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A high-order family of time relaxation models based on approximate deconvolution is considered.
A fully discrete scheme using discontinuous finite elements is proposed and analyzed. Optimal
velocity error estimates are derived. The dependence of these estimates with respect to the
Reynolds number Re is O(Re eRe), which is an improvement with respect to the continuous finite
element method where the dependence is O(Re eRe

3
).

1. Introduction

Turbulence is a phenomenon that appears inmany processes in the nature, and it is connected
with many industrial applications. Based on the Kolmogorov theory [1], Direct Numerical
Simulation (DNS) of turbulent flow, where all the scales/structures are captured, requires
the number of mesh points in space per each time step to be O(Re9/4) in three-dimensional
problems, where Re is the Reynolds number. This is not computationally economical and
sometimes not even feasible. One approach is to regularize the flow and one such type of
regularization is the time relaxation method, where an additional term, the so-called time
relaxation term, is added to the Navier-Stokes equations (cf. Adams and Stolz [2] and Layton
and Neda [3]). The contribution to the Navier-Stokes equations from the time relaxation term
induces an action on the small scales of the flow in which these scales are driven to zero. This
time relaxation term is based on filtering and deconvolution methodology. In general, many
spacial filtering operators associated with a length-scale δ are possible (cf. Berselli et al. [4],
John [5], Geurts [6], Sagaut [7] and Germano [8]). First, consider the equations of differential
filter (cf. Germano [8])

φ = Gφ in Ω, (1.1)

φ = 0 on ∂Ω, (1.2)
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where G−1 = −δ2Δ + I, Ω is the domain and ∂Ω is its boundary. Here δ > 0 represents the
averaging radius, in general, chosen to be of the order of the mesh size.

The deconvolution algorithm that it is considered herein was studied by van Cittert in
1931, and its use in Large Eddy Simulation (LES) pioneered by Stolz and Adams (cf. Stolz
and Adams [2, 9]). For eachN = 0, 1, . . . , it computes an approximate solution uN byN steps
of a fixed point iteration for the fixed point problem (cf. Bertero and Boccacci [10])

given u solve u = u + {u −Gu}, for u. (1.3)

The deconvolution approximation is then computed as follows.

Algorithm 1.1 (van Cittert approximate deconvolution algorithm). Consider that u0 = u, for
n = 1, 2, . . . ,N − 1, perform

un+1 = un + {u −Gun}. (1.4)

By eliminating the intermediate steps, it is easy to find an explicit formula for theNth
deconvolution operator GN given by

GNu :=
N∑

n=0
(I −G)nu. (1.5)

For example, the approximate deconvolution operator corresponding to N = 0, 1, 2 is

G0u = u,

G1u = 2u − u,

G2u = 3u − 3u + u.

(1.6)

Many fluid models that are based on numerical regularization and computational
stabilizations have been explored in computational fluid dynamics. One such regularization
and the most recent has been proposed by Stolz et al. [11, 12] and arises by adding a linear,
lower order time regularization term, χu′ = χ(u − GNu), to the Navier-Stokes equations
(NSE). This term involves u′ which represents the part of the velocity that fluctuates on
scales less than order δ and it is added to the NSE with the aim of driving the unresolved
fluctuations of the velocity field to zero. The time relaxation family of models, under the no-
slip boundary condition, is then defined by

ut + u · ∇u − νΔu +∇p + χ(u −GNu) = f in (0, T] ×Ω, (1.7)

∇ · u = 0 in [0, T] ×Ω, (1.8)

u = 0 in [0, T] × ∂Ω, (1.9)

u(0, ·) = u0(·) in Ω, (1.10)
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whereΩ ⊂ R
2, is a convex bounded regular domain with boundary ∂Ω, u is the fluid velocity,

p is the fluid pressure and f is the body force driving the flow. The kinematic viscosity ν > 0
is inversely proportional to the Reynolds number of the flow. The initial velocity is given by
u0. A pressure normalization condition

∫
Ω p = 0 is also needed for uniqueness of the pressure.

The time relaxation coefficient χ has units 1/time. The domain is two-dimensional, but the
numerical methods and the analysis can be generalized to three-dimensional domains, as
stated in [13] for the case of Stokes and Navier-Stokes problems.

Existence, uniqueness and regularity of strong solutions of these models are discussed
in [3]. Even though there are papers on the simulation of the models for incompressible and
compressible flows, there is little published work in the literature on the numerical analysis
of the models. In [14], a fully discrete scheme using continuous finite elements and Crank-
Nicolson for time discretization is analyzed and the energy cascade and joint helicity-energy
cascades are studied in [3, 15], respectively.

In this work, a class of discontinuous finite element methods for solving high-
order time relaxation family of fluid models (1.7)–(1.10) is formulated and analyzed. The
approximations of the averaged velocity u and pressure p are discontinuous piecewise
polynomials of degree r and r − 1, respectively. Because of the lack of continuity constraint
between elements, the Discontinuous Galerkin (DG) methods offer several advantages
over the classical continuous finite element methods: (i) local mesh refinement and
derefinement are easily implemented (several hanging nodes per edge are allowed); (ii)
the incompressibility condition is satisfied locally on each mesh element; (iii) unstructured
meshes and domains with complicated geometries are easily handled. In the case of DNS,
DG methods have been applied to the steady-state NSE (cf. Girault et al. [16]) and to the
time-dependent NSE (cf. Girault et al. [17]) where they are combined with an operator-
splitting technique. Another discontinuous Galerkin method for the NSE based on a mixed
formulation are considered in [18] by Cockburn et al.. For high Reynolds numbers, the
numerical analysis of a DG scheme combined with a large eddy simulation turbulence model
(subgrid eddy viscosity model) is derived in [19] by Kaya and Rivière.

This paper is organized in the following way. Section 2 introduces some notation
and mathematical properties. In Section 3, the fully discrete schemes are introduced and it
is proved that the schemes solutions are computable. A priori velocity error estimates are
derived in Section 4. The family of models (1.7)–(1.10) is regularization of the NSE. Thus, the
correct question is to study convergence of discretizations of (1.7)–(1.10) to solutions of the
NSE as h and δ → 0 (rather than to solution of (1.7)–(1.10)). This is the problem studied
herein. Conclusions are given in the last section.

