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A Multistep collocation techniques is used in this paper to develop a 3-point explicit and implicit
block methods, which are suitable for generating solutions of the general second-order ordinary
differential equations of the form y′′ = f(x, y, y′), y(x0) = a, y′(x0) = b. The derivation of
both explicit and implicit block schemes is given for the purpose of comparison of results. The
Stability and Convergence of the individual methods of the block schemes are investigated, and
the methods are found to be 0-stable with good region of absolute stability. The 3-point block
schemes derived are tested on standard mechanical problems, and it is shown that the implicit
block methods are superior to the explicit ones in terms of accuracy.

1. Introduction

In recent times, the integration of Ordinary Differential Equations (ODEs) are carried out
using some kind of block methods. In particular, this paper discusses the general second-
order ODEswhich arise frequently in the area of science, engineering andmechanical systems
and are generally written in the form,

y′′ = f
(
x, y, y′), y(x0) = a, y′(x0) = b. (1.1)

This problem being second order is usually or sometimes solved by reducing the ordinary
differential equation into systems of first-order ordinary differential equations. Thereafter,
known numerical methods, such as Runge-Kutta methods and Linear Multistep Methods
(LMMs), are used to solve them.
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Development of LMM for solving ODEs can be generated using methods such as
Taylor’s Series, numerical integration, and collocation method, which are restricted by an
assumed order of convergence. In this paper, we will follow suite from the previous papers
of Okunuga and Ehigie [1] by deriving our new method in a multistep collocation technique
introduced by Onumanyi et al. [2]. Some researchers have attempted the solution of (1.1)
directly using linear multistep methods without reduction to systems of first-order ordinary
differential equations, they include Brown [3], Onumanyi et al. [4], Ismail et al. [5], and
Ehigie et al. [6].

Block methods for solