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We derive a family of sixth-order compact finite-difference schemes for the three-dimensional
Poisson’s equation. As opposed to other research regarding higher-order compact difference
schemes, our approach includes consideration of the discretization of the source function on
a compact finite-difference stencil. The schemes derived approximate the solution to Poisson’s
equation on a compact stencil, and thus the schemes can be easily implemented and resulting linear
systems are solved in a high-performance computing environment. The resulting discretization is
a one-parameter family of finite-difference schemes which may be further optimized for accuracy
and stability. Computational experiments are implemented which illustrate the theoretically
demonstrated truncation errors.

1. Introduction

In this article, we derive a family of sixth-order compact finite-difference schemes for
Poisson’s equation. Let Ω be an open, bounded regular hexahedron in R

3, and consider

−Δu = f, in Ω,

u = g, on ∂Ω.
(1.1)

In order to obtain the high computational efficiency and the performance of higher-
order methods, a complete characterization of the truncation error in the respective multi-
variable form must be formulated and minimized. The schemes are designed based on local
multivariate Taylor expansion of the solution [1] constrained by higher-order derivatives of
the equation about the center of the three-dimensional compact difference stencil. Higher-
order compact finite-difference schemes for approximating elliptic equations have been well
studied, [2–5], since they achieve high-order accuracy without significant increase in the
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resolution of the grid points. The technique of minimizing the truncation error has been
extended to develop higher-order compact schemes [6] and for other application problems
[7, 8]. In other approaches [1, 4], the univariate Taylor series expansion is used to derive
the finite-difference approximations of the individual derivative in terms of the differential
equation and then coupled to obtain the numerical schemes for multiple spatial dimensions.
Subsequently, the truncation errors are formulated to assess the accuracy of the schemes.

Our approach in deriving finite difference schemes utilizes the fully multivariate
Taylor series expansion rather than univariate expansions in each coordinate direction. First,
the multivariate approximations to the unknown and the source function are substituted into
the partial differential equation about the center of the local compact stencil. Then, the formal
error for discretizing the equation is formulated using the discrete approximations of the
unknowns, the sources, and weight parameters to mimic the derivatives in the equation. By
determining the parameters to annihilate the leading coefficients of the error, the parameter-
based fourth-order compact schemes are derived. By setting the parameter to zero, the
traditional fourth-order compact scheme [1] is recovered. Numerical experiments show that
the resulting schemes are much more stable and robust when the remaining free parameter
is chosen in an effective manner.

In order to discuss compact stencil schemes in three spatial dimensions, we must first
number the points on the compact stencil. For this article, the stencil will be labeled according
to the diagram in Figure 1. In order to describe schemes for Poisson’s equation in three spatial
dimensions, we notice that the numerical approximation of (1.1) results in the following
matrix equation:

Hu = Qf, (1.2)

where the entries of H are determined by the stencil weights associated with the Laplacian
operator (Δ := ∂/∂x2 + ∂/∂y2 + ∂/∂z2), and the entries of Q are determined by the stencil
weight associated with the right-hand side function f . We denote the collection of weights
associated with a particular stencil asw0, w1, . . . , w26, where the weights are labeled according
to Figure 1. Also, notice that in our derivation, we use stencil weights which are symmetric
with respect to the coordinate axes and equal in each spatial direction. Thus it makes sense to
say that any compact stencil in three spatial dimensions is determined by one of four values,
the stencil weight at the center of the compact stencil (denoted w0), the stencil weights in the
directions of the coordinate axes (i.e., steps of size h are taken in only one direction) (denoted
w1 = · · · = w6), the stencil weights where steps of size h are taken in two coordinate directions
(denoted w7 = · · · = w18), and the stencil weights where steps of size h are taken in all three
coordinate directions (denoted w19 = · · · = w26).

By this logic, three-dimensional compact stencil for Poisson’s equation may be
described by eight values,w0,w1,w7, andw19 for each of the matrices H and Q. For simplicity,
we label these values α0, α1, α7, α19 weights for the matrix H, and values β0, β1, β7, β19 weights
for the matrix Q. This nomenclature is illustrated in Figures 2 and 3.