2. Notation and Mathematical Preliminaries

To obtain a discretization of the model a regular family of triangulations Eh of Ω, consisting
of triangles of maximum diameter h, is introduced. Let hE denote the diameter of a triangle E
and ρE the diameter of its inscribed circle. Regulary, it is meant that there exists a parameter
ζ > 0, independent of h, such that

hE

ρE
= ζE ≤ ζ, ∀E ∈ Eh. (2.1)
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This assumption will be used throughout this work. Γh denotes the set of all interior edges of
Eh. Let e denote a segment of Γh shared by two triangles Ek and El (k < l) of Eh; it is associated
with e a specific unit normal vector ne directed from Ek to El and the jump and average of a
function φ on e is formally defined by

[
φ
]
=

(
φ
∣∣
Ek

)∣∣
e
− (

φ
∣∣
El

)∣∣
e
,

{
φ
}
=

1
2
(
φ
∣∣
Ek

)∣∣
e
+
1
2
(
φ
∣∣
El

)∣∣
e
. (2.2)

If e belongs to the boundary ∂Ω, then ne is the unit normal n exterior to Ω and the jump and
the average of φ on e coincide with the trace of φ on e.

Here, for any domainO, L2(O) is the classical space of square-integrable functionswith
inner-product (f, g)O =

∫
O fg and norm ‖ · ‖0,O. The space L2

0(Ω) is the subspace of functions
of L2(Ω)with zero mean value

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫

Ω
v = 0

}
. (2.3)

The standard Sobolev spaces are denoted by Wr
p(Ω) where Wr

2 (Ω) is the Hr(Ω), with norm
‖ · ‖r,Ω and seminorm | · |r,Ω.

Next, the discrete velocity and pressure spaces are defined to be consisting of
discontinuous piecewise polynomials. For any positive integer r, the corresponding finite-
dimensional spaces are

Xh =
{
v ∈

(
L2(Ω)

)2
: ∀E ∈ Eh, v ∈ (Pr(E))2

}
,

Qh =
{
q ∈ L2

0(Ω) : ∀E ∈ Eh, q ∈ Pr−1(E)
}
,

(2.4)

where Pr(E) = span{xiyj : i + j ≤ r} is defined as the span of polynomials of order r over
triangle E.

Denoting by |e| the measure of e, the following norms are associated for the spaces Xh

and Qh

‖v‖X =

(
|‖∇v‖|20,Ω +

∑

e∈Γh∪∂Ω

1
|e| ‖[v]‖

2
0,e

)1/2

,

∥∥q
∥∥
Q =

∥∥q
∥∥
0,Ω,

(2.5)

where |‖v‖|0,Ω is the broken norm defined by

|‖v‖|0,Ω =

(
∑

E∈Eh

‖v‖20,E
)1/2

. (2.6)
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Finally, some trace and inverse inequalities are recalled, that hold true on each element
E in Eh, with diameter hE, the constant C is independent of hE

‖v‖0,e ≤ C
(
h−1/2
E ‖v‖0,E + h1/2

E ‖∇v‖0,E
)
, ∀e ∈ ∂E, ∀v ∈

(
H1(E)

)2
, (2.7)

‖∇v‖0,e ≤ C

(
h−1/2
E ‖∇v‖0,E + h1/2

E

∥∥∥∇2v
∥∥∥
0,E

)
, ∀e ∈ ∂E, ∀v ∈

(
H2(E)

)2
, (2.8)

‖v‖0,e ≤ Ch−1/2
E ‖v‖0,E, ∀e ∈ ∂E, ∀v ∈ Xh, (2.9)

‖∇v‖0,e ≤ Ch−1/2
E ‖∇v‖0,E, ∀e ∈ ∂E, ∀v ∈ Xh. (2.10)

3. Numerical Methods

In this section, the DG scheme is introduced and the existence of the numerical solution is
shown. First, the bilinear forms are defined a : Xh × Xh → R, and J0 : Xh × Xh → R by

a(z,v) =
∑

E∈Eh

∫

E

∇z : ∇v −
∑

e∈Γh∪∂Ω

∫

e

{∇z}ne · [v] + εa
∑

e∈Γh∪∂Ω

∫

e

{∇v}ne · [z],

J0(z,v) =
∑

e∈Γh∪∂Ω

σ

|e|
∫

e

[z] · [v].
(3.1)

The parameter εa takes the value −1, 0 or 1: this will yield different schemes that are
slight variations of each other. It will be showed that all the resulting schemes are convergent
with optimal convergence rate in the energy norm ‖ · ‖X . In the case where εa = −1, the
bilinear form a is symmetric; otherwise it is nonsymmetric. We remark that the form a(u,v)
is the standard primal DG discretization of the operator −Δu. Finally, if εa is either −1 or
0, the jump parameter σ should be chosen sufficiently large to obtain coercivity of a (see
Lemma 3.1). If εa = 1, then the jump parameter σ is taken equal to 1.

The incompressibility condition (1.8) is enforced by means of the bilinear form b :
Xh ×Qh → R defined by

b
(
v, q

)
= −

∑

E∈Eh

∫

E

q∇ · v +
∑

e∈Γh∪∂Ω

∫

e

{
q
}
[v] · ne. (3.2)

Finally, the DG discretization of the nonlinear convection termw ·∇w, which was introduced
in [16] by Girault et al. and studied extensively in [16, 17] by the same authors, is recalled as
follows:

cz(u;v, t) =
∑

E∈Eh

(∫

E

(u · ∇v) · t + 1
2

∫

E

(∇ · u)v · t
)
− 1
2

∑

e∈Γh∪∂Ω

∫

e

[u] · ne{v · t}

+
∑

E∈Eh

∫

∂E−
|{u} · nE|

(
vint − vext

)
· tint,

(3.3)
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where

∂E− = {x ∈ ∂E : {z} · nE < 0}, (3.4)

the superscript z denotes the dependence of ∂E− on z and the superscript int (resp., ext) refers
to the trace of the function on a side of E coming from the interior of E (resp., coming from
the exterior of E on that side). When the side of E belongs to ∂Ω, the convention is the same
as for defining jumps and average, that is, the jump and average coincide with the trace of
the function. Note that the form c is not linear with respect to z, but linear with respect to u,v
and t.

Some important properties satisfied by the forms a, b, c (cf. Wheeler [20], and Girault
et al. [16, 17]) are recalled.

