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We investigate the monic complex-coefficient polynomial of degree n, f(z) := zn+an−1zn−1+ · · ·+a0
in the complex variable z and obtain a new annular bound for the zeros of f(z), which is sharper
than the previous results and has clear advantages in judging the Schur stability of difference
equations. In addition, examples are given to illustrate the theoretical result.

1. Introduction

It is well known that many discrete-time systems in engineering are described in terms of a
difference equation, and the characteristic equation for the difference equation plays a key
role in the study of the behaviors of the solutions, especially the stability of the solutions,
to the discrete-time systems. Since the characteristic equations for difference equations are
closely related to some complex polynomials, the estimates of the bound for the moduli of
various complex polynomial zeros have been investigated by many researchers (cf. e.g., [1–
8] and references therein). In the study on this issue, one of meaningful research ideas is to
indicate such a common property of a lot of polynomials by a few very special polynomials.
Using this idea, a good annular bound by estimating the largest nonnegative zeros of four
specific polynomials is given in [8] recently. As a continuation of this work and our paper
[4], in this paper we investigate further the location of the zeros of complex-coefficient
polynomials on the basis of such a research idea and establish a new annular bound theorem
(Theorem 3.1), which improves the previous corresponding result and has clear advantages
in judging the Schur stability of difference equations. Examples are given to illustrate the
advantages of the new result.
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2. Preliminaries

Throughout this paper, we let

f(z) := zn + an−1zn−1 + an−2zn−2 + · · · + a1z + a0 (2.1)

with ai ∈ C, i ∈ {0, 1, 2, . . . , n − 1}, and

g(z) := (−1)nf(z)f(−z) = z2n + b2n−2z2n−2 + b2n−4z2n−4 + · · · + b2z
2 + b0. (2.2)

Without losing the generality, we assume that a0 /≡ 0, or, equivalently, b0 /≡ 0.
Basic notations are as follows.

R : {x ∈ R | x < 0},
|z|: the modulus of a complex number z,

Z[f(z)]: the set of all zeros of f(z),

A[r, R]: {z ∈ C | r ≤ |z| ≤ R} with 0 ≤ r ≤ R,

l: the smallest positive integer such that al /= 0 in f(z),

k: the largest positive integer such that ak /= 0 in f(z),

q: the smallest positive integer such that b2q /= 0 in g(z),

p: the largest positive integer such that b2p /= 0 in g(z),

[m]: the integer part of a real number m.

In order to simplify the expressions in our study, we define specially that

s∑

i=t

yi := 0 (2.3)

for any positive integers s, t (s < t), and sequence {yi ∈ C : s ≤ i ≤ t}. This notation is logical
and useful in the note.

Moreover, we write

c1(x) := xn+l +
n+l−1∑

i=n+1

|ai−l|xi +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣x
i +

2l−1∑

i=l+1

|a0ai|
|al| xi − |a0|2

|al| (2.4)

with an = 1 and 1 ≤ l ≤ [n/2],

c2(x) := x2n−k −
n−1∑

i=k+1

|ai+k−n|xi −
k∑

i=n−k
|ai+k−n − aiak |xi −

n−k−1∑

i=0
|aiak|xi (2.5)
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with [(n + 1)/2] ≤ k ≤ n − 1,

d1(x) := x2n+2q +
n+q−1∑

i=n+1

∣∣b2i−2q
∣∣x2i +

n∑

i=2q

∣∣∣∣∣b2i−2q −
b0b2i
b2q

∣∣∣∣∣x
2i +

2q−1∑

i=q+1

|b0b2i|∣∣b2q
∣∣ x

2i − |b0|2∣∣b2q
∣∣ (2.6)

with b2n = 1 and 1 ≤ q ≤ [n/2],

d2(x) := x4n−2p −
n−1∑

i=p+1

∣∣b2(i+p−n)
∣∣x2i −

p∑

i=n−p

∣∣b2(i+p−n) − b2ib2p
∣∣x2i −

n−p−1∑

i=0

∣∣b2ib2p
∣∣x2i (2.7)

with [(n + 1)/2] ≤ p ≤ n − 1,

f1(x) := xn +
n−1∑

i=l

|ai|xi − |a0|, f2(x) := xn −
k∑

i=0

|ai|xi,

g1(x) := x2n +
n−1∑

i=q

|b2i|x2i − |b0|, g2(x) := x2n −
p∑

i=0

|b2i|x2i.