In this article, we derive several schemes for (1.1), these schemes we will label HOC4,
HOC61, HOC62, and HOC6. HOC4 is defined as the traditional fourth-order scheme for
Poisson’s equation, that is,

HOC4 :

⎧
⎪⎪⎨

⎪⎪⎩

α0 = 4, α1 = −1
3
, α7 = −1

6
, α19 = 0,

β0 =
1
2
, β1 =

1
12
, β7 = 0, β19 = 0.

(1.3)
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Figure 1: Stencil numbering for three-dimensional Poisson problem.
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Figure 2: Generic stencil weights for the left-hand side matrix, H.

We then derive the scheme HOC61, which is defined as the sixth-order scheme in
which the weights of H are selected in the usual way, and the weights of Q are chosen in
a special way in order to remove the sixth-order error term. This scheme is given by

HOC61 :

⎧
⎪⎪⎨

⎪⎪⎩

α0 = 4, α1 = −1
3
, α7 = −1

6
, α19 = 0,

β0 =
1 + 24w7

2
, β1 =

1 − 48w7

12
, β7 = w7, β19 = 0,

(1.4)

where w7 is determined by the formula,

w7(HOC61) =
(1/144)ξ1 − (1/240)ξ2

ξ1 + 3ξ3
, (1.5)
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Figure 3: Generic stencil weights for the right-hand side matrix Q.

where

ξ1 :=
∂6u

∂x4∂y2
+

∂6u

∂x4∂z2
+

∂6u

∂x2∂y4
+

∂6u

∂x2∂z4
+

∂6u

∂y2∂z4
+

∂6u

∂y4∂z2
,

ξ2 :=
∂6u

∂x6
+
∂6u

∂y6
+
∂6u

∂z6
,

ξ3 :=
∂u6

∂x2∂y2∂z2
.

(1.6)

This scheme shows that the stencil can be selected in a special way in order to annihilate
the fourth-order error term and therefore produce a sixth-order scheme. Following this, we
derive the scheme HOC62 in which the weights are rearranged from HOC61 in order so the
fourth order error term may be eliminated a priori. In order to do this, we must alter the
coefficients of the matrix H. This scheme is defined as follows:

HOC62 :

⎧
⎪⎪⎨

⎪⎪⎩

α0 =
64
15
, α1 = − 7

16
, α7 = − 1

10
, α19 = − 1

30
,

β0 =
1 + 24w7

2
, β1 =

1 − 48w7

12
, β7 = w7, β19 = 0,

(1.7)

where w7 is given by the formula

w7(HOC62) =
1

90
− 1

240

(
fxxxx + fyyyy + fzzzz
fxxyy + fxxzz + fyyzz

)

. (1.8)

Finally, we give the most general sixth-order scheme, denoted HOC6, which is a one
parameter family of sixth-order schemes. This scheme is derived in the same way as HOC62
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and utilizes all 27 stencil weights for each of the matrices H and Q. The scheme HOC6 is
given as follows:

HOC6 :

⎧
⎪⎪⎨

⎪⎪⎩

α0 =
64
15
, α1 = − 7

16
, α7 = − 1

10
, α19 = − 1

30
,

β0 =
1 + 24w7 + 32w19

2
, β1 =

1 − 48w7 − 48w19

12
, β7 = w7, β19 = w19,

(1.9)

where w7 and w19 satisfy the relationship:

w7 + 2w19 =
1

90
− 1

240

(
fxxxx + fyyyy + fzzzz
fxxyy + fxxzz + fyyzz

)

. (1.10)

Along with the definition of HOC6 in (1.9)-(1.10), we show how the weights can be effectively
approximated so that the values of the fourth order partial derivatives of the right-hand side
function f do not have to be calculated analytically in order to obtain a sixth-order scheme.

The paper is outlined as follows. In Section 2, a derivation for the fourth-order compact
scheme HOC4 is given which begins with the intuitive second-order scheme and eliminates
the second-order error term. This illustrates the manner in which we will derive the sixth-
order schemes later in the paper. In Section 3, a one-parameter family of fourth-order schemes
is given and information about the truncation error is used in order to derive the schemes
HOC61 and HOC62. In Section 4, the complete one-parameter family of sixth-order schemes
is presented; HOC6 is derived from a three-parameter family of fourth-order schemes.
In Section 5, the computational implementation is discussed and numerical experiments
are included which illustrate the convergence of the complete family of schemes, HOC4,
HOC61, HOC62, and HOC6. In Section 6, stability of the schemes is discussed in terms of the
conditioning of the mass matrix and in terms of approximating the solution of a generalized
eigenvalue problem. Finally, in Section 7, conclusions are given.

2. The Fourth Order Scheme, HOC4

In order to illustrate the ideas in the sequel, we provide a derivation of the fourth-order HOC
scheme for Poisson’s equation by approximating the second-order error term on the local
stencil and utilizing this approximation in the scheme.

From this figure, we immediately see that a second-order accurate scheme for
Poisson’s equation is defined by approximating each of the second-order derivatives in (1.1),

6u0 − u1 − u2 − u3 − u4 − u5 − u6

h2
≈ f0. (2.1)

We will define the truncation error for this scheme (and all subsequent schemes in this article)
by subtracting terms approximating u from the terms approximating f . For the second-order
difference scheme (2.1), the truncation error is given by

6u0 − u1 − u2 − u3 − u4 − u5 − u6

h2
− f0 =

h2

12

[
∂4u

∂x4
+
∂4u

∂y4
+
∂4u

∂z4

]

+O
(
h4
)
. (2.2)
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In order to derive the fourth order scheme, we simply approximate the second-order terms
in the truncation error on the local stencil. We, however, notice that the fourth order partial
derivatives, uxxxx, uyyyy, uzzzz, cannot be approximated on the local stencil. However, we can
utilize the differential equation (1.1) in order to rewrite the second-order error in a way which
can be approximated on the local stencil.

Using the relationships,

−uxxxx − uxxyy − uxxzz = fxx,

−uxxyy − uyyyy − uyyzz = fyy,

−uxxzz − uyyzz − uzzzz = fzz,

(2.3)

we see that the second-order error term may be rewritten as

h2

6
(
uxxyy + uxxzz + uyyzz

)
− h

2

12
(
fxx + fyy + fzz

)
. (2.4)

Next, using the facts that

fxx ≈
f3 − 2f0 + f1

h2
,

fyy ≈
f4 − 2f0 + f2

h2
,

fzz ≈
f5 − 2f0 + f6

h2
,

(2.5)

uxxyy ≈
u7 + u8 + u9 + u10 − 2u1 − 2u3 + 4u0

h4
,

uxxzz ≈
u11 + u13 + u15 + u17 − 2u5 − 2u6 + 4u0

h4
,

uyyzz ≈
u12 + u14 + u16 + u18 − 2u2 − 2u4 + 4u0

h4
,

(2.6)

multiplying by their coefficients in (2.4) and moving to the other side of (2.2), we have that a
fourth order scheme is given by

24u0 − 2(u1 + · · · + u6) − (u7 + · · · + u18)
6h2

≈
6f0 + f1 + · · · + f6

12
. (2.7)

We will refer to this scheme as HOC4. This is the scheme found most prevalently in the
literature for Poisson’s equation. The stencils for HOC4 are illustrated in Figures 4 and 5.



Advances in Numerical Analysis 7

010

121

010

121

2−242

121

0 1 0

1 2 1

0 1 0

× −1
6h2

Figure 4: Stencil weights for the left-hand side matrix H for the fourth-order scheme, HOC4.
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Figure 5: Stencil weights for the right-hand side matrix Q for the fourth-order scheme, HOC4.

3. A One-Parameter Family of Fourth Order Schemes and the
Sixth-Order Scheme HOC61

In this section, we consider a one parameter family of fourth order schemes and show that the
schemes can be selected in a grid-dependent fashion which eliminates the fourth order error
term and therefore determines a sixth-order scheme. An alternate stencil for the mass matrix
and the one-parameter family of stencils for the mass matrix for the fourth order schemes
appear in Figures 6 and 7 respectively.

