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We consider a Poisson boundary value problem and its functional a posteriori error estimate
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to the ux variable is introduced, computing the free ux variable from a global linear system of
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are demonstated on one benchmark example with a smooth solution on a unit square domain
including the computation of the approximate value of the constant in Friedrichs’ inequality.
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1. Introduction

A priori rate convergence estimates for finite element approximations of elliptic boundary
value problems have been investigated in the 70 s–80 s (see, e.g., [1]). However, adaptive
multilevel algorithms require a posteriori estimates able to (a) provide a reliable and directly
computable estimate of the approximation error, and (b) efficient error indicator that detects
the regions with excessively high errors.

In the recent decades, a posteriori error estimates for linear elliptic and parabolic
problems were intensively investigated. A reader will find a systematic exposition of the
main approaches to a posteriori error estimation of finite element approximations (such as
residual or gradient averaging methods) in the monographs [2–5] and papers [6–8] and in
literature cited therein.

In this paper, a posteriori estimates that majorate the difference between exact solution
of a linear elliptic equation and any function in the admissible (energy) class are studied.
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For the class of uniformly convex variational problems computable error majorants (for any
conforming approximation) were derived by the variational techniques in the mid 90 s using
duality theory of the calculus of variations. Key publications related to this subject are in
[9–11]. Another “nonvariational” method was introduced in [12]. In this paper it was stated
that for linear elliptic problems both methods lead to the same error majorants. Later it was
applied to many problems, including parabolic equations and nonliner problems [13–17].

As an example of demonstration, let us consider a scalar boundary value (Poisson’s)
problem

Δu + f = 0 in Ω, u = 0 on ∂Ω (1.1)

for a searched function u from a Sobolev space
◦
H 1(Ω). The right hand side f ∈ L2(Ω) and

an open bounded domain Ω ∈ R
d, where d denotes a domain dimension, that is, d = 1, 2, 3

are given. Assume that v ∈
◦
H 1(Ω) is an approximation of u. Then, a functional error estimate

from [9]

‖∇(u − v)‖Ω ≤
∥
∥∇v − y

∥
∥
Ω + CΩ

∥
∥divy + f

∥
∥
Ω (1.2)

holds for all functions y ∈ H(Ω,div), ‖ · ‖Ω denotes the L2(Ω) norm. Note that no mesh-
dependent constants or any assumptions on regularity of an exact solution are contained in
this estimate. The only global constant CΩ included represents a constant from the Friedrichs’
inequality

‖w‖Ω ≤ CΩ‖∇w‖Ω (1.3)

which holds for all w ∈
◦
H 1(Ω). Thus the constant CΩ depends on the domain Ω only and can

be precomputed (it is demonstated in Subsection 3.1). For a given y ∈ H(Ω,div), the quality
of the estimate (1.2) is measured by a ratio of its right hand and left hand side

Ieff :=

∥
∥∇v − y

∥
∥
Ω + CΩ

∥
∥divy + f

∥
∥
Ω

‖∇(u − v)‖Ω
(1.4)

known as an index of efficiency. It obviously holds Ieff ≥ 1 and the equality Ieff = 1 is valid
for the choice y = ∇u, that is, if y is chosen as the flux of an exact solution u. Having this
interpretation of y in mind, there are known ways [18] how to compute a reasonable flux
approximation y from the discrete solution v.

(1) Averaging on the mesh of the discrete solution v. In this case, the flux
approximation is computed as y = Gv, where G represents an averaging gradient
operator, see, for example, [8] for more details. This is a cheap method providing
some preliminary knowledge on the upper bound of the error.

(2) Averaging on a refined mesh. It is similar to (1), only with the difference that the
averaging is done for the solution v calculated on once more (or more times) refined
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mesh. This method can be regarded as a quantitative form of the Runge’s rule. It is
more expensive, but provides (generally not always) sharper results.

(3) Using partially equilibrated fluxes. By postprocessing of v, a function yf is

constructed such that divyf + f = 0 and f are sufficiently close to f in L2(Ω) norm.
Then, the substitution of y = yf + τ into (1.2) provides an estimate

‖∇(u − v)‖Ω ≤
∥
∥
∥∇v + curlτ − yf

∥
∥
∥
Ω
+ CΩ

∥
∥
∥f − f

∥
∥
∥
Ω
, (1.5)

where τ ∈ H(Ω, curl) is arbitrary.

(4) Minimization of the right hand side of (1.2) with respect to free variable y on the
mesh of the discrete solution v. This is the most expensive method for a detailed
knowledge of the error.

A comparison of methods (1), (2), and (4) for a class of problems with nonlinear
boundary conditions can be found, for example, in [17]. We should mention that there are
many advanced forms of error bounds for the Poisson’s equation (1.1). They are based, for
example, on decomposition of the domain Ω or on partial equilibrated fluxes which compute
y as a solution of small local problems. For more information see [18, section 3.5] and papers
[19–22].

This paper focuses merely on the method (4), that is, the minimization of the right
hand side of (1.2). We are interested in fast computation of the reliable estimate rather than
the indication of regions with high error (adaptivity). The main motivation is to provide
people working with “functional a posteriori estimates” concepts and software to speed up
their computation and go for larger size problems. In particular, the paper

(i) formulates a majorant minimization problem in H(div) space and an algorithm for
its computation on continuous level;

(ii) demonstrates a numerical computation of the Friedrich’s constant;

(iii) discretizes the minimization algorithm and applies RT0 elements to obtain a linear
system of equations. So far, only vector nodal linear elements were applied [23, 24];

(iv) introduces a multigrid-preconditioned conjugate graduate method as an iterative
solver for resulting linear system and demonstrates its optimality on one
benchmark example.

We would also like to attract attention of different groups and evoke cooperations. Since
the majorant minimization problem (discretized by RT0 elements) is about 3 times larger
than the Poisson problem (discretized by linear nodal elements), the other error estimates
specially developed for linear problems might perform faster for the benchmark problem
with a smooth solution (the exact comparison is not done here). However, functional a
posteriori error estimates are the only tool to provide the guaranteed error of approximation
of nonlinear problems [17, 25, 26].
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2. Majorant Minimization Problem

Problem 2.1 (Minimization problem). Given a discrete solution v ∈
◦
H 1(Ω), a right-hand side

of the Poisson problem f ∈ L2(Ω), the Friedrich’s constant belonging to the domain Ω. Find
a function y ∈ H(Ω,div) satisfying the condition

∥
∥∇v − y

∥
∥
Ω + CΩ

∥
∥divy + f

∥
∥
Ω −→ min . (2.1)

In order to avoid complications with the nondifferentiability of norm terms in (2.1),
we apply the inequality (a + b)2 ≤ (1 + β)a2 + (1 + (1/β))b2 valid for all β > 0 to obtain

(∥
∥∇v − y

∥
∥
Ω + CΩ

∥
∥divy + f

∥
∥
Ω

)2 ≤ M
(

∇v, f, β, CΩ, y
)

, (2.2)

where the upper bound in (2.2) denotes a functional majorant

M
(

∇v, f, β, CΩ, y
)

:=
(

1 + β
)∥
∥∇v − y

∥
∥

2
Ω +

(

1 +
1
β

)

C2
Ω

∥
∥divy + f

∥
∥

2
Ω. (2.3)

The majorant arguments f, v, CΩ are known and β > 0 and y ∈ H(Ω,div) are free parameters.
For a fixed choice of parameters β, the majorant represents a quadratic functional in y. On the
other hand, for a fixed y, the parameter

β =
CΩ

∥
∥divy + f

∥
∥
Ω

∥
∥∇v − y

∥
∥
Ω

(2.4)

minimizesM amongst all positive β. It suggests the following solution algorithm to Problem
2.1.

Algorithm 2.2 (Majorant minimization algorithm). Given β > 0.

(a) Compute y from the minimization of the quadratic problem

M
(

∇v, f, β, CΩ, y
)

−→ min . (2.5)

(b) Update β from y using (2.4). If the convergence in y is not achieved then go to step
(a).

