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1. Introduction

Energy and helicity play fundamental physical roles in the development of turbulent flow.
They are conserved in inviscid flow, are delicately balanced when viscous and body forces are
present [1, 2], are believed critical in flow structure development [3], and are cascaded jointly
through the inertial range until they are removed by viscous forces [4]. Furthermore, their
dissipation is closely tied to turbulence decay, and helicity has the topological interpretation
that it is nonzero if and only if the velocity field is not reflectionally symmetric, that
is, turbulent [3]. Therefore, the accurate treatment of these quantities is paramount for a
computation to accurately predict fluid motion.

Unfortunately, often one or both of these quantities is not accurately treated in
most models (in their continuous form), and thus cannot be correctly handled in their
discretizations. Only a very few models correctly balance both energy and helicity, the
most prominent being the Navier-Stokes equations (NSE, the true physical model), NS-α
and related models [5, 6], the Stolz-Adams family of approximate deconvolution models
(ADM) [7–11], and the recently introduced NS-ω family of regularization models [12, 13].
Although these models yield, in a sense, the correct balances of energy and helicity, standard
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discretizations for these models do not preserve this important feature. For example, the
usual Crank-Nicolson method for any of these schemes nonphysically creates helicity via
the nonlinearity, thus altering the balance and removing physical meaning from solutions.
Correctly accounting for both of these fundamental quantities is difficult; however it is
very desirable since incorrect treatment of these quantities can lead to their nonphysical
accumulations or degradations, and thus computed solutions that lack physical relevance.

A solution to this problem was first introduced in 2004 by Liu and Wang in [14],
where they proposed and tested the EHPS, a finite difference scheme for axisymmetric flow
(derived from the vorticity-stream formulation of the NSE) that more accurately treats both
energy and helicity than standard schemes, and found excellent results. The idea was later
developed for the full 3d NSE in [15], where the main ideas were to use the rotational form
with a projected vorticity in a finite element scheme. Since direct computation of the NSE
is limited to lower Reynolds numbers, this scheme was extended for use with NS-α type
models [16], where again excellent numerical results were reported. Herein we show how,
through carefully chosen definitions of the discrete filter, discrete Laplacian and discrete
curl operators, the enhanced-physics based scheme of [15], can be extended for use on the
NS-ω and ADM families of models. The NS-ω family of models, in addition to having a
sound mathematical foundation [13], provides several advantages over the other classes
of energy and helicity preserving models, including a more physical treatment of mass
conservation and allowing for more efficient computations [12]. Therefore the development
of an enhanced-physics based scheme for this attractive family of models is warranted. For
completeness we also develop an enhanced-physics scheme for the ADM, so that each class
of models that accurately balances energy and helicity has such a scheme developed for it.

2. The NS-ω Family of Models

Given a domain Ω and endtime T , the NS-ω model is given by

vt − v × (∇ × v) +∇q − νΔv = f in Ω × (0, T], (2.1)

∇ · v = 0 in Ω × [0, T], (2.2)

v(0) = v0 in Ω, (2.3)

where v denotes velocity, v0 the initial velocity, q pressure, f a forcing, ν the kinematic
viscosity, and overbar the Helmholtz filter with filtering radius α:

φ := Fφ :=
(
−α2Δ + I

)−1
φ. (2.4)

Extensions of this model to include van Cittert approximate deconvolution, to achieve higher-
order consistency error to the NSE, are discussed in [12]. By defining the deconvolution
operator

DN :=
N∑
n=0

(I − F)n (2.5)
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and replacing the filtered term v in (2.1) by DNv, where N is a positive integer typically
chose 1 ≤ N ≤ 7, we have the NS-ω deconvolution models:

vt − v × (∇ ×DNv) +∇q − νΔv = f in Ω × (0, T],

∇ · v = 0 in Ω × [0, T],

v(0) = v0 in Ω.

(2.6)

Since the deconvolution operator acts as an approximate inverse to the filter [17], its use
creates a more formally accurate class of models. Note also that the N = 0 model is the NS-ω
model (2.1)-(2.2) since D0 = I.