Lemma 3.1 (Coercivity). If εa = 1, assume that σ = 1. If εa ∈ {−1, 0}, assume that σ is sufficiently
large. Then, there is a constant κ > 0, independent of h, such that

a(v,v) + J0(v,v) ≥ κ‖v‖2X, ∀v ∈ Xh. (3.5)

It is clear that κ = 1 if εa = 1. Otherwise, κ is a constant that depends on the polynomial
degree of v and of the smallest angle in the mesh. A precise lower bound for σ is given in [21]
by Epshteyn and Rivière.

Lemma 3.2 (Inf-sup condition). There exists a positive constant β, independent of h such that

inf
q∈Qh

sup
v∈Xh

b
(
v, q

)

‖v‖X
∥∥q

∥∥
0,Ω

≥ β. (3.6)

Lemma 3.3 (Positivity). One has

cv(v, z, z) ≥ 0, ∀v, z ∈
{
t ∈

(
L2(Ω)

)2
: t|E ∈

(
H2(E)

)2 ∀E ∈ Eh

}
. (3.7)

The discrete form of the differential filter (1.1) is defined following the work of Manica
and Merdan [22].

Definition 3.4 (Discrete differential filter). Given v ∈ L2(Ω), for a given filtering radius δ >

0, Gh : L2(Ω) → Xh, vh = Ghvwhere vh is the unique solution in Xh of

δ2
(
a
(
vh, φ

)
+ J0

(
vh, φ

))
+
(
vh, φ

)
=
(
v, φ

) ∀φ ∈ Xh. (3.8)

Remark 3.5. An attractive alternative is to define the differential filter by a discrete Stokes
problem so as to preserve incompressibility approximately [23–25].
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Definition 3.6. The discrete van Cittert deconvolution operators Gh
N are

Gh
Nv :=

N∑

n=0
(Πh −Gh)nv, (3.9)

where Πh : L2(Ω) → Xh is the L2 projection.

For v ∈ Xh, the discrete deconvolution operator forN = 0, 1, 2 is

Gh
0v = v,

Gh
1v = 2v − vh,

Gh
2v = 3v − 3vh + vh

h

.

(3.10)

GN was shown to be an O(δ2N+2) approximate inverse to the filter operator G in
Lemma 2.1 of Dunca and Epshteyn [26], recalled next.

Lemma 3.7. GN is a bounded, self-adjoint positive operator. GN is an O(δ2N+2) asymptotic inverse
to the filter G. Specifically, for smooth φ and as δ → 0,

φ = GNφ + (−1)(N+1)δ2N+2ΔN+1G(N+1)φ. (3.11)

Some basic facts about discrete differential filters and deconvolution operators are
presented next.

Lemma 3.8. For v ∈ L2(Ω), one has the following bounds for the discretely filtered and approximately
deconvolved v:

∥∥∥vh
∥∥∥
0,Ω

≤ ‖v‖0,Ω, (3.12)

∥∥∥Gh
Nvh

∥∥∥
0,Ω

≤ C(N)‖v‖0,Ω. (3.13)

Proof. The proof of (3.12) follows from the standard finite element techniques applied on the
discretized equation (3.8) of the filter problem (1.1). Pick φ = vh. Then, using coercivity result

δ2κ
∥∥∥vh

∥∥∥
2

X
+
∥∥∥vh

∥∥∥
2

0,Ω
≤
(
v,vh

)

Ω
≤ 1

2
‖v‖20,Ω +

1
2

∥∥∥vh
∥∥∥
2

0,Ω
. (3.14)

The term δ2κ‖vh‖2X is positive, so it will be dropped, which yields

1
2

∥∥∥vh
∥∥∥
2

0,Ω
≤ 1

2
‖v‖20,Ω. (3.15)
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Multiplying by 2 and taking the square root yields the estimate (3.12). Equation (3.13) follows
immediately from (3.12) and the definition of Gh

N .

Lemma 3.9. For smooth φ the discrete approximate deconvolution operator satisfies

∥∥∥∥φ −Gh
Nφ

h
∥∥∥∥
0,Ω

≤ C1δ
2N+2∥∥Gφ

∥∥
2N+2,Ω + C2

(
δhr + hr+1

)( N+1∑

n=2

∣∣Gnφ
∣∣
r+1,Ω

)
. (3.16)

Proof. The proof follows the same arguments as in [27] for the case of continuous finite
element discretization of the filter problem. The error is decomposed in the following way:

∥∥∥∥φ −Gh
Nφ

h
∥∥∥∥
0,Ω

≤
∥∥∥φ −GNφ

∥∥∥
0,Ω

+
∥∥∥GNφ −Gh

Nφ
∥∥∥
0,Ω

+
∥∥∥∥G

h
Nφ −Gh

Nφ
h
∥∥∥∥
0,Ω

. (3.17)

Lemma 3.7 gives

∥∥∥φ −GNφ
∥∥∥
0,Ω

≤ Cδ2N+2
∥∥∥φ

∥∥∥
2N+2,Ω

. (3.18)

The standard discontinuous finite element bound for (3.8) is given by (cf. Rivière [13])

∥∥∥∥φ − φ
h
∥∥∥∥
0,Ω

≤ C
(
δhr + hr+1

)∣∣∣φ
∣∣∣
r+1,Ω

. (3.19)

Lemma 3.8 gives for the third term in (3.17) that ‖Gh
Nφ − Gh

Nφ
h‖ ≤ C‖φ − φ

h‖. Then,
(3.19) is applied.

Now, it is left to bound the second term from (3.17). First, note that for N = 0,

‖G0φ
h −Gh

0φ
h‖0,Ω = 0. Based on Definition 3.6 of continuous and discrete deconvolution

operators and their expansion (see (3.10)), GN is a polynomial of degree N in G (and Gh
N

in Gh as well). Thus, the second term in (3.17) can be written as

∥∥∥GNφ −Gh
Nφ

∥∥∥
0,Ω

=

∥∥∥∥∥

N∑

n=0

αn

(
Gnφ −

(
Gh

)n
φ
)∥∥∥∥∥

0,Ω

≤
N∑

n=0

αn

∥∥∥Gnφ −
(
Gh

)n
φ
∥∥∥
0,Ω

. (3.20)

For O(1) coefficients αn and for N = 1, the result (3.19) gives

∥∥∥Gφ −
(
Gh

)
φ
∥∥∥
0,Ω

=

∥∥∥∥∥φ − φ
h
∥∥∥∥∥
0,Ω

≤ C
(
δhr + hr+1

)(∣∣∣∣φ
∣∣∣∣
r+1,Ω

)
.