For a detailed analysis of step (a) it is convenient to decomposeM in its y-independent and
y-dependent parts asM =M1 +M2, where

M1 : =
(

1 + β
)

‖∇v‖2
Ω +

(

1 +
1
β

)

C2
Ω

∥
∥f

∥
∥

2
Ω,

M2 : =
(

1 + β
)(∥

∥y
∥
∥

2
Ω − 2

(

∇v, y
))

+
(

1 +
1
β

)

C2
Ω

(∥
∥divy

∥
∥

2
Ω + 2

(

f,divy
))

.

(2.6)
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Here, (·, ·) denotes the L2(Ω) scalar product. Instead of considering (2.5) in Algorithm 2.2, y
is solved from the minimization problem

M2
(

∇v, f, β, CΩ, y
)

−→ min (2.7)

for given ∇v, f, β, CΩ. SinceM2 = 0 for y = 0, the minimal value ofM2 must be nonpositive.
Besides, it holdsM1 ≥ 0 andM1 = 0 if and only if f = 0 and v = 0.

The finite element method (FEM) is used for the discretization of the minimization
problem (2.7). The domain Ω is divided by a regular triangulation T in triangles in the sense
of Ciarlet [1], that is, T is a finite partition of Ω into closed triangles; two distinct elements
T1 and T2 are either disjoint, or T1 ∩ T2 is a complete edge or a common node of both T1 and
T2. Let us assume a finite element basis in the space H(Ω,div) and a vector ŷ representing
y ∈ H(Ω,div) in this basis. Norm terms in the definition of M2 are read then after the
discretization

∥
∥y

∥
∥

2
Ω = ŷTMŷ,

∥
∥divy

∥
∥

2
Ω = ŷTDIV DIVŷ, (2.8)

where M and DIV DIV represent the ”mass” and “div div” matrices. Similarly, linear
functionals are discretized as

(

∇v, y
)

= lT1 ŷ,
(

f,divy
)

= lT2 ŷ, (2.9)

with some vectors l1 and l2. It allows to express a discrete form ofM2 in the provided finite
element basis,

M2 = ŷT
[
(

1 + β
)

M +
(

1 +
1
β

)

C2
ΩDIV DIV

]

ŷ − 2ŷT
[
(

1 + β
)

l1 −
(

1 +
1
β

)

C2
Ωl2

]

. (2.10)

The minimization of M2 with respect to the vector ŷ leads for a given value β to a linear
system of equations

[
(

1 + β
)

M +
(

1 +
1
β

)

C2
ΩDIV DIV

]

ŷ =
(

1 + β
)

l1 −
(

1 +
1
β

)

C2
Ωl2 (2.11)

for a minimizing vector ŷ. The linear system is represented by a matrix which is symmetric
and positive definite. Symmetry is the result of symmetries of matrices M and DIV DIV. The
positive definiteness is proved by a contradiction: if there was a nonzero vector ŷ for which
the quadratic form in (2.10) was not positive, we could construct a sequence of arguments
αiŷ, i = 1, 2, . . ., in which the values ofM2 would converge (for i → ∞) to −∞. Consequently,
sinceM1 is independent of ŷ, sequence of values of the majorantM would also converge to
−∞, which is not possible due to the reliability of the estimate (2.2).

The next benchmark example explains application issues of the majorant estimate (1.2)
and of Algorithm 2.2.
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(a) (b) (c)

Figure 1: Uniform triangulations (a) T0, (b) T1, and (c) T2.

3. Benchmark Example

Let us assume the right-hand side

f
(

x, y
)

= 2x(1 − x) + 2y
(

1 − y
)

(3.1)

in the unit square domain Ω = (0, 1) × (0, 1). The square geometry is discretized using a
sequence of nested uniform triangular meshes T0,T1, . . . as displayed in Figure 1. A discrete
solution v is computed from by using FEM with the nodal linear (Courant) ansatz functions
on each triangular mesh. The discrete solutions v are displayed as the left column pictures of
Figure 2. For this particular right-hand side, the exact solution of (1.1) reads

u = x(1 − x)y
(

1 − y
)

(3.2)

for all (x, y) ∈ Ω and its flux is

∂u

∂x
= (1 − 2x)y

(

1 − y
)

,
∂u

∂y
= x(1 − x)

(

1 − 2y
)

(3.3)

for all (x, y) ∈ Ω. Therefore, the exact solution of the Benchmark example is a polynomial
and, thus, integration error can be avoided.