NS-ω must be coupled to initial and boundary conditions in order to be a predictor
of turbulent flow. As our interest is the accurate balance of energy and helicity, we consider
for simplicity a domain Ω to be a 3d rectangular box with periodic boundary conditions.
These boundary conditions are not likely to be physically realized, however their use here
isolates the fundamental numerical difficulties from the additional complications that arise
frommore physically relevant boundary conditions. Thework herein can be extended tomost
other boundary conditions, but would need to be done on an individual basis since boundary
condition themselves can (and usually do) contribute to the energy and helicity balances.

Recall the balances of energy and helicity for NS-ω from [13]. Denote the L2 norm and
inner product by ‖ · ‖ and (·, ·), respectively.

Lemma 2.1. Given initial condition v0 ∈ L2(Ω), endtime T , and forcing f ∈ L2(0, T ;L2(Ω)), the
NS-ω model admits the following exact balances for energy and helicity

Energy :
1
2
‖v(T)‖2 + ν

∫T

0
‖∇ × v(t)‖dt = 1

2
‖v0‖2 +

∫T

0

(
f(t), v(t)

)
dt, (2.7)

Helicity : (v(T),∇ × v(T)) + α2
(
∇ × v(T), (∇×)2v(T)

)

+ 2ν
∫T

0

((
∇ × v(t), (∇×)2v(t)

)
+
(
(∇×)2v(t), (∇×)3v(t)

))
dt

= (v0,∇ × v0) + α2
(
∇ × v0, (∇×)2v0

)
+ 2

∫T

0

(
f(t),∇ × v(t)

)
dt.

(2.8)

Remark 2.2. While the energy balance of NS-ω is the same as for the NSE, the helicity balance
is the same as for the spatially filtered NSE. It is proven in [13] that up to a filtering radius
dependent length scale, energy and helicity are cascaded jointly through the inertial range,
just as in true fluid flow [4].

Remark 2.3. Balances for NS-ω with deconvolution can be easily derived by multiplying NS-
ω-deconvolution by v and ∇ ×DNv, for energy and helicity respectively, then integrating by
parts. The energy balance will be identical to the NS-ω case, while an analogous result for the
helicity balance will be obtained where the v terms in (2.8) are replaced with D1/2

N v.
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3. An Enhanced-Physics Based Finite Scheme for NS-ω

The main obstacles in extending the scheme of [15] to NS-ω is the need for the discrete filter
and curl operators to commute, and that a form of the vorticity is discretely-divergence
free. These difficulties were not present in the extension to NS-α in [16], and hence this
development is fundamentally more difficult. The extension is also quite delicate, but was
achieved through the use of a new discrete implementation of the Helmholtz filter that is
defined in terms of a discrete curl, which is discretely-divergence free via a suitably chosen
projection in its definition. We present the scheme and show its energy and helicity balances
after some necessary notation.

Denote the zero mean periodic subspaces ofH1(Ω) and L2(Ω), respectively, byH1
#(Ω)

and L2
#(Ω), let (Xh,Qh) ⊂ (H1

# , L
2
#) be inf-sup stable finite element spaces (e.g., Taylor-

Hood elements [18–20]) on a regular, conforming mesh of Ω. Let Vh denote the discretely-
divergence free subspace of Xh:

Vh =
{
vh ∈ Xh,

(∇ · vh, qh
)
= 0 ∀qh ∈ Xh

}
. (3.1)

We now define the discrete curl operator, which will be enforced to be discretely-divergence
free by its construction.

Definition 3.1. Define the discrete curl operator to be the L2 projection of the curl operation
into Vh: Given φ ∈ H1(Ω), curlh φ is the unique element in Vh satisfying

(
curlh φ, vh

)
=
(∇ × φ, vh

) ∀vh ∈ Vh. (3.2)

Note it is obvious that the linear operator curlh is well defined, and also that it is self-
adjoint since the usual curl operator is in this setting.

Since the Laplacian operator applied to a divergence free function χ can be written as

Δχ = −∇ × (∇ × χ
)
+∇(∇ · χ) = −∇ × (∇ × χ

)
, (3.3)

it is natural to define the discrete Laplacian in terms of the discrete curl operator, as follows.

