —xpe5 = 1 (2.37)
and so by the first statement of this Lemma, (xp1+6, Ya+6) € Q3 U L. O

Thus we see that if there exists an integer N > 0 such that (xn, yn) ¢ Qs, then the
proof of Theorem 2.1 is complete. Finally, we consider the case where the initial condition

(xm,ym) € Qs = {(x,y) : x>0, y <0}.

Lemma 2.15. Suppose there exists an integer M > 0 such that (xp, ym) € Qa. Then there exists a
positive integer N < 4 such that (xp+n, Ym+n) € Qs.

Proof. Without loss of generality, it suffices to consider the case where
(XMan, YMin) € Qs for 0<n < 3. (2.38)

Now (xpm, ym) € Qu, and hence xp; > 0 and yp < 0.
Thus

v = lxml-ym—-1=xm-ym -1,
(2.39)
YM+1 = XM — |yM| =XMtYM-
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We have (xp+1, Ym+1) € Qa, and thus

Xm+2 = [Xme1| —Yma —1=2ym -2,

(2.40)
Yme2 = Xpe1 — |Yme| = 2xm - 1.
We also have (x2,12) € Q4, and hence
XM+3 = [XMa2| = Ym2 —1 = 2xpm = 2ym — 2,
(2.41)
Ym3 = X2 — |Ymez| = 260 = 2ym - 3.
Finally, we have (xa143, Ym+3) € Q4, and so
XM+a = [Xpe3| = Ymez —1 = —dxp <O,
(2.42)
YMes = Xms3 — |Ymas| = —4ym - 5.
In particular, xp+4 < 0 and hence (xpr44, Ymea) € Qa. O

3. Conclusion

We have presented the complete results concerning the global character of the solutions to
System (1.1). We divided the real plane into 8 sections and utilized mathematical induction,
proof by iteration, and direct computations to show that every solution of System (1.1) is
eventually either the prime period-5 solution P}, the prime period-5 solution PZ, or else the
unique equilibrium point (0, —1). The proofs involve careful consideration of the various cases
and subcases.
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