(2.8)

Remark 2.1. ByDescartes’ rule of signs, it is easy to see that for each i ∈ {1, 2}, the polynomial
ci(x)(di(x), fi(x), gi(x)) has a unique positive zero.

We denote by αi, βi, γi, and δi the unique positive zero of ci(x), di(x), fi(x), and gi(x),
respectively.

3. Main Result

The following result is established in [8].

Theorem A (see [8]). Z[f(z)] ⊂ A[u, v], with := max{γ1, δ1} and v := min{γ2, δ2}.

Theorem 3.1. Let 1 ≤ l, q ≤ [n/2], and [(n + 1)/2] ≤ k, p ≤ n − 1. Then

(i)

Z
[
f(z)

] ⊂ A[r, R], (3.1)

where r := max{α1, β1} and R := min{α2, β2}
(ii)

A[r, R] ⊆ A[u, v], (3.2)

where u, v are constants as in Theorem A;

(iii) the annular bound of original polynomial f(z) can be further improved by iterative
procedure.
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Proof. Define

c(z) := f(z)
(
zl − a0

al

)

= zn+l − a0

al
zn +

n−1∑

i=l

aiz
i+l −

n−1∑

i=l

a0ai

al
zi + a0z

l − a2
0

al

= zn+l +
n+l−1∑

i=2l

ai−lzi −
n∑

i=l+1

a0ai

al
zi − a2

0

al

= zn+l +
n+l−1∑

i=n+1

ai−lzi +
n∑

i=2l

ai−lzi −
n∑

i=2l

a0ai

al
zi −

2l−1∑

i=l+1

a0ai

al
zi − a2

0

al

= zn+l +
n+l−1∑

i=n+1

ai−lzi +
n∑

i=2l

(
ai−l − a0ai

al

)
zi −

2l−1∑

i=l+1

a0ai

al
zi − a2

0

al
,

(3.3)

c(z) := f(z)
(
zn−k − ak

)

= z2n−k +
k−1∑

i=0

aiz
i+n−k −

k∑

i=0

aiakz
i

= z2n−k +
n−1∑

i=n−k
ai+k−nzi −

k∑

i=0

aiakz
i

= z2n−k +
n−1∑

i=k+1

ai+k−nzi +
k∑

i=n−k
(ai+k−n − aiak)zi −

n−k−1∑

i=0

aiakz
i,

(3.4)

d(z) := g(z)

(
z2q − b0

b2q

)

= z2n+2q +
n+q−1∑

i=n+1

b2i−2qz2i +
n∑

i=2q

(
b2i−2q − b0b2i

b2q

)
z2i −

2q−1∑

i=q+1

b0b2i
b2q

z2i − b20
b2q

,

d(z) := g(z)
(
z2n−2p − b2p

)

= z4n−2p +
n−1∑

i=p+1

b2(i+p−n)z2i +
p∑

i=n−p

(
b2(i+p−n) − b2ib2p

)
z2i −

n−p−1∑

i=0

b2ib2pz
2i,

(3.5)

where an = b2n = 1. Then it is not difficult to see that

Z
[
f(z)

] ⊆ Z
[
c(z)

] ∩ Z[c(z)] ∩Z
[
d(z)

] ∩ Z
[
d(z)

]
. (3.6)

This implies that for every w ∈ Z[f(z)] we have

c(w) = c(w) = d(w) = d(w) = 0, (3.7)
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that is,

wn+l +
n+l−1∑

i=n+1

ai−lwi +
n∑

i=2l

(
ai−l − a0ai

al

)
wi −

2l−1∑

i=l+1

a0ai

al
wi − a2

0

al
= 0,

w2n−k +
n−1∑

i=k+1

ai+k−nwi +
k∑

i=n−k
(ai+k−n − aiak)wi −

n−k−1∑

i=0

aiakw
i = 0,

w2n+2q +
n+q−1∑

i=n+1

b2i−2qw2i +
n∑

i=2q

(
b2i−2q − b0b2i

b2q

)
w2i −

2q−1∑

i=q+1

b0b2i
b2q

w2i − b20
b2q

= 0,

w4n−2p +
n−1∑

i=p+1

b2(i+p−n)w2i +
p∑

i=n−p

(
b2(i+p−n) − b2ib2p

)
w2i −

n−p−1∑

i=0

b2ib2pw
2i = 0.