Definition 3.2. Define the discrete Laplacian Δh : H1(Ω) → Vh by

Δh := − curlh curlh . (3.4)

We define the discrete filter Fh in terms of the discrete Laplacian:

Fhφ := φ
h
:=

(
−α2Δh + I

)−1
φ. (3.5)

Note that, by construction, the filter commutes with the discretely-divergence free projected
curl operator and thus also the discrete Laplacian; recall these were the obstacles needed
overcome for the development of an enhanced-physics based scheme for NS-ω, which we
present now.
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Algorithm 1 (an enhanced-physics based scheme for NS-ω). Given an endtime T , timestep
Δt > 0, filtering radius α > 0, kinematic viscosity ν > 0, initial condition v0

h
∈ Vh, forcing

f ∈ L2(0, T ;L2(Ω)), set M := T/Δt and for n = 1, 2, . . . ,M find (vn
h
, pn

h
) ∈ (Xh,Qh) satisfying

for all (χh, qh) ∈ (Xh,Qh),

1
Δt

(
vn+1
h − vn

h, χh

)
−
(
vn+1/2
h ×curlh vn+1/2

h

h

, χh

)
−
(
pn+1/2h ,∇ · χh

)
− ν

(
Δhv

n+1/2
h , χh

)

=
(
f
(
tn+1/2

)
, χh

)
,

(3.6)

(
∇ · vn+1

h , qh
)
= 0. (3.7)

Remark 3.3. That solutions exist for Algorithm 1 follows analogous to the case for NS-α given
in [16]. It is straight forward, following similar to [16, 19] to prove optimal convergence to a
smooth, weak NSE solution for Taylor-Hood elements.

We now prove the balances of energy and helicity by the scheme. Note the energy
balance is, in a sense, a stability estimate.

Theorem 3.4. The scheme of Algorithm 1 for NS-ω admits the following exact energy and helicity
balances

Energy :
1
2

∥∥∥vM
h

∥∥∥
2
+ νΔt

M−1∑
n=0

∥∥∥curlh vn+1/2
h

∥∥∥
2
=

1
2

∥∥∥v0
h

∥∥∥
2
+ Δt

M−1∑
n=0

(
f
(
tn+1/2

)
, vn+1/2

h

)
, (3.8)

Helicity :
(
vM
h

h
, curlh vM

h

h
)
+ α2

(
curlh vM

h

h
, curl2h v

M
h

h
)

+2νΔt
M−1∑
n=0

((
curlh v

n+1/2
h

h

, curl2h v
n+1/2
h

h
)
+α2

(
curl2h v

n+1/2
h

h

, curl3h v
n+1/2
h

h
))

=
(
v0
h

h
, curlh v0

h

h
)
+α2

(
curlh v0

h

h
, curl2h v

0
h

h
)
+2Δt

M−1∑
n=0

(
f
(
tn+1/2

)
, curlh v

n+1/2
h

h
)
.

(3.9)

Remark 3.5. The energy and helicity balances of the theorem are discrete analogs to the
continuous NS-ω model’s balances from Lemma 2.1, and thus are also discrete analogs of
the energy balance of the NSE and helicity balance of the spatially filtered NSE respectively.

Proof. The energy balance follows from choosing χh = vn+1/2
h in (3.6), qh = pn+1/2h in (3.7),

adding the equations then summing over timesteps.

For the helicity balance, begin by choosing χh = curlh v
n+1/2
h

h

. This will immediately
vanish the nonlinear term since the cross of two vectors is perpendicular to each of them,
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and will eliminate the pressure term since the discrete curl is discretely-divergence free. This
gives us the equation

1
Δt

(
vn+1
h − vn

h, curlh v
n+1/2
h

h
)
− ν

(
Δhv

n+1/2
h , curlh v

n+1/2
h

h
)

=
(
f
(
tn+1/2

)
, curlh v

n+1/2
h

h
)
.

(3.10)

Since the discrete curl and discrete filter commute and are self-adjoint, the first term can be
expanded and reduced via

1
Δt

(
vn+1
h − vn

h, curlh v
n+1/2
h

h
)

=
1

2Δt

((
vn+1
h

h
, curlh vn+1

h

)
−
(
vn
h

h
, curlh vn+1

h

)
+
(
vn+1
h

h
, curlh vn

h

)
−
(
vn
h

h
, curlh vn

h

))

=
1

2Δt

((
vn+1
h

h
, curlh vn+1

h

)
−
(
vn
h

h
, curlh vn

h

))

=
1

2Δt

((
vn+1
h

h
, curlh vn+1

h

h
)
+ α2

(
curlh vn+1

h

h
, curl2h v

n+1
h

h
)

−
(
vn
h

h
, curlh vn

h

h
)
−α2

(
curlh vn

h

h
, curl2h v

n
h

h
))

.