3.1. Friedrich’s Constant and Its Computation

The computation of the functional majorant (2.3) requires the knowledge of the constant
C2

Ω from the Friedrich’s inequality (1.3). Under the assumption of the finite element basis

φ1, . . . , φN we can represent the function w ∈
◦
H 1(Ω) as the vector ŵ ∈ R

N , where w =
∑N

i=1ŵiφi. In the same basis, the bilinear forms read

(∇w,∇w) = ŵTKΔŵ, (w,w) = ŵTMΔŵ, (3.4)

where KΔ and MΔ are stiffness and mass matrices of the discretized Poisson problem (1.1). If
the same triangular meshes and nodal linear (Courant) ansatz functions are used, the matrix
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Figure 2: Discrete solutions v and y-component of the flux y computed from Algorithm 2.2 on mesh
triangulations T2,T3,T4, and the exact solution u and its flux y-component ∂u/∂y (in the bottom row
denoted as T∞ triangulation).
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Table 1: Friedrich’s constant for the unit square domain computed from the generalized eigenvalue
problem (3.7) on nested uniform meshes.

Level Mesh size h Error CΩ

1 2−1 0.04830238374264 0.17677669529663
2 2−2 0.01595356174205 0.20912551729722
3 2−3 0.00424589066153 0.22083318837774
4 2−4 0.00107875817236 0.22400032086690
5 2−5 0.00027079918172 0.22480827985755
6 2−6 0.00006776967260 0.22501130936667
7 2−7 0.00001694679400 0.22506213224527
8 2−8 0.00000423697210 0.22507484206717
9 2−9 0.00000105926003 0.22507801977924
Theory 0 0 0.22507907903928

KΔ is already at our disposal from the computation of the discrete solution v and the mass
matrix is generated additively. Then the discretization of the Friedrichs’ inequality reads

ŵTMΔŵ ≤ C2
Ωŵ

TKΔŵ (3.5)

for all vectors ŵ ∈ R
N respecting zero Dirichlet boundary conditions. The minimal value C2

Ω
to satisfy the last inequality represents the maximum Rayleigh quotient, that is,

C2
Ω = max

ŵ

ŵTMΔŵ

ŵTKΔŵ
, (3.6)

and it is also equal to the maximal eigenvalue λ of a generalized eigenvalue problem

MΔŵ = λKΔŵ. (3.7)

Matrices MΔ and KΔ were assembled in MATLAB and the default function
“eigs” was applied for the computation of the approximate values of the Friedrichs’
constant CΩ. The MATLAB code can be downloaded at http://www.mathworks.com/
matlabcentral/fileexchange/authors/37756 and it is easily extensible to any 2D geometry.
Table 1 reports on the values of CΩ computed on the meshes T1, . . . ,T9 and compares them
with a theoretical value

CΩ =
1√
2π
≈ 0.22507907903928 (3.8)

known for the unit square domain Ω and zero Dirichlet boundary conditions. Note that the
discrete approximations provide a lower bound only, but converge fast to the exact value of
the Friedrich’s constant. Here, we observe a quadratic convergence with respect to the mesh
size h. In general, the convergence typically depends on the shape of the domain boundary
[27].
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Figure 3: Values of exact error ‖∇(u − v)‖Ω and the square root of the majorant
√

M displayed versus
degrees of freedom (displayed as DOF v and DOF y in Table 2) of their calculation on various uniform
mesh levels. Both lines indicate linear convergence with respect to the mesh size.

3.2. Majorant Computation

One step (a) and one step (b) of Algorithm 2.2 assuming an initial value β = 1 were applied
for the computation of the flux y ∈ H(Ω,div). For the discretization of H(Ω,div), Raviart-
Thomas spaces of the zero degree (known as RT0 elements [28]) defined of the uniform
meshes T0, . . . ,T8 were considered.