(3.8)

Hence, by (3.8), one has

|a0|2
|al| ≤ |w|n+l +

n+l−1∑

i=n+1

|ai−l||w|i +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣|w|i +
2l−1∑

i=l+1

|a0ai|
|al| |w|i,

|w|2n−k ≤
n−1∑

i=k+1

|ai+k−n||w|i +
k∑

i=n−k
|ai+k−n − aiak||w|i +

n−k−1∑

i=0

|aiak||w|i,

|b0|2∣∣b2q
∣∣ ≤ |w|2n+2q +

n+q−1∑

i=n+1

∣∣b2i−2q
∣∣|w|2i +

n∑

i=2q

∣∣∣∣∣b2i−2q −
b0b2i
b2q

∣∣∣∣∣|w|2i +
2q−1∑

i=q+1

|b0b2i|∣∣b2q
∣∣ |w|2i,

|w|4n−2p ≤
n−1∑

i=p+1

∣∣b2(i+p−n)
∣∣|w|2i +

p∑

i=n−p

∣∣b2(i+p−n) − b2ib2p
∣∣|w|2i +

n−p−1∑

i=0

∣∣b2ib2p
∣∣|w|2i,

(3.9)

which imply that

Z
[
f(z)

] ⊂ {z ∈ C : c1(|z|) ≥ 0, d1(|z|) ≥ 0, c2(|z|) ≤ 0, d2(|z|) ≤ 0}. (3.10)

In addition, it follows from (2.4)–(2.7) that

c1(x) < 0, ∀x ∈ [0, α1),

c1(x) ≥ 0, ∀x ∈ [α1,+∞),

d1(x) < 0, ∀x ∈ [0, β1
)
,

d1(x) ≥ 0, ∀x ∈ [β1,+∞
)
,
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c2(x) ≤ 0, ∀x ∈ [0, α2],

c2(x) > 0, ∀x ∈ (α2,+∞),

d2(x) ≤ 0, ∀x ∈ [0, β2
]
,

d2(x) > 0, ∀x ∈ (β2,+∞
)
.

(3.11)

Therefore, for eachw ∈ Z[f(z)] we have

|w| ≥ α1, |w| ≥ β1, |w| ≤ α2, |w| ≤ β2, (3.12)

which imply that (3.1) is hold. So (i) is proved.
Next we prove that (ii) holds. Actually, we have

c1
(
γ1
)
= γn+l1 +

n+l−1∑

i=n+1

|ai−l|γ i1 +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣γ
i
1 +

2l−1∑

i=l+1

|a0ai|
|al| γ i1 −

|a0|2
|al|

=

(
|a0| −

n−1∑

i=l

|ai|γ i1
)
γ l1 +

n+l−1∑

i=n+1

|ai−l|γ i1 +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣γ
i
1 +

2l−1∑

i=l+1

|a0ai|
|al| γ i1 −

|a0|2
|al|

= |a0|γ l1 −
n+l−1∑

i=2l

|ai−l|γ i1 +
n+l−1∑

i=n+1

|ai−l|γ i1 +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣γ
i
1 +

2l−1∑

i=l+1

|a0ai|
|al| γ i1

− |a0|
|al|

(
γn1 +

n−1∑

i=l

|ai|γ i1
)

= −
n∑

i=2l

|ai−l|γ i1 +
n∑

i=2l

∣∣∣∣ai−l − a0ai

al

∣∣∣∣γ
i
1 +

2l−1∑

i=l+1

|a0ai|
|al| γ i1 −

n∑

i=l+1

|a0ai|
|al| γ i1

= −
n∑

i=2l

(
|ai−l| +

∣∣∣∣
a0ai

al

∣∣∣∣ −
∣∣∣∣ai−l − a0ai

al

∣∣∣∣
)
γ i1

≤ 0,

(3.13)

where an = 1 and 1 ≤ l ≤ [n/2].
On the other hand, since the polynomial equation c1(x) = 0 has a unique positive root