We may obtain the following expression for the error:

h4
[(

1
144
−w7

)

ξ1 −
1

240
ξ2 − 3w7ξ3

]

+O
(
h6
)
, (3.1)
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where ξ1, ξ2, and ξ3 are defined as in (1.6). Eliminating the fourth order error term in the
above equation, we have

w7 =
(1/144)ξ1 − (1/240)ξ2

ξ1 + 3ξ3
. (3.2)

3.1. A Priori Error Minimization

Obviously, although the scheme presented in the previous section certainly is valid, it will
not be particularly useful unless we can derive a scheme which can be determined utilizing
only information about the source function f . In order to derive a more suitable sixth-order
scheme, we perform manipulations which will allow us to rewrite almost all of the terms
in the error equation in terms of f , and the remaining terms will be approximated on the
compact stencil. First, recall that the fourth order term for the error was given by

(
1

144
−w7

)

ξ1 −
1

240
ξ2 − 3w7ξ3. (3.3)

First, making the substitutions,

−uxxxxxx − uxxxxyy − uxxxxzz = fxxxx,

−uxxyyyy − uyyyyyy − uyyyyzz = fyyyy,

−uxxzzzz − uyyzzzz − uzzzzzz = fzzzz,

(3.4)

we obtain the following equivalent form for (3.3):

(
1

90
−w7

)

ξ1 +
1

240
(
fxxxx + fyyyy + fzzzz

)
− 3w7ξ3. (3.5)

Next, making the substitutions

−uxxxxyy − uxxyyyy − uxxyyzz = fxxyy,

−uxxxxzz − uxxyyzz − uxxzzzz = fxxzz,

−uxxyyzz − uyyyyzz − uyyzzzz = fyyzz,

(3.6)

we obtain the following equivalent form for (3.3):

(

w7 −
1

90

)
(
fxxyy + fxxzz + fxxyy

)
+

1
240
(
fxxxx + fyyyy + fzzzz

)
− 1

30
ξ3. (3.7)
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Figure 6: Alternate stencil weights for the right-hand side matrix Q for a second fourth-order scheme.
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Figure 7: Stencil weights for the right-hand side matrix Q for the one-parameter family of fourth-order
schemes.

Noticing that we can approximate the final term of the expression on the compact stencil, we
obtain a sixth-order approximation scheme by setting

w7 =
1

90
− 1

240

(
fxxxx + fyyyy + fzzzz
fxxyy + fxxzz + fyyzz

)

(3.8)

and using the following approximation:

ξ3 ≈
−8u0 + 4(u1 + · · · + u6) − 2(u7 + · · · + u18) + (u19 + · · · + u26)

h6
. (3.9)

Adding this approximation to the stencil for u, we obtain the stencil which appears in
Figure 8.
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Figure 8: Stencil weights for the left-hand side matrix H for the sixth-order scheme, HOC61.

4. A Two-Parameter Family of Sixth-Order Schemes, HOC6

In the previous section, we illustrated how one can derive a sixth-order scheme in which
stencil weights are selected in a grid-dependent fashion based only upon values of the source
function f . For completeness, in this section we give the most general family of fourth order
HOC schemes for Poisson’s equation, and from that derive the complete family of sixth-order
HOC schemes.

In order to derive the complete family of sixth-order schemes for Poisson’s equation,
we will first state the complete family of fourth order schemes for Poisson’s equation, which
are

H: α0 = 4 + 8α19, α1 =
−1 − 12α19

3
, α7 =

−1 + 12α19

6
, α19 = free,

Q: β0 =
1 + 24β7 + 32β19

2
, β1 =

1 − 48β7 − 48β19

12
, β7 = free, β19 = free.

(4.1)

Notice that this is a three-parameter family of schemes, which may be selected in any
particular fashion. It is our intention, however, to select the coefficients α19, β7, β19 in such a
way as to eliminate the fourth order term from the truncation error.

For this particular family of schemes, the error expression is given by

h4
[(

1
144
− β7 − 2β19

)

ξ1 −
1

240
ξ2 +

(
α19 − 3β7 − 6β19

)
ξ3

]

+O
(
h6
)
. (4.2)

Using similar analysis as in the previous section, we immediately obtain that values
for the parameters for which the fourth order error term is eliminated are given by α19 = 1/30
(i.e., the stencil given in Figure 8) and

β7 + 2β19 =
1

90
− 1

240

(
fxxxx + fyyyy + fzzzz
fxxyy + fxxzz + fyyzz

)

, (4.3)

which yields a one parameter family of sixth-order schemes.
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5. Computational Implementation

Notice that the term in (4.3) is prohibitive; since in order to define weights according to this
formula, various fourth order partial derivatives of the source function f must be known
exactly. However, for our computational implementation, we approximate each of the fourth
order partial derivatives of f using difference approximations.