Remark 3.1 (Majorant problem size). Note that the number of elements |Tn| and number of
edges |En| of the triangulation Tn satisfy recurrences

|Tn+1| = 4|Tn|, |En+1| = 2|En| + 3|Tn| (3.9)

subject to the conditions |T0| = 2, |E0| = 5 related to the coarse triangulation T0. These
recurrences are solved to provide exact formulas |Tn| = 2 · 4n, |En| = 2 · 2n + 3 · 4n. By the
known Euler formula for planar graphs, the number of vertices reads |Nn| = 1+2 ·2n +4n and
it holds

|En| ≈ 3|Nn| ≈
3
2
|Tn| (3.10)

for large n. It implies that the matrix in Algorithm 2.2 using RT0 basis is asymptotically 3
times larger than the stiffness matrix from the discretization of Poisson problem by using
linear nodal elements.

A MATLAB implementation is based on [29] with some modification with respect
to the performance and extension towards a multigrid solver. Quadrature rules exact
for polynomials up to the order two were taken for the computation of integrals on
triangulations. The right column of Figure 2 displays computed fluxes (only one component
due to symmetry reasons) and the exact flux (3.3). It can be observed that both discrete
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Table 2: Comparison of the square of exact error ‖∇(u − v)‖2
Ω and majorant values M and on various

uniform meshes levels.

Level DOF v ‖∇(u − v)‖2
Ω DOF y MajorantM Ieff

1 9 8.873457e-03 16 2.135435e-02 1.55
2 25 3.240138e-03 56 9.050160e-03 1.67
3 81 8.950033e-04 208 2.635564e-03 1.72
4 289 2.295153e-04 800 6.858397e-04 1.73
5 1089 5.774695e-05 3136 1.732119e-04 1.73
6 4225 1.445987e-05 12416 4.341359e-05 1.73
7 16641 3.616415e-06 49408 1.086033e-05 1.73
8 66049 9.041944e-07 197120 2.715516e-06 1.73

solutions and fluxes (at least visually) converge to exact solution and its flux. By comparing
the values of Table 2 or Figure 3, both exact errors and majorant values converge linearly
with respect to corresponding degrees of freedom used for their computation. The index of
efficiency which remains bounded by the value Ieff ≈ 1.73 for all mesh levels.

4. Improving Linear Solver

The highest computation costs of Algorithm 2.2 are caused due to the solution of the linear
system of (2.11) in step (a) of Algorithm 2.2. Let us consider an iterative method for its
solving. The advantage of iterative over direct methods is apparent in this context, since each
iteration vector ŷk for k = 0, 1, . . . as an approximation the solution ŷ can be inserted into
the majorant (2.10), without the need for solving the linear system very accurately. Since the
linear system is represented by a symmetric and positive definite matrix, a preconditioned
conjugate gradient method (PCG) is considered.

Algorithm 4.1 (PCG method for a system of equations Ax = b including energy computation).
Let an initial iteration vector x0 be given. Compute an initial residual r0 = b − Ax0, an
initial energy E0 = (1/2)(Ax0, x0) − (b, x0) and s0 = C−1r0, p0 = s0, where C is a given
preconditioning matrix. For the iterations j = 0, 1, . . . do the loop

(1) γj = (rj , sj)/(pj ,Apj)

(2) Ej+1 = Ej − (γj(rj , sj)/2)

(3) xj+1 = xj + γjpj

(4) rj+1 = rj − γjApj

(5) sj+1 = C−1rj+1

(6) δj+1 = (rj+1, sj+1)/(rj , sj)

(7) pj+1 = sj+1 + δj+1pj

(8) If a given stopping criterion is fulfilled, leave the loop and output the solution xj+1

and the energy Ej+1.
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This algorithm recalls Algorithm 4.1 from [30] with a modification for the computation
of an energy in the step (2). The energy is defined as

Ej :=
1
2
(

Axj, xj
)

−
(

b, xj
)

, (4.1)

and the formula in step (2) provides a cheap update of Ej+1 from Ej without an extra matrix-
vector multiplication Axj+1 in (4.1). It can be directly derived from the combination of two
formulae. The first one is the known relation between the energy error of the PCG-iterations
and their energy

Ej − E =
1
2
(

Axj, xj
)

− 1
2
(Ax, x) −

(

b, xj
)

+ (b, x)

=
1
2
((

Axj, xj
)

+ (Ax, x) − 2
(

Ax, xj
))

=
1
2
(

A
(

x − xj
)

, x − xj
)