(3.21)



Advances in Numerical Analysis 9

ForN = 2, the results (3.19) and (3.12) give

∥∥∥G2φ −
(
Gh

2

)
φ
∥∥∥
0,Ω

=

∥∥∥∥∥∥∥
φ − φ

h
h
h
∥∥∥∥∥∥∥
0,Ω

≤
∥∥∥∥∥φ − φ

h
∥∥∥∥∥
0,Ω

+

∥∥∥∥∥∥∥
φ

h

− φ
h
h
h
∥∥∥∥∥∥∥
0,Ω

≤
∥∥∥∥∥φ − φ

h
∥∥∥∥∥
0,Ω

+

∥∥∥∥∥φ − φ
h
∥∥∥∥∥
0,Ω

≤ C
(
δhr + hr+1

)(∣∣∣∣∣φ

∣∣∣∣∣
r+1,Ω

+
∣∣∣∣φ

∣∣∣∣
r+1,Ω

)
.

(3.22)

Inductively,

∥∥∥GNφ −Gh
Nφ

∥∥∥
0,Ω

≤ C
(
δhr + hr+1

)( N+1∑

n=2

∣∣Gnφ
∣∣
r+1,Ω

)
. (3.23)

The proof is completed by combining the derived bounds for the terms in (3.17).

Remark 3.10. There remains the question of uniform in δ bound of the last term,
|(G)nφ|r+1,Ω, in (3.16). This is a question about uniformregularity of an elliptic-elliptic singular
perturbation problem and some results are proven in [28] by Layton. To summarize, in the
periodic case it is very easy to show by Fourier series that for all k

∣∣Gφ
∣∣
r+1,Ω ≤ C

∣∣φ
∣∣
r+1,Ω and thus

∣∣Gnφ
∣∣
r+1,Ω ≤ C

∣∣φ
∣∣
r+1,Ω. (3.24)

The nonperiodic case can be more delicate. Suppose ∂Ω ∈ Cr+3 and φ = 0 on ∂Ω (i.e., φ ∈
H1

0(Ω) ∩Hr+1(Ω)). Call Gφ = φ so φ satisfies

−δ2Δφ + φ = φ in Ω, φ = 0 on ∂Ω. (3.25)

Then it is known that φ ∈ Hr+3(Ω) ∩H1
0(Ω), and Δφ = 0 on ∂Ω. Further,

∥∥∥φ
∥∥∥
j,Ω

≤ C
∥∥φ

∥∥
j,Ω, j = 0, 1, 2. (3.26)

So, (3.24) holds for r = −1, 0,+1. It also holds for higher values of r provided additionally
Δjφ = 0 on ∂Ω for 0 ≤ j ≤ [(r + 1)/2] − 1.
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Now consider the second term n = 2, that is, G2φ = φ. We know from elliptic theory
for φ ∈ Hr+1(Ω)

⋂
H1

0(Ω), that φ ∈ Hr+3(Ω)
⋂
H1

0(Ω), (as noted above) Δφ = 0 on ∂Ω and

−δ2Δφ + φ = φ in Ω, φ = Δφ = 0 on ∂Ω. (3.27)

Theorem 1.1 in [28] then implies, uniformly in δ,

∥∥∥∥φ
∥∥∥∥
j,Ω

≤ C
∥∥∥φ

∥∥∥
j,Ω

, j = 0, 1, 2, 3, 4. (3.28)

This extends directly to Gnφ.

Extending Lemma 3.9, the following assumption will be made.

Assumption DG1. The |Gn(φ)|r+1,Ω terms in (3.16) are independent of δ and

∥∥∥∥φ −Gh
Nφ

h
∥∥∥∥ ≤ C1δ

2N+2∥∥φ
∥∥
2N+2,Ω + C2

(
δhr + hr+1

)∣∣φ
∣∣
r+1,Ω. (3.29)

The minimal conditions that are assumed throughout are that the (discrete) filter and
(discrete) deconvolution used satisfy the following consistency conditions of Stanculescu
[29].

Assumption DG2. Gh and (I −Gh
NGh) are symmetric, positive definite (SPD) operators.

These have been proven to hold for van Cittert deconvolution (cf. Stanculescu [29],
Manica and Merdan [22] and Layton et al. [27]). For the DG method, the second assumption
restricts our parameter εa = −1 for the discretization of the filter problem (3.8), so that the
bilinear form a(·, ·) is symmetric.

The numerical scheme that uses discontinuous finite elements in space and backward
Euler in time is derived next. For this, let Δt denote the time step such that M = T/Δt is a
positive integer. Let 0 = t0 < t1 < · · · < tM = T be a subdivision of the interval (0, T). The
function φ evaluated at the time tm is denoted by φm. With the above forms, the fully discrete
scheme is: find (uh

n, p
h
n)n≥0 ∈ Xh ×Qh such that:

1
Δt

(
uh
n+1 − uh

n,v
)

Ω
+ ν

(
a
(
uh
n+1,v

)
+ J0

(
uh
n+1,v

))
+ χ

(
uh
n+1 −Gh

Nuh
n+1

h

,v
)

Ω

+ cu
h
n

(
uh
n;u

h
n+1,v

)
+ b

(
v, phn+1

)
= (fn+1,v)Ω ∀v ∈ Xh,

(3.30)

b
(
uh
n+1, q

)
= 0 ∀q ∈ Qh, (3.31)

(
uh
0 ,v

)

Ω
= (u0,v)Ω ∀v ∈ Xh. (3.32)

Remark 3.11. The time relaxation term can be treated explicitly such that the optimal accuracy
and stability are obtained and this would make the scheme much easier to compute [30].
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The consistency result of the semidiscrete scheme is showed next.