(3.11)

Similarly for the viscous term, we have that

− ν

(
Δhv

n+1/2
h

, curlh v
n+1/2
h

h
)

= ν

(
curl2h v

n+1/2
h

, curlh v
n+1/2
h

h
)

= ν

(
curl2h v

n+1/2
h

h

, curlh v
n+1/2
h

h
)
− α2ν

(
curl2h Δhv

n+1/2
h

h

, curlh v
n+1/2
h

h
)

= ν

(
curl2h v

n+1/2
h

h

, curlh v
n+1/2
h

h
)
+ α2ν

(
curl3h v

n+1/2
h

h

, curl2h v
n+1/2
h

h
)
.

(3.12)

Summing over timesteps complete the proof.

Remark 3.6. From the proof, the need for the intricate design of the enhanced-physics scheme
becomes more clear. Without the use of the discrete curl in the scheme, a test function could
not have been chosen to vanish the nonlinearity in the helicity balance, which in turn would
cause the nonphysical creation and dissipation of helicity instead of cascading it from the
large to small scales. The derivation of differences in helicities at successive timesteps in (3.11)
was made possible because the discrete curl and discrete filter commute. Commutation of
these operators with the discrete Laplacian was necessary in the analysis of the viscous term.
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3.1. Extension to the NS-ω Family of Deconvolution Models

The development of the discrete curl, Laplacian and filter operators allows for an easy
extension to the deconvolution family of models (2.4)–(2.6) provided the natural definition
for the discrete deconvolution operator is employed:

Dh
N :=

N∑
n=0

(I − Fh)n. (3.13)

Thus the discrete deconvolution can be seen to be positive and a polynomial in the
discrete filter, and as such that will be self-adjoint and commute with the discrete curl,
discrete Laplacian, and discrete filter. This leads us to the following enhanced-physics based
algorithm for NS-ω family of deconvolution models.

Algorithm 2 (an enhanced-physics based scheme for NS-ω-deconvolution). Given an endtime
T , timestep Δt > 0, filtering radius α > 0, deconvolution order N ≥ 0, kinematic viscosity ν >
0, initial condition v0

h
∈ Vh, forcing f ∈ L2(0, T ;L2(Ω)), set M := T/Δt and for n = 1, 2, . . . ,M

find (vn
h, p

n
h) ∈ (Xh,Qh) satisfying for all (χh, qh) ∈ (Xh,Qh),

1
Δt

(
vn+1
h − vn

h, χh

)
−
(
vn+1/2
h × curlh Dh

Nvn+1/2
h

h

, χh

)
−
(
pn+1/2h ,∇ · χh

)
− ν

(
Δhv

n+1/2
h , χh

)

=
(
f
(
tn+1/2

)
, χh

)
,

(3.14)
(
∇ · vn+1

h , qh
)
= 0. (3.15)

Remark 3.7. As in the case of no deconvolution, proofs of solution existence and convergence
follow similarly to work in [16, 21].

We now provide the energy and helicity balances for this algorithm.

Theorem 3.8. The scheme of Algorithm 2 for NS-ω-deconvolution admits the following exact energy
and helicity balances

Energy :
1
2

∥∥∥vM
h

∥∥∥
2
+ νΔt

M−1∑
n=0

∥∥∥curlh vn+1/2
h

∥∥∥
2
=

1
2

∥∥∥v0
h

∥∥∥
2
+ Δt

M−1∑
n=0

(
f
(
tn+1/2

)
, vn+1/2

h

)
, (3.16)

Helicity :
((

Dh
N

)1/2
vM
h

h
, curlh

(
Dh

N

)1/2
vM
h

h
)

+ α2
(
curlh

(
Dh

N

)1/2
vM
h

h
, curl2h

(
Dh

N

)1/2
vM
h

h
)