:=
1
2
∥
∥xj − x

∥
∥

2
A
,

(4.2)

where x denotes the exact solution of the linear system Ax = b. The second one is a special
version of the formula (3.6) for d = 1 from [30]

∥
∥x − xj+1

∥
∥

2
A
=
∥
∥x − xj

∥
∥

2
A
− γj

(

rj , sj
)

. (4.3)

The knowledge of the energy Ej is required for the computation of the flux-dependent
functional majorant partM2, since it holds (cf. (2.10))

M2
(

∇v, f, β, CΩ, ŷj
)

= 2Ej, (4.4)

where A and b are the matrix and the right-hand side of the linear system (2.11) and the
vector x substitutes ŷ. For the initial iteration ŷ0 = 0, it holdsM2(∇v, f, β, CΩ, ŷ0) = 0 and we
obtain an estimate

∥
∥∇v − y

∥
∥

2
Ω ≤ M1

(

∇v, f, β, CΩ
)

, (4.5)

where M1 is defined in (2.6). Since γj(rj , sj) ≥ 0 in (4.3), the PCG method reduces (or at
least does not increase) the energy Ej and consequently the valueM(∇v, f, β, CΩ, ŷj) in each
iteration j = 1, 2, . . . to sharpen the estimate (4.5).

4.1. Performance of PCG for Benchmark Example

Let us apply PCG method to one step (a) of Algorithm 2.2 to linear system (2.11), in which
β = 1 is considered. PCG method is terminated in step (8) of Algorithm 4.1 if the stopping



12 Advances in Numerical Analysis

10−5

10−4

10−3

10−2

10−1

0 50 100 150 200 250 300 350 400 450

T6 mesh-CG iterations

(a)

10−5

10−4

10−3

10−2

10−1

0 2 4 6 8 10 12

T6 mesh-MPCG iterations

(b)

10−6

10−5

10−4

10−3

10−2

10−1

0 100 200 300 400 500 600 700 800 900

T7 mesh-CG iterations

M1 majorant part
M majorant iterations
Exact error2

(c)

10−6

10−5

10−4

10−3

10−2

10−1

0 2 4 6 8 10 12

T7 mesh-MPCG iterations

M1 majorant part
M majorant iterations
Exact error2

(d)

Figure 4: Majorant values displayed versus iterations of CG and MPCG method forT6 andT7 meshes. For
better illustration, the majorant part M1 (the upper bound) from (2.6) and the square of the exact error,
that is, ‖∇(u − v)‖2

Ω (the lower bound) are displayed.

criterion

√(

rj , sj
)

(r0, s0)
≤ ε (4.6)

is fulfilled for some given tolerance ε, here we choose ε = 10−6.

Remark 4.2. If the preconditioner C well approximates A, that is, C ≈ A, it holds (rj , sj) =
(A(x − xj), C−1A(x − xj)) ≈ ‖x − xj‖2

A
and (4.6) is equivalent to a stopping criterion based on

the relative A-norm of the error

∥
∥x − xj

∥
∥
A

‖x − x0‖A
≤ ε. (4.7)
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Table 3: Number of CG/MPCG iterations (using stopping criterion (4.6) for ε = 10−6) for various nested
uniform mesh levels.

Level Mesh size h Problem size CG iterations MPCG iterations
0 1 5 2 2
1 2−1 16 5 5
2 2−2 56 15 8
3 2−3 208 45 10
4 2−4 800 108 11
5 2−5 3136 219 11
6 2−6 12416 349 11
7 2−7 49408 877 11
8 2−8 197120 1773 11
9 2−9 787456 3506 11

In the case of no preconditioning (then we speak of CG method instead of PCG), C is an
identity matrix and (4.6) is equivalent to a stopping criterion

∥
∥b −Axj

∥
∥

2

‖b‖2
≤ ε, (4.8)

which is a default stopping criterion implemented in MATLAB.

As an operation of the preconditioner C in Algorithm 4.1, we apply a simple V-cycle
of a geometrical multigrid method [31] based on provided hierarchy of nested triangulations
T0,T1,T2, . . . . As the linear system (2.11) arises from a discretization in H(Ω,div) space, a
special smoother as a part of the multigrid method is required. Our choice is the additive
version of the smoother of Arnold, Falk and Winther [32] using one presmoothing and one
postsmoothing steps.