Lemma 3.12 (Consistency). Let (u, p) be the solution to (1.7)–(1.10), then (u, p) satisfies

(ut,v)Ω + ν(a(u,v) + J0(u,v)) + χ
(
u −Gh

Nuh,v
)

Ω
+ cu(u;u,v) + b

(
v, p

)

= (f,v)Ω + E
(
u, p, f;v

) ∀v ∈ Xh,

(3.33)

b
(
u, q

)
= 0 ∀q ∈ Qh, (3.34)

(u(0),v)Ω = (u0,v)Ω ∀v ∈ Xh, (3.35)

where the consistency error E(u,v) = χ(u −Gh
Nuh,v)Ω − χ(u −GNu,v)Ω. Furthermore,

E(u,v) ≤ C
(
δhr + hr+1

)
|u|r+1,Ω‖v‖0,Ω. (3.36)

Proof. Equations (3.34) and (3.35) are clearly satisfied because of (1.8), (1.9), and (1.10) and
the regularity of u. Next, we multiply (1.7) by v and integrate over one mesh element E

(ut,v)E + (∇ · (uu),v)E − ν(Δu,v)E + χ(u −GNu,v)E +
(∇p,v

)
E = (f,v)E. (3.37)

Summing over all elements E

∑

E∈Eh

(ut,v)E + (∇ · (uu),v)Ω − ν
∑

E∈Eh

(Δu,v)E + χ(u −GNu,v)Ω +
(∇p,v

)
Ω = (f,v)Ω. (3.38)

By Green’s formula

−ν
∑

E∈Eh

(Δu,v)E = −ν(Δu,v)Ω = ν
∑

E∈Eh

(∇u,∇v)E − ν
∑

e∈Γh∪∂Ω

∫

e

(∇u)ne · [v]. (3.39)

The regularity of u then yields

−ν
∑

E∈Eh

(Δu,v)E = ν(a(u,v) + J0(u,v)). (3.40)

Note that Green’s formula yields

(∇p,v
)
Ω = b

(
v, p

)
, (3.41)

and that the incompressibility condition with the regularity of u yields

(u · ∇u,v)Ω = cu(u;u,v). (3.42)
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The final result is obtained by bounding the consistency error E(u,v). ForN = 0, we have

E(u,v) ≤
∥∥∥u − uh

∥∥∥
0,Ω

‖v‖0,Ω ≤ C
(
δhr + hr+1

)
|u|r+1,Ω‖v‖0,Ω. (3.43)

For N = 1,

E(u,v) ≤
∥∥∥Gu − (Gh)uh

∥∥∥
0,Ω

‖v‖0,Ω

≤
∥∥∥∥u − uh

h
∥∥∥∥
0,Ω

‖v‖0,Ω

≤
(∥∥∥∥u − u

h
∥∥∥∥
0,Ω

+
∥∥∥∥u

h − uh
h
∥∥∥∥
0,Ω

)
‖v‖0,Ω

≤
(∥∥∥∥u − u

h
∥∥∥∥
0,Ω

+
∥∥∥u − uh

∥∥∥
0,Ω

)
‖v‖0,Ω

≤ C
(
δhr + hr+1

)(∣∣∣u
∣∣∣
r+1,Ω

+ |u|r+1,Ω
)
‖v‖0,Ω.

(3.44)

The bound for E(u,v) is obtained by applying an induction argument and Remark 3.10.

The existence and uniqueness of the discrete solution is stated next.

Proposition 3.13. Assume that Lemma 3.1 holds. Then, there exists a unique solution to (3.30)–
(3.32).

Proof. The existence of uh
0 is trivial. Given uh

n, the problem of finding a unique uh
n+1 satisfying

(3.30)-(3.31) is linear and finite-dimensional. Therefore, it suffices to show uniqueness of the
solution. Consider the problem restricted to the subspace Vh defined by

Vh =
{
v ∈ Xh : b

(
v, q

)
= 0 ∀q ∈ Qh

}
. (3.45)

Let uh
n+1 and ûh

n+1 be two solutions and let θn+1 = uh
n+1 − ûh

n+1. Then, θn+1 satisfies:

1
Δt

(θn+1,v)Ω + ν(a(θn+1,v) + J0(θn+1,v)) + cu
h
n

(
uh
n;θn+1,v

)

+ χ

(
θn+1 −Gh

Nθn+1
h
,v
)

= 0 ∀v ∈ Vh.

(3.46)

Choosing v = θn+1 and using the coercivity result (3.5), positivity result (3.7) and positivity
of the operator I −Gh

NGh given in Assumption DG2, we obtain:

1
Δt

‖θn+1‖20,Ω + νκ‖θn+1‖2X ≤ 0, (3.47)
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which yields that θn+1 = 0. The existence and uniqueness of the pressure phn+1 is then obtained
from the inf-sup condition (3.6).

Some approximation properties of the spaces Xh and Qh are recalled next. From
Crouzeix and Raviart [31], and Girault et al. [16], for each integer r ≥ 1, and for any
v ∈ (H1

0(Ω))2, there is a unique discrete velocity ṽ ∈ Xh such that

b
(
v − ṽ, q

)
= 0 ∀q ∈ Qh. (3.48)

Furthermore, if v ∈ (H1
0(Ω))2 ∩ (Hr+1(Ω))2, there is a constant C independent of h such that

‖v − ṽ‖X ≤ Chr |v|r+1,Ω, (3.49)

|v − ṽ|m,Ω ≤ Chr+1−m|v|r+1,Ω, m = 0, 1. (3.50)

For the pressure space, we use the approximation given by the L2 projection. For any
q ∈ L2

0(Ω), there exists a unique discrete pressure q̃ ∈ Qh such that

(
q − q̃, z

)
Ω = 0 ∀z ∈ Qh. (3.51)

In addition, if q ∈ Hr(Ω), then

∥∥q − q̃
∥∥
m,E ≤ Chr−m∣∣q

∣∣
r,E, ∀E ∈ Eh, m = 0, 1, 2. (3.52)

The discrete Gronwall’s lemma plays an important role in the following analysis.

Lemma 3.14 (Discrete Gronwall’s Lemma (cf. Heywood and Rannacher [32])). LetΔt,H, and
an, bn, cn, γn (for integers n ≥ 0) be nonnegative numbers such that

al + Δt
l∑

n=0

bn ≤ Δt
l∑

n=0

γnan + Δt
l∑

n=0

cn +H for l ≥ 0. (3.53)

Suppose that Δtγn < 1, for all n, and set σn = (1 −Δtγn)
−1. Then,

al + Δt
l∑

n=0

bn ≤ exp

(
Δt

l∑

n=0

σnγn

){
Δt

l∑

n=0

cn +H

}
for l ≥ 0. (3.54)

The family of time relaxation models is a regularization of NSE, and therefore it is
natural to investigate the finite element error between the discretized model and the NSE.
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To that end, we will assume that the solution to the Navier-Stokes equations (w, P) that is
approximated is a strong solution and in particular satisfies (cf. Rivière [13])

(wt,v)Ω + ν(a(w,v) + J0(w,v)) + cw(w;w,v) + b(v, P) = (f,v)Ω ∀v ∈ Xh, (3.55)

b
(
w, q

)
= 0 ∀q ∈ Qh, (3.56)

(
wh

0 ,v
)

Ω
= (u0,v)Ω ∀v ∈ Xh. (3.57)

4. A Priori Error Estimates

In this section, convergence of the scheme (3.30)–(3.32) is proved. Optimal error estimates in
the energy norm are obtained.