+ 2νΔt
M−1∑
n=0

((
curlh

(
Dh

N

)1/2
vn+1/2
h

h

, curl2h
(
Dh

N

)1/2
vn+1/2
h

h
))
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+ 2να2Δt
M−1∑
n=0

((
curl2h

(
Dh

N

)1/2
vn+1/2
h

h

, curl3h
(
Dh

N

)1/2
vn+1/2
h

h
))

=
((

Dh
N

)1/2
v0
h

h
, curlh

(
Dh

N

)1/2
v0
h

h
)

+ α2
(
curlh

(
Dh

N

)1/2
v0
h

h
, curl2h

(
Dh

N

)1/2
v0
h

h
)

+ 2Δt
M−1∑
n=0

(
f
(
tn+1/2

)
, curlh

(
Dh

N

)1/2
vn+1/2
h

h
)
.

(3.17)

Proof. The energy balance follows exactly as in the case without deconvolution. The helicity
balance follows similar to the case of NS-ω; choose χh = curlh Dh

N to vanish the nonlinearity
and pressure, then use commutativity of the differential operators and that the deconvolution
operator is positive and self-adjoint to obtain the result.

4. Extension to the Stolz-Adams ADM

The Stolz-Adams ADM family take a similar mathematical form to the NS-ω models, and
the tools used to derive an enhanced-physics based scheme are sufficient to devise such a
scheme for the ADM. For simplicity, we consider the ADM secondary regularization, often
called time relaxation [8, 22]. This term does not correctly balance energy or helicity, however
it is negligable away from the smallest resolved scales [22], and so it has little total effect on
the overall balances.The ADM can be written in rotational form as

vt −DNv · ∇DNv +∇q − νΔv = f, (4.1)

∇ ·DNv = 0, (4.2)

v(0) = v0, (4.3)

where filtering and deconvolution are defined exactly as for NS-ω. Its balances for energy
and helicity are derived in [10], and follow from multiplying (4.1) by (−α2Δ + I)DNv and
(−α2Δ + I)(∇ × DNv), respectively, then integrating over the domain, integrating by parts,
and reducing. These balances are as follows

Energy :
1
2

(∥∥∥D1/2
N v(T)

∥∥∥
2
+ α2

∥∥∥∇ ×D1/2
N v(T)

∥∥∥
2
)

+ ν

∫T

0

(∥∥∥∇ ×D1/2
N v(t)

∥∥∥
2
+ α2

∥∥∥ΔD1/2
N v(t)

∥∥∥
2
)
dt

=
1
2

(∥∥∥D1/2
N v0

∥∥∥
2
+ α2

∥∥∥∇ ×D1/2
N v0

∥∥∥
2
)

+
∫T

0

((
f(t), DNv(t)

)
+ α2(∇ × f(t),∇ ×DNv(t)

))
dt,

(4.4)
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Helicity :
(
D1/2

N v(T),∇ ×D1/2
N v(T)

)
+ α2

(
∇ ×D1/2

N v(T), (∇×)2D1/2
N v(T)

)

+ 2ν
∫T

0

((
∇ ×D1/2

N v(t), (∇×)2D1/2
N v(t)

)

+ α2
(
(∇×)2D1/2

N v(t), (∇×)3D1/2
N v(t)

))
dt

=
(
D1/2

N v0,∇ ×D1/2
N v0

)
+ α2

(
∇ ×D1/2

N v0, (∇×)2D1/2
N v0

)

+ 2
∫T

0

(
f,∇ ×DNv(t)

)
+ α2

(
∇ × f(t), (∇×)2DNv(t)

)
dt.

(4.5)

Remark 4.1. Technical arguments in [11] discuss how these balances are equivalent, in a sense,
to the energy and helicity balances of the spatially filteredNSE. This is not a coincidence, since
the ADM can be derived as an approximation of the spatially filtered NSE [17].

Though perhaps not obvious, the discrete operators which permitted the development
of an enhanced-physics scheme for the NS-ω family above are sufficient to devise such
a scheme for the ADM. We now present this numerical scheme, which provides discrete
analogs for the balances (4.4) and (4.5).