The fourth order difference approximations of the mixed derivative terms
(fxxyy, fxxzz, fyyzz) may be approximated in the usual way; see, for example, (2.6), in order
to obtain the formula

fxxyy + fxxzz + fyyzz ≈
12f0 + f7−18 − 4f1−6

h4
. (5.1)

To approximate the other fourth order partial derivative terms (fxxxx, fyyyy, fzzzz), we notice
that these quantities cannot be approximated on the compact stencil. However, using the fact
that, for example,

fxxxx ≈
f
(
x + 2ĥ, y

)
− 2f

(
x + ĥ, y

)
+ 6f

(
x, y
)
− 2f

(
x − ĥ, y

)
+ f
(
x − 2ĥ, y

)

ĥ4
, (5.2)

and utilizing the value ĥ = h/2, we obtain the following approximation formula:

β7 + 2β19 ≈
1

90
− 1

15

(
18f0 − 4f1/2 + f1−6

12f0 + f7−18 − 4f1−6

)

, (5.3)

where

f0 := f
(
x, y, z

)
,

f1−6 := f
(
x + h, y, z

)
+ f
(
x − h, y, z

)
+ f
(
x, y + h, z

)

+ f
(
x, y − h, z

)
+ f
(
x, y, z + h

)
+ f
(
x, y, z − h

)
,

f7−18 := f
(
x + h, y + h, z

)
+ f
(
x + h, y − h, z

)
+ f
(
x − h, y + h, z

)

+ f
(
x − h, y − h, z

)
+ f
(
x + h, y, z + h

)
+ f
(
x + h, y, z − h

)

+ f
(
x − h, y, z + h

)
+ f
(
x − h, y, z − h

)
+ f
(
x, y + h, z + h

)

+ f
(
x, y + h, z − h

)
+ f
(
x, y − h, z + h

)
+ f
(
x, y − h, z − h

)
,

f1/2 := f
(

x +
h

2
, y, z

)

+ f
(

x − h
2
, y, z

)

+ f
(

x, y +
h

2
, z

)

+ f
(

x, y − h
2
, z

)

+ f
(

x, y, z +
h

2

)

+ f
(

x, y, z − h
2

)

.

(5.4)

The implementation was carried out using the C++ programming language, and
matrices were assembled in compressed row sparse matrix form and solved using the
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Preconditioned BiConjugate Gradient Stabilized Method implemented in the Sparselib++
sparse matrix library available from NIST. Computations were performed on a Dell desktop
computer with a 3.19 GHz Intel Processor and 1.99 GB of RAM. Notice that in order to solve
the three-dimensional Poisson equation on a unit box with h = 1/64, a 250, 047 × 250, 047
sparse matrix must be solved. However, using the hardware and software described, we were
able to obtain solutions when h = 1/64 in about 13 minutes.

5.1. Computational Experiments

In this section, we illustrate the experimental convergence rates for each of our schemes
HOC4, HOC61, HOC62, and HOC6. It is interesting to note that the scheme HOC6 allows
for a free parameter, so that the schemes may be optimized for additional accuracy or
computational stability. Also, notice that in each of the cases, HOC61 represents the minimum
error obtained. However, recall from our derivation that weights for HOC61 are determined
according to the solution u, whereas the weights for HOC62 and HOC6 are minimized a
priori.

Experiment 1. Let Ω := (0, 1) × (0, 1) × (0, 1). For this example, we implement the schemes
HOC4, HOC61, HOC62, and HOC6 for u(x, y, z) = x5y2z3 taken as the true solution of (1.1)
and the schemes HOC4, HOC61, HOC62, and HOC6 defined as in (1.3), (1.4), (1.7), and (1.9),
respectively. The weights w7 satisfy the approximate formula

w7 + 2w19 =
1

144

(
3y2 + z2

3x2 + 3y2 + z2

)

. (5.5)

Results are given for six cases, HOC4, HOC61, HOC62 (β19 = 0), HOC6 (β7 = 0), HOC6 (β7 =
β19), and HOC6 (β7 = 2β19). Table 1 summarizes our results, illustrating the experimental
convergence rates for each of the schemes.