Theorem 4.1. Assume that w ∈ l2(0, T ; (Hr+1(Ω))2) ∩ l2(0, T ; (H2N+2(Ω))2, wt ∈ l2(0, T ;
(Hr+1(Ω))2)∩L∞((0, T)×Ω),wtt ∈ L2(0, T ; (H1(Ω))2), p ∈ l2(0, T ;Hr(Ω)) and u0 ∈ (Hr+1(Ω))2.
Assume also that the coercivity Lemma 3.1 holds and thatw satisfies (3.24). If δ is chosen of the order
of h, and Δt < 1, there exists a constant C, independent of h and Δt but dependent on ν−1 such that
the following error bound holds, for any 1 ≤ m ≤ M:

∥∥∥wm − uh
m

∥∥∥
0,Ω

+

(
νκΔt

m∑

n=1

∥∥∥wn − uh
n

∥∥∥
2

X

)1/2

≤ Chr
(
ν−1 + ν + χ + 1

)
+ CΔt + Cχh2N+2.

(4.1)

Remark 4.2. The dependence of these error estimates with respect to the Reynolds number Re
(∼ 1/ν) is O(Re eRe), which is an improvement with respect to the continuous finite element
method where the dependence is O(Re eRe

3
).

Proof. Defining en = uh(tn) −w(tn) and subtracting (3.55) from (3.30), we have

1
Δt

(en+1 − en,v)Ω − (wt(tn+1),v)Ω + ν(a + J0)(en+1,v) + χ
(
en+1 −Gh

Nen+1
h,v

)

Ω

+ cu
h
n

(
uh
n;u

h
n+1,v

)
− cwn+1(wn+1;wn+1,v) + b

(
v, phn+1 − Pn+1

)

= − 1
Δt

(wn+1 −wn,v)Ω − χ
(
wn+1 −Gh

Nwn+1
h,v

)

Ω
∀v ∈ Xh,

(4.2)

b
(
en+1, q

)
= 0 ∀q ∈ Qh. (4.3)

We now decompose the error en = φn − ηn, where φn = uh
n − w̃n and ηn is the interpolation
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error ηn = wn − w̃n. Choosing v = φn+1 in the equation above, using the coercivity result (3.5)
and positivity of the operator I −Gh

NGh, we obtain for (4.2)

1
2Δt

(∥∥φn+1
∥∥2
0,Ω − ∥∥φn

∥∥2
0,Ω

)
+ νκ

∥∥φn+1
∥∥2
X

+ cu
h
n

(
uh
n;u

h
n+1, φn+1

)
− cwn+1

(
wn+1;wn+1, φn+1

) ≤ (
ηt(tn+1), φn+1

)
Ω

+ ν(a + J0)
(
ηn+1, φn+1

)
+
(
w̃t(tn+1) − 1

Δt
(w̃n+1 − w̃n), φn+1

)

Ω

+ χ
(
ηn+1 −Gh

Nηn+1
h, φn+1

)

Ω
− χ

(
wn+1 −Gh

Nwn+1
h, φn+1

)

Ω
+ b

(
φn+1, Pn+1 − phn+1

)
.

(4.4)

Consider now the nonlinear terms from the above equation. First note that since w is
continuous, we can rewrite

cwn+1
(
wn+1;wn+1, φn+1

)
= cu

h
n
(
wn+1;wn+1, φn+1

)
, (4.5)

so, for readability, the superscript wh
n in the c form is dropped. Therefore, adding and

subtracting the interpolant w̃n+1 yields

cu
h
n

(
uh
n,u

h
n+1, φn+1

)
− cu

h
n
(
wn+1,wn+1, φn+1

)

= c
(
uh
n, φn+1, φn+1

)
− c

(
φn,ηn+1, φn+1

)
+ c

(
φn,wn+1, φn+1

)

− c
(
ηn, w̃n+1, φn+1

) − c
(
wn,ηn+1, φn+1

) − c
(
wn+1 −wn,wn+1, φn+1

)
.

(4.6)

Thus, the error equation (4.4) is rewritten as

1
2Δt

(∥∥φn+1
∥∥2
0,Ω − ∥∥φn

∥∥2
0,Ω

)
+ νκ

∥∥φn+1
∥∥2
X + c

(
uh
n, φn+1, φn+1

)

≤ ∣∣c
(
φn,ηn+1, φn+1

)∣∣ +
∣∣c
(
φn,wn+1, φn+1

)∣∣ +
∣∣c
(
ηn, w̃n+1, φn+1

)∣∣

+
∣∣c
(
wn,ηn+1, φn+1

)∣∣ +
∣∣c
(
wn+1 −wn,wn+1, φn+1

)∣∣ +
∣∣(ηt(tn+1), φn+1

)
Ω

∣∣

+
∣∣∣∣
(
w̃t(tn+1) − 1

Δt
(w̃n+1 − w̃n), φn+1

)

Ω

∣∣∣∣ +
∣∣ν(a + J0)

(
ηn+1, φn+1

)∣∣

+
∣∣∣χ
(
ηn+1 −Gh

Nηn+1
h, φn+1

)

Ω

∣∣∣ +
∣∣∣χ
(
wn+1 −Gh

Nwn+1
h, φn+1

)

Ω

∣∣∣ +
∣∣∣b
(
φn+1, Pn+1 − phn+1

)∣∣∣

≤ |T0| + |T1| + · · · + |T10|.
(4.7)

From property (3.7), the term c(wh
n;φn+1, φn+1) in the left-hand side of (4.7) is positive and

therefore it will be dropped. For the other terms of the form c(·, ·, ·) that appear on the right-
hand side of the above error equationwe obtain bounds, exactly as in the proof of Theorem 5.2