Table 3 compares numbers of iterations of non-preconditioned (CG) and multigrid-
preconditioned (MPCG) method for various levels of triangulation. Single CG or MPCG
iterations and the corresponding majorant values are displayed on Figure 4 for mesh levels 6
and 7. The number of iterations reflects typical properties of conjugate gradients and system
matrices arising in elliptic partial boundary value problems. For shape regular triangulations,
the condition number of A is known to be proportional to h−2, where h is the mesh-size
parameter, that is, cond(A) ≈ h−2. Furthermore, the number of CG-iterations (with respect to
the same stopping tolerance ε) satisfies ITER ≈

√

cond(A). Together, it holds

ITER ≈ h−1. (4.9)

The mesh size h is halfened after each uniform refinement and therefore the number of CG-
iterations is according to (4.9) expected to be doubled in the non-preconditioned case. For
the multigrid-preconditioned CG method (MPCG) we observe that the number of iterations
remains bounded, in our case

ITER ≤ 11 (4.10)
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is valid for all mesh levels. This property is so-called mesh independence and it demonstrates
the optimality of the chosen multigrid preconditioner. A detailed observation of the right
column pictures of Figure 4 indicates that 4 iterations (ITER = 4) already provide a very
sharp majorant value without the need for additional iterations.

5. Conclusions

The minimization of the majorant term in the functional a posteriori estimate is done by
solving a sequence of systems of linear equations for an unknown approximation of the
flux of an exact solution. The solution of the first linear system is efficiently obtained
by the multigrid-preconditioned conjugate gradient method. The considered Benchmark
example shows that few iterations already provide very accurate flux approximation for the
computation of the functional majorant. Therefore, an optimal strategy for the termination
process of the preconditioned conjugate gradient method in connection to the majorant
computation remains an interesting open question.
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[7] I. Babuška and W. C. Rheinboldt, “Error estimates for adaptive finite element computations,” SIAM
Journal on Numerical Analysis, vol. 15, no. 4, pp. 736–754, 1978.

[8] C. Carstensen and S. Bartels, “Each averaging technique yields reliable a posteriori error control in
FEM on unstructured grids. I. Low order conforming, nonconforming, and mixed FEM,” Mathematics
of Computation, vol. 71, no. 239, pp. 945–969, 2002.

[9] S. I. Repin, “A posteriori error estimates for approximate solutions to variational problems with
strongly convex functionals,” Journal of Mathematical Sciences, vol. 97, no. 4, pp. 4311–4328, 1999,
translated from Problemy Matematicheskogo Analiza, no. 17, pp. 227–237, 1997.



Advances in Numerical Analysis 15

[10] S. I. Repin and L. S. Xanthis, “A posteriori error estimation for nonlinear variational problems,”
Comptes Rendus de l’Académie des Sciences, vol. 324, no. 10, pp. 1169–1174, 1997.

[11] S. I. Repin, “A posteriori error estimation for variational problems with uniformly convex
functionals,” Mathematics of Computation, vol. 69, no. 230, pp. 481–500, 2000.

[12] S. I. Repin, “Two-sided estimates of deviation from exact solutions of uniformly elliptic equations,” in
Proceedings of the St. Petersburg Mathematical Society, Vol. IX, vol. 209 of American Mathematical Society
Translations: Series 2, pp. 143–171, American Mathematical Society, Providence, RI, USA.

[13] M. Bildhauer, M. Fuchs, and S. Repin, “A posteriori error estimates for stationary slow flows of power-
law fluids,” Journal of Non-Newtonian Fluid Mechanics, vol. 142, no. 1–3, pp. 112–122, 2007.

[14] M. Bildhauer, M. Fuchs, and S. Repin, “A functional type a posteriori error analysis for the Ramberg-
Osgood model,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 87, no. 11-12, pp. 860–876,
2007.

[15] M. Fuchs and S. Repin, “A posteriori error estimates of functional type for variational problems
related to generalized Newtonian fluids,” Mathematical Methods in the Applied Sciences, vol. 29, no.
18, pp. 2225–2244, 2006.
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