α1 and

c1(x) ≤ 0, ∀x ∈ [0, α1],

c1(x) > 0, ∀x ∈ (α1,+∞),
(3.14)

we get α1 ≥ γ1 by combining(3.13) and (3.14).
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In addition, we have

c2
(
γ2
)
= γ2n−k2 −

n−1∑

i=k+1

|ai+k−n|γ i2 −
k∑

i=n−k
|ai+k−n − aiak|γ i2 −

n−k−1∑

i=0

|aiak|γ i2

=
k∑

i=0

|ai|γ i+n−k2 −
n−1∑

i=k+1

|ai+k−n|γ i2 −
k∑

i=n−k
|ai+k−n − aiak |γ i2 −

n−k−1∑

i=0

|aiak|γ i2

=
n∑

i=n−k
|ai+k−n|γ i2 −

n−1∑

i=k+1

|ai+k−n|γ i2 −
k∑

i=n−k
|ai+k−n − aiak|γ i2 −

n−k−1∑

i=0
|aiak|γ i2

= |ak|γn2 +
k∑

i=n−k
|ai+k−n|γ i2 −

k∑

i=n−k
|ai+k−n − aiak|γ i2 −

n−k−1∑

i=1

|aiak|γ i2 − |a0||ak |

= |ak|γn2 +
k∑

i=n−k
(|ai+k−n| − |ai+k−n − aiak |)γ i2 −

n−k−1∑

i=1

|aiak|γ i2 −
(
γn2 −

k∑

i=1

|ai|γ i2
)
|ak|

=
k∑

i=n−k
(|ai+k−n| + |aiak| − |ai+k−n − aiak |)γ i2

≥ 0.

(3.15)

Since

c2(x) < 0, ∀x ∈ [0, α2),

c2(x) ≥ 0, ∀x ∈ [α2,+∞),
(3.16)

we have α2 ≤ γ2.
In the same way, we can obtain β1 ≥ δ1 and β2 ≤ δ2; therefore,

A[r, R] ⊆ A[u, v]. (3.17)

Finally, we prove (iii). Set

c(1)(z) := c(z) = zn+l + a
(1)
n+l−1z

n+l−1 + · · · + a
(1)
l+1z

l+1 + a
(1)
0 , (3.18)

with

a
(1)
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai−l, n + 1 ≤ i ≤ n + l − 1;

ai−l − a0ai

al
, 2l ≤ i ≤ n;

−a0ai

al
, l + 1 ≤ i ≤ 2l − 1;

−a
2
0

al
, i = 0,

(3.19)



8 Advances in Difference Equations

and let l1 be the smallest positive integer such that a(1)
l1

/= 0 in c(1)(z). If l + 1 ≤ l1 ≤ [(n + l)/2],
in analogy to (3.3) and (2.4), we can define

c(2)(z) := c(1)(z)

⎛
⎝zl1 − a

(1)
0

a
(1)
l1

⎞
⎠ (3.20)

and c
(2)
1 (x), respectively. It is not difficult to see that, the unique positive root of polynomial

c
(2)
1 (x), α(2)

1 ≥ α1. Similarly, we can define c(2)2 (x), d(2)
1 (x), and d

(2)
2 (x), respectively. Moreover,

their respective positive roots α(2)
2 , β(2)1 , and β

(2)
2 satisfy that

α
(2)
2 ≤ α2, β

(2)
1 ≥ β1, β

(2)
2 ≤ β2. (3.21)

Consequently, new annular bound of f(z), namely, A[r(2), R(2)] with

r(2) := max
{
α
(2)
1 , β

(2)
1

}
, R(2) := min

{
α
(2)
2 , β

(2)
2

}
, (3.22)

is better than (3.1). This procedure can be applied iteratively.