Algorithm 3 (an enhanced-physics based scheme for the ADM). Given an endtime T , timestep
Δt > 0, filtering radius α > 0, deconvolution order N ≥ 0, kinematic viscosity ν > 0, initial
condition v0

h
∈ Vh, forcing f ∈ L2(0, T ;L2(Ω)), set M := T/Δt and for n = 1, 2, . . . ,M find

(vn
h
, qn

h
) ∈ (Xh,Qh) satisfying for all (χh, rh) ∈ (Xh,Qh),

1
Δt

(
vn+1
h − vn

h, χh

)
−
(
Dh

Nvn+1/2
h

× curlh Dh
Nvn+1/2

h

h

, χh

)
−
(
qn+1/2
h

h

,∇ · χh

)

− ν
(
Δhv

n+1/2
h

, χh

)
=
(
f
(
tn+1/2

)
, χh

)
,

(4.6)

(
∇ · vn+1

h , rh
)
= 0. (4.7)

Remark 4.2. Since by definition the discrete curl is discretely-divergence free, the discrete
Laplacian must be also. Hence filtered elements in Vh remain in Vh, as do deconvolved ones.
Thus, (4.7) is sufficient as a discrete enforcement of (4.2).

Remark 4.3. Similar to the NS-ω algorithms, it is straight forward and follows similar to work
in [16, 23] that this algorithm admits stable solutions that convergence to weak NSE solutions
or spatially filtered NSE solutions.
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Theorem 4.4. The scheme of Algorithm 3 for the ADM admits the following exact energy and helicity
balances, which are discrete analogs the energy and helicity balances of the continuous ADM

Energy :
1
2

(∥∥∥∥
(
Dh

N

)1/2
vM
h

∥∥∥∥
2

+ α2
∥∥∥∥curlh

(
Dh

N

)1/2
vM
h

∥∥∥∥
2
)

+ Δtν
M−1∑
n=0

(∥∥∥∥curlh
(
Dh

N

)1/2
vn+1/2
h

∥∥∥∥
2

+ α2
∥∥∥∥Δh

(
Dh

N

)1/2
vn+1/2
h

∥∥∥∥
2
)

=
1
2

(∥∥∥∥
(
Dh

N

)1/2
v0
h

∥∥∥∥
2

+ α2
∥∥∥∥curlh

(
Dh

N

)1/2
v0
h

∥∥∥∥
2
)

+ Δt
M−1∑
n=0

((
f
(
tn+1/2

)
, Dh

Nvn+1/2
h

)
+ α2

(
curlh f

(
tn+1/2

)
, curlh Dh

Nvn+1/2
h

))
,

(4.8)

Helicity :
((

Dh
N

)1/2
vM
h , curlh

(
Dh

N

)1/2
vM
h

)
+ α2

(
curlh

(
Dh

N

)1/2
vM
h , curl2h

(
Dh

N

)1/2
vM
h

)

+ 2νΔt
M−1∑
n=0

((
curlh

(
Dh

N

)1/2
vn+1/2
h , curl2h

(
Dh

N

)1/2
vn+1/2
h

))

+ 2να2
M−1∑
n=0

((
curl2h

(
Dh

N

)1/2
vn+1/2
h

, curl3h
(
Dh

N

)1/2
vn+1/2
h

))

=
((

Dh
N

)1/2
v0
h, curlh

(
Dh

N

)1/2
v0
h

)
+ α2

(
curlh

(
Dh

N

)1/2
v0
h, curl

2
h

(
Dh

N

)1/2
v0
h

)

+2Δt
M−1∑
n=0

((
f
(
tn+1/2

)
, curlh Dh

Nvn+1/2
h

)
+ α2

(
curlh f

(
tn+1/2

)
, curl2h D

h
Nvn+1/2

h

))
.

(4.9)

Proof. For the energy balance, choose χh = F−1
h
Dh

Nvn+1/2
h

. This vanishes the nonlinear
term, since after the Fh and F−1

h cancellation of, we have that the cross of two vectors is
perpendicular to each of them. The pressure term is also zero, since DNvn+1/2

h
is discretely-

divergence free. This leaves

1
Δt

(
vn+1
h − vn

h, F
−1
h Dh

Nvn+1/2
h

)
− ν

(
Δhv

n+1/2
h , F−1

h Dh
Nvn+1/2

h

)
=
(
f
(
tn+1/2

)
, F−1

h Dh
Nvn+1/2

h

)
.

(4.10)



Advances in Numerical Analysis 11

Now using the definition of F−1
h we get

1
Δt

(
vn+1
h − vn

h,D
h
Nvn+1/2

h

)
− α2

Δt

(
vn+1
h − vn

h,ΔhD
h
Nvn+1/2

h

)
− ν

(
Δhv

n+1/2
h

,Dh
Nvn+1/2

h

)

+ α2ν
(
Δhv

n+1/2
h ,ΔhD

h
Nvn+1/2

h

)
=
(
f
(
tn+1/2

)
, Dh

Nvn+1/2
h

)
− α2

(
f
(
tn+1/2

)
,ΔhD

h
Nvn+1/2

h

)
,

(4.11)

and with the definition of Δh coupled with commutativity of operators,

1
2Δt

(∥∥∥∥
(
Dh

N

)1/2
vn+1
h

∥∥∥∥
2

+α2
∥∥∥∥curlh

(
Dh

N

)1/2
vn+1
h

∥∥∥∥
2

−
∥∥∥∥
(
Dh

N

)1/2
vn
h

∥∥∥∥
2

−α2
∥∥∥∥curlh

(
Dh

N

)1/2
vn
h

∥∥∥∥
2
)

+ ν

∥∥∥∥curlh
(
Dh

N

)1/2
vn+1/2
h

∥∥∥∥
2

+ α2ν

∥∥∥∥Δh

(
Dh

N

)1/2
vn+1/2
h

∥∥∥∥
2

=
(
f
(
tn+1/2

)
, Dh

Nvn+1/2
h

)
+ α2

(
curlh f

(
tn+1/2

)
, curlh Dh

Nvn+1/2
h

)
.

(4.12)

Multiplying through byΔt and summing over timesteps now gives the stated energy balance.
For the helicity balance, choose χh = F−1

h curlh Dh
Nvn+1/2

h . This vanishes the nonlinear
term since after the filter and its inverse cancellation of, the cross of two vectors is
perpendicular to each of them. The pressure term also vanishes, since the curl is discretely-
divergence free. This leaves

1
Δt

(
vn+1
h − vn

h, F
−1
h curlh Dh

Nvn+1/2
h

)
− ν

(
Δhv

n+1/2
h

, F−1
h curlh Dh

Nvn+1/2
h

)

=
(
f
(
tn+1/2

)
, F−1

h curlh Dh
Nvn+1/2

h

)
.

(4.13)

Next we decompose F−1
h
, similar to the case of the energy balance. After simplifying, we have

1
2Δt

(((
Dh

N

)1/2
vn+1
h , curlh

(
Dh

N

)1/2
vn+1
h

)
+ α2

(
curlh

(
Dh

N

)1/2
vn+1
h , curl2h

(
Dh

N

)1/2
vn+1
h

))

− 1
2Δt

(((
Dh

N

)1/2
vn
h, curlh

(
Dh

N

)1/2
vn
h

)
+ α2

(
curlh

(
Dh

N

)1/2
vn
h, curl

2
h

(
Dh

N

)1/2
vn
h

))

+ ν

(
curlh

(
Dh

N

)1/2
vn+1/2
h

, curl2h
(
Dh

N

)1/2
vn+1/2
h

)

+ α2ν

(
curl2h

(
Dh

N

)1/2
vn+1/2
h

, curl3h
(
Dh

N

)1/2
vn+1/2
h

)

=
(
f
(
tn+1/2

)
, curlh Dh

Nvn+1/2
h

)
+ α2

(
curlh f

(
tn+1/2

)
, curl2h D

h
Nvn+1/2

h

)
.

(4.14)

We complete the proof by multiplying through by 2Δt and summing over timesteps.
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5. Conclusions

We have developed enhanced-physics based finite element schemes for the NS-ω and Stolz-
Adams ADM families of turbulence models that provides physically accurate treatment
of discrete energy and helicity. Development of a discretely-divergence-free discrete curl
operator, a discrete Laplacian defined in terms of the discrete curl, a discrete filter defined
in terms of the discrete Laplacian, and a discrete deconvolution operator defined in terms
of the discrete filter, all of which commute, are the key technical tools which allow
the discrete schemes to accurately balance two fundamental physical quantities. Future
directions of this work will be extensions to commonly used boundary conditions, and
efficient implementations of these schemes.
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