16 Advances in Numerical Analysis

in [19] by Kaya and Rivière. The constant C is a generic constant that is independent of h, ν
and Δt, and that takes different values at different places

|T0| =
∣∣c
(
φn,ηn+1, φn+1

)∣∣ ≤ νκ

20
∥∥φn+1

∥∥2
X +

C

ν

∥∥φn

∥∥2
0,Ω,

|T1| =
∣∣c
(
φn,wn+1, φn+1

)∣∣ ≤ νκ

20
∥∥φn+1

∥∥2
X +

C

ν

∥∥φn

∥∥2
0,Ω,

|T2| =
∣∣c
(
ηn, w̃n+1, φn+1

)∣∣ ≤ νκ

20
∥∥φn+1

∥∥2
X +

C

ν
h2r |wn|22r,Ω,

|T3| =
∣∣c
(
wn,ηn+1, φn+1

)∣∣ ≤ νκ

20
∥∥φn+1

∥∥2
X +

C

ν
h2r |wn|22r,Ω,

|T4| =
∣∣c
(
wn+1 −wn,wn+1, φn+1

)∣∣ ≤ νκ

20
∥∥φn+1

∥∥2
X +

C

ν
Δt2‖wt‖2L∞([tn,tn+1]×Ω).

(4.8)

Therefore, we have

|T0| + · · · + |T4| ≤ 5νκ
20

∥∥φn+1
∥∥2
X + Cν−1

∥∥φn

∥∥2
0,Ω + Cν−1h2r |wn|2r+1,Ω + Cν−1Δt2‖wt‖2L∞([tn,tn+1]×Ω).

(4.9)

To bound T5, Cauchy-Schwarz’s inequality, Young’s inequality and the approximation
result (3.50) for wt are applied

|T5| ≤
∥∥φn+1

∥∥
0,Ω

∥∥ηt(tn+1)
∥∥
0,Ω

≤ 1
8
∥∥φn+1

∥∥2
0,Ω + Ch2r+2

∣∣∣wt

(
tn+1

)∣∣∣
2

k+1,Ω
.

(4.10)

To bound the term T6, a Taylor expansion with integral remainder is used

w̃n = w̃n+1 −Δtw̃t(tn+1) +
1
2

∫ tn+1

tn

(s − tn)w̃tt(s)ds. (4.11)

This implies that

∥∥∥∥w̃t(tn+1) − w̃n+1 − w̃n

Δt

∥∥∥∥
2

0,Ω
≤ Δt

6

∫ tn+1

tn

‖w̃tt(s)‖20,Ωds. (4.12)

Thus, with (3.50), we have

|T6| ≤ 1
8
∥∥φn+1

∥∥2
0,Ω + CΔt

∫ tn+1

tn

‖w̃tt(s)‖20,Ωds

≤ 1
8
∥∥φn+1

∥∥2
0,Ω + CΔt

∫ tn+1

tn

‖wtt(s)‖20,Ωds.
(4.13)
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Next, the term T7 is expanded as

|T7| ≤
∣∣∣∣∣ν

∑

E∈Eh

∫

E

∇ηn+1 : ∇φn+1

∣∣∣∣∣ +

∣∣∣∣∣ν
∑

e∈Γh∪∂Ω

∫

e

{∇ηn+1

}
ne ·

[
φn+1

]
∣∣∣∣∣

+

∣∣∣∣∣νεa
∑

e∈Γh∪∂Ω

∫

e

{∇φn+1
}
ne ·

[
ηn+1

]
∣∣∣∣∣ +

∣∣νJ0
(
ηn+1, φn+1

)∣∣

= |T71| + |T72| + |T73| + |T74|.

(4.14)

The term T71 is bounded using Cauchy-Schwarz inequality, Young’s inequality and the
approximation result (3.49)

|T71| ≤ ν
∥∥φn+1

∥∥
X

∥∥ηn+1

∥∥
X

≤ νκ

20
∥∥φn+1

∥∥2
X + Cν

∥∥ηn+1

∥∥2
X

≤ νκ

20
∥∥φn+1

∥∥2
X + Cνh2r |wn+1|2r+1,Ω.

(4.15)

Using Cauchy-Schwarz’s inequality, trace inequality (2.8) and approximation result (3.50),
we have

|T72| ≤ ν
∑

e∈Γh∪∂Ω

∥∥{∇ηn+1}ne

∥∥
0,e

∑

e∈Γh∪∂Ω

∥∥[φn+1]
∥∥
0,e

≤ Cν

(
∑

e∈Γh∪∂Ω

1
|e|

∥∥[φn+1
]∥∥2

0,e

)1/2(∣∣∥∥∇ηn+1

∥∥∣∣
0,Ω + h

∣∣∣
∥∥∥∇2ηn+1

∥∥∥
∣∣∣
0,Ω

)

≤ νκ

20
∥∥φn+1

∥∥2
X + Cνh2r |wn+1|2r+1,Ω.

(4.16)

Using Cauchy-Schwarz’s inequality, trace inequality (2.10), and approximation result (3.49),
we have

|T73| ≤ ν

(
∑

e∈Γh∪∂Ω

∥∥{∇φn+1
}
ne

∥∥2
0,e

)1/2( ∑

e∈Γh∪∂Ω

∥∥[ηn+1

]∥∥2
0,e

)1/2

≤ Cν
∥∥φn+1

∥∥
X

(
∑

e∈Γh∪∂Ω

1
|e|

∥∥[ηn+1

]∥∥2
0,e

)1/2

≤ νκ

20
∥∥φn+1

∥∥2
X + Cνh2r |wn+1|2r+1,Ω.

(4.17)
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Using the approximation result (3.49), we have

|T74| ≤ ν

(
∑

e∈Γh∪∂Ω

σ

|e|
∥∥[φn+1

]∥∥2
0,e

)1/2( ∑

e∈Γh∪∂Ω

σ

|e|
∥∥[ηn+1

]∥∥2
0,e

)1/2

≤ Cν
∥∥φn+1

∥∥
X

∥∥ηn+1

∥∥
X

≤ νκ

20
∥∥φn+1

∥∥2
X + Cνh2r |wn+1|2r+1,Ω.

(4.18)

Putting together the bounds (4.15), (4.16), (4.17) and (4.18),

|T7| ≤ 4
νκ

20
∥∥φn+1

∥∥2
X + Cνh2r |wn+1|2r+1,Ω. (4.19)

For the terms T8 and T9, Cauchy-Schwarz’s inequality, Young’s inequality and bounds (3.13)
and (3.29) are applied

|T8| =
∣∣∣χ
(
ηn+1 −Gh

Nηn+1
h, φn+1

)

Ω

∣∣∣

≤ χ
∥∥∥ηn+1 −Gh

Nηn+1
h
∥∥∥
0,Ω

∥∥φn+1
∥∥
0,Ω

≤ Cχ2
∥∥∥ηn+1 −Gh

Nηn+1
h
∥∥∥
2

0,Ω
+
1
8
∥∥φn+1

∥∥2
0,Ω

≤ C(N)χ2∥∥ηn+1

∥∥2
0,Ω +

1
8
∥∥φn+1

∥∥2
0,Ω

≤ C(N)χ2h2r+2|wn+1|2r+1,Ω +
1
8
∥∥φn+1

∥∥2
0,Ω,

|T9| =
∣∣∣χ
(
wn+1 −Gh

Nwn+1
h, φn+1

)

Ω

∣∣∣

≤ χ
∥∥∥wn+1 −Gh

Nwn+1
h
∥∥∥
0,Ω

∥∥φn+1
∥∥
0,Ω

≤ Cχ2
∥∥∥wn+1 −Gh

Nwn+1
h
∥∥∥
2

0,Ω
+
1
8
∥∥φn+1

∥∥2
0,Ω

≤ Cχ2δ4N+4‖wn+1‖22N+2,Ω + Cχ2
(
δ2h2r + h2r+2

)
|wn+1|2r+1,Ω +

1
8
∥∥φn+1

∥∥2
0,Ω.

(4.20)

Using (4.3) with (3.48) and (3.51), the pressure term T10 is reduced to

|T10| =
∣∣∣b
(
φn+1, pn+1 − p̃n+1

)
+ b

(
φn+1, p̃n+1 − phn+1

)∣∣∣

=
∣∣b
(
φn+1, pn+1 − p̃n+1

)∣∣

=

∣∣∣∣∣
∑

e∈Γh

∫

e

{
pn+1 − p̃n+1

}[
φn+1

] · ne

∣∣∣∣∣,

(4.21)
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which is bounded by using Cauchy-Schwarz’s inequality, Young’s inequality, trace inequality
(2.7) and approximation result (3.52)

|T10| ≤ C

(
∑

e∈Γh∪∂Ω

1
|e|

∥∥[φn+1
]∥∥

0,e

)1/2(∥∥pn+1 − p̃n+1
∥∥
0,Ω + h

∣∣∥∥∇pn+1 − ∇p̃n+1
∥∥∣∣

0,Ω

)

≤ νκ

20
∥∥φn+1

∥∥2
X + Cν−1h2r∣∣pn+1

∣∣2
r,Ω.

(4.22)

With the bounds (4.9), (4.10), (4.13), (4.19), (4.20), and (4.22), the error equation becomes

1
2Δt

(∥∥φn+1
∥∥2
0,Ω − ∥∥φn

∥∥2
0,Ω

)
+
νκ

2
∥∥φn+1

∥∥2
X

≤ +Cν−1
∥∥φn

∥∥2
0,Ω +

1
2
∥∥φn+1

∥∥2
0,Ω + Cν−1Δt2‖wt‖2L∞([tn,tn+1]×Ω)

+ Ch2r+2
∣∣∣wt

(
tn+1

)∣∣∣
2

k+1,Ω
+ CΔt

∫ tn+1

tn

‖wtt(s)‖20,Ωds + Cν−1h2r |wn|2r+1,Ω

+ Cνh2r |wn+1|2r+1,Ω + Cχ2h2r+2‖wn+1‖2r+1,Ω + C
(
χ2

(
δ2h2r + h2r+2

))
|wn+1|2r+1,Ω

+ Cχ2δ4N+4‖wn+1‖22N+2,Ω + Cν−1h2r∣∣pn+1
∣∣2
r,Ω,

(4.23)

where C are constants independent of h, ν and Δt. Now, multiply the equation by 2Δt, sum
from n = 0 to n = m − 1, and use the assumption that δ is chosen of the order of h to obtain

(1 −Δt)
∥∥φm

∥∥2
0,Ω + νκΔt

m−1∑

n=0

∥∥φn+1
∥∥2
X

≤ ∥∥φ0
∥∥2
0,Ω + C

(
ν−1 + 1

)m−1∑

n=0

∥∥φn

∥∥2
0,Ω

+ Ch2rΔt
m−1∑

n=0

(
ν−1|wn|2r+1,Ω +

(
ν + χ2

)
|wn+1|2r+1,Ω + |wt(tn+1)|2r+1,Ω + ν−1

∣∣pn+1
∣∣2
r,Ω

)

+ CΔt2
∫T

0
‖wtt(s)‖21,Ωds + CΔt2ν−1‖wt‖2L∞([0,T]×Ω) + CΔtχ2h4N+4‖wn+1‖22N+2,Ω.

(4.24)

Thus, using Gronwall’s lemma with Δt < 1, there is a constant C independent of h and Δt,
but dependent on ν−1, such that

∥∥φm

∥∥2
0,Ω + νκΔt

m∑

n=1

∥∥φn

∥∥2
X ≤ ∥∥φ0

∥∥2
0,Ω + Ch2r

(
ν−1 + ν + χ2 + 1

)
+ CΔt2 + Cχ2h4N+4. (4.25)
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The final result is then obtained by noting that the term ‖φ0‖20,Ω is of order h2r and by using
triangle inequality and approximation result.

5. Conclusion

In this paper, a numerical scheme for solving the time relaxation family of models based on
approximate deconvolution technique for fluid flow problems is formulated and analyzed.
The proposed method is convergent with optimal convergence rates with respect to the mesh
size. The approximations of the average velocity and pressure are discontinuous piecewise
polynomials. One benefit of using discontinuous elements is that the error estimates depend
on the Reynolds number as O(Re eRe), whereas the dependence is O(Re eRe

3
) for continuous

finite elements (cf. [14]).
The proposed scheme (3.30)–(3.32) contains parameter εa ∈ {−1, 0, 1} in the bilinear

form a(·, ·) for the discretization of the viscous term that yields different numerical
approximations. Only numerical simulations of benchmark problems for high Reynolds
numbers, will help determine which choices of εa are preferred for a given mesh size. This is
the object of a future paper.
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