c
(2)
1 (x), c

(2)
2 (x), d

(2)
1 (x), d

(2)
2 (x) (3.23)

can be further transformed into

c
(3)
1 (x), c

(3)
2 (x), d

(3)
1 (x), d

(3)
2 (x), (3.24)

respectively, and

c
(3)
1 (x), c

(3)
2 (x), d

(3)
1 (x), d

(3)
2 (x) (3.25)

into

c
(4)
1 (x), c

(4)
2 (x), d

(4)
1 (x), d

(4)
2 (x), (3.26)

until the last iteration brings no practical improvement. Obviously, whenm increases,

r(m)
(
:= max

{
α
(m)
1 , β

(m)
1

})
, R(m)

(
:= min

{
α
(m)
2 , β

(m)
2

})
(3.27)

will approach the smallest and largest modulus of polynomial zero, respectively, where

α
(m)
1

(
resp. α(m)

2 , β
(m)
1 , β

(m)
2

)
(3.28)
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denotes the unique positive root of

c
(m)
1 (x)

(
resp. c(m)

2 (x), d(m)
1 (x), d(m)

2 (x)
)
. (3.29)

This means that (iii) is true.

Remark 3.2. (a) When c2(r) > 0, it follows from (3.14) and (3.15) that for every w ∈ Z[f(z)],
|w| ≤ α2 < r, that is, Z[f(z)] ⊂ B(r), that is, f(z) is r-stable.
Similarly, we can draw the same conclusion when d2(r) > 0, and Z[f(z)] ⊂ B

c
(r) when

c1(r) < 0 or d1(r) < 0.
(b) By the similar arguments in the proof of (iii) of Theorem 3.1, the results in (a) can be
improved. This also provides an iterative algorithm to test the r-stability and Schur stability
of polynomials.
(c) The question “What happens to Theorem 3.1 when n − 1 ≥ l, q > [n/2], and 1 ≤ k, p <
[(n + 1)/2]?” is worth considering further.

Example 3.3. Let

f(z) = z3 +
(
1 + j

)
z2 + 2jz + 1, (3.30)

where j =
√−1. By Theorem 3.1, we obtain

Z
[
f(z)

] ⊂ A[0.389, 1.647]. (3.31)

If we start the iterative procedure given in the proof of (iii) of Theorem 3.1, after five
iterations, we obtain

Z
[
f(z)

] ⊂ A[0.390, 1.644]. (3.32)

On the other hand, by Theorem A, one only can have

Z
[
f(z)

] ⊂ A[0.387, 1.938]. (3.33)

The following examples show the advantages of Theorems 3.1 over Theorem A in
analyzing the Schur stability of difference equations (discrete-time systems).

Example 3.4. Let the characteristic polynomial of a difference equation (discrete-time system)
be given by

f(z) = z3 +
1
2

(√
2 + j

)
z2 +

(
1
4
+
√
2
2

j

)
z − 1

8

(√
2 − 5j

)
, (3.34)
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where j =
√−1. Then by Theorem 3.1, we get c2(1) = 7/16 > 0, which implies that all zeros

of f(z) lie in the open unit disk, that is, this system is Schur stable. However, by Theorem A,
one has

Z
[
f(z)

] ⊂ A[0.638, 1.175]. (3.35)

So Theorem A cannot guarantee the stability of such a system.

Example 3.5. Suppose the characteristic polynomial of a difference equation (discrete-time
system) is given by

f(z) = z3 +
(
1
2
+ j

)
z2 −

(
3
4
− j

)
z −
(
11
8

+
1
4
j

)
, (3.36)

where j =
√
−1. Then by Theorem 3.1, we have c1(1) = −9/16 < 0, which implies that all zeros

of f(z) are outside the open unit disk, namely, such a system is instable. By Theorem A, one
has

Z
[
f(z)

] ⊂ A[0.824, 1.517], (3.37)

which cannot determine the instability of this system.

Example 3.6. Consider the following characteristic polynomial of a difference equation
(discrete-time system):

f(z) = z4 + 2z3 + 2z2 + z +
√
11 − 3. (3.38)

In this example,

c
(1)
2 = −6.316, d

(1)
2 = 0; c

(2)
2 = −7.584, d

(2)
2 = 0.203. (3.39)

Consequently, such a difference equation (discrete-time system) is Schur stable.
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