Experiment 2. Let Ω := (0, 1) × (0, 1) × (0, 1). For this example, we implement the schemes
HOC4, HOC61, HOC62, and HOC6 for u(x, y, z) = z5 sin(xy) taken as the true solution of
(1.1) and the schemes HOC4, HOC61, HOC62, and HOC6 defined as in (1.3), (1.4), (1.7), and
(1.9), respectively. The weights w7 satisfy the approximate formula

w7 + 2w19 = −
χ1

720χ2
, (5.6)

where

χ1 :=
(

40y3xz4 + 40x3yz4
)

cos
(
xy
)

+
(

3y6z4 − 5y4x2z4 + 60y2z4 + 100y4z2

−5x4y2z4 + 60x2z4 + 3x6z4 + 100x4z2 − 600y2 − 600x2
)

sin
(
xy
)
,
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Table 1: Experimental error results for Experiment 1.

h ‖u − uh‖L∞
HOC4

cvge. rate ‖u − uh‖L∞
HOC61

cvge. rate

1/4 1.785562 · 10−4 3.492412 · 10−6

1/8 1.104208 · 10−5 4.02 5.703779 · 10−8 5.94
1/16 7.016054 · 10−7 3.98 9.095885 · 10−10 5.97
1/32 4.439135 · 10−8 3.98 1.421643 · 10−11 6.00
1/64 2.775527 · 10−9 4.00 2.228478 · 10−13 6.00

HOC62
(β19 = 0.0)

rate HOC6
(β7 = 0.0)

rate

1/4 7.048372 · 10−6 1.884849 · 10−5

1/8 1.194951 · 10−7 5.88 3.043228 · 10−7 5.95
1/16 1.881611 · 10−9 5.99 4.914854 · 10−9 5.95
1/32 2.949327 · 10−11 6.00 7.711285 · 10−11 5.99
1/64 4.622188 · 10−13 6.00 1.203933 · 10−12 6.00

HOC6
(β7 = β19)

rate HOC6
(β7 = 2β19)

rate

1/4 1.021620 · 10−5 5.900059 · 10−6

1/8 1.682916 · 10−7 5.92 1.002760 · 10−7 5.88
1/16 2.677366 · 10−9 5.97 1.572341 · 10−9 6.00
1/32 4.202498 · 10−11 5.99 2.475537 · 10−11 5.99
1/64 6.567039 · 10−13 6.00 3.858164 · 10−13 6.00

χ2 :=
(

240yxz2 − 8y3xz4 − 8x3yz4
)

cos
(
xy
)

+
(
−20y4z2 − 60y2x2z2 + 120z2

+120y2 + y4x2z4 − 12y2z4 + x4y2z4 − 12x2z4 − 20x4z2 + 120x2
)

sin
(
xy
)
.

(5.7)
Results are given for six cases, HOC4, HOC61, HOC62 (β19 = 0), HOC6 (β7 = 0), HOC6 (β7 =
β19), and HOC6 (β7 = 2β19). Table 2 summarizes our results, illustrating the experimental
convergence rates for each of the schemes. Notice that in both of the experiments the choice
β7 = 2β19 yields the best a priori error for the scheme HOC6. This choice was selected in such
a way that the error contributions from β7 and β19 are identical (see (4.3)).

6. Stability of Schemes

In this section, we illustrate that the families of fourth-order schemes and thus the
sixth-order scheme will exhibit increased computational stability when compared to the
traditional fourth order scheme, a property which makes the alternative schemes desirable
for implementation in applied problems. In order to do this, we test the fourth order methods
by solving the corresponding eigenvalue problem

−Δu = λu in Ω,

u = 0, on ∂Ω.
(6.1)
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Table 2: Experimental error results for Experiment 2.

‖u − uh‖L∞
HOC4

cvge. rate ‖u − uh‖L∞
HOC61

cvge. rate

1/4 2.750218 · 10−5 7.190362 · 10−7

1/8 1.722579 · 10−6 4.00 1.129125 · 10−8 5.99

1/16 1.100952 · 10−7 3.97 1.807232 · 10−10 5.97

1/32 6.893032 · 10−9 4.00 2.830760 · 10−12 6.00

1/64 4.310131 · 10−10 4.00 4.354850 · 10−14 6.02

HOC62
(β19 = 0.0)

rate HOC6
(β7 = 0.0)

rate

1/4 1.299453 · 10−6 3.569410 · 10−6

1/8 2.354981 · 10−8 5.79 6.288367 · 10−8 5.83

1/16 3.679920 · 10−10 6.00 9.817293 · 10−10 6.00

1/32 5.771845 · 10−12 6.00 1.549958 · 10−11 5.99

1/64 8.967826 · 10−14 6.01 2.431874 · 10−13 5.99

HOC6
(β7 = β19)

rate HOC6
(β7 = 2β19)

rate

1/4 1.999183 · 10−6 1.214070 · 10−6

1/8 3.407251 · 10−8 5.87 1.966693 · 10−8 5.95

1/16 5.371719 · 10−10 5.99 3.181549 · 10−10 5.95

1/32 8.469725 · 10−12 5.99 4.971176 · 10−12 6.00

1/64 1.334904 · 10−13 5.99 7.897849 · 10−14 5.98

Proceeding as before, we approximate the eigenvalue problem (6.1) by

Hu = λQu, (6.2)

where H and Q are the stiffness and mass matrices formed using the schemes described
above. We utilize the weights given in (4.1).

An initial numerical concern is the diagonal dominance of the H matrix. We note that
the restriction on α19 for row diagonal dominance is

0 ≤ α19 ≤
1

12
. (6.3)

The restrictions on β7 and β19 for row diagonal dominance of the mass matrix Q are

∣
∣
∣
∣

1 + 24β7 + 32β19

2

∣
∣
∣
∣ ≥ 6

∣
∣
∣
∣

1 − 48β7 − 48β19

12

∣
∣
∣
∣ + 12

∣
∣β7
∣
∣ + 8

∣
∣β19
∣
∣ (6.4)
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Figure 9: Condition number of Q depending on β7 and β19. (a) Grid spacing h = 1/10; (b) Grid spacing
h = 1/20.

with feasible positivity solutions as

0 ≤ β7 ≤
1

24
, 0 ≤ β19 ≤

1
16
, β7 + β19 ≤

1
48
, 6β7 + 4β19 ≤

1
4

(6.5)

or

0 ≤ β7 ≤
1

48
, 0 ≤ β19 ≤

1
48
, β7 + β19 ≤

1
48
. (6.6)

Next, we investigate the computational accuracy and the conditioning of solving the
approximate matrix equation (6.2). Our preliminary results show that α19 = 0 (i.e., 19 points
for H) can adequately describe families of fourth-order schemes for solving the generalized
eigenvalue problem (6.1). In Figure 9, we illustrate the conditioning of the mass matrix Q
depending on the choices of β7 and β19 as described in (6.6). We observe that Q is best
conditioned when β7 + β19 = 1/48 and is the worst for the case β7 = 0, β19 = 0. Moreover,
any selections of β7, β19 away from this case yield an improvement in the conditioning of
matrix Q.

Now, we analyze the stability of the proposed schemes by solving (6.1) with Ω :=
(0, 1)×(0, 1)×(0, 1). We compare the traditional fourth-order scheme HOC4 with 7 grid points
for the mass matrix Q (β7 = 0, β19 = 0) and the case with 19 grid points for Q (β7 = 1/48,
β19 = 0) in Figure 10.

The analysis shows that the alternative fourth- and sixth-order schemes provide
credible stable alternative schemes for large-scale application problems [9, 10] to the
traditional fourth order discretization with (β7 = 0, β19 = 0). The mass matrix for the
traditional discretization becomes more and more poorly conditioned as the size of Q
increases as illustrated in Figure 9. On the other hand, for instance, the condition number
of Q with (β7 = 1/48, β19 = 0) stays approximately close to 1.8 almost independent of the
size of Q and provides comparable accuracies as also illustrated in Figure 10 to that of the
traditional discretization.
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Figure 10: Computational accuracies for the first 25 eigenvalues of (6.1) for different choices of β7 and β19
for Q. (a) Grid spacing h = 1/10; (b) Grid spacing h = 1/20.

7. Conclusion

In this article, we have derived and demonstrated a family of sixth-order compact finite-
difference schemes for Poisson’s equation in three spatial dimensions. Such schemes can be
extended in order to derive sixth-order schemes for stationary and transient propagation
problems in two or three spatial dimensions. It will be the subject of future work to reframe
the concept of compact finite differencing in terms of a finite volume scheme for conservative
form flow equations, and demonstrate the utility of these schemes in applied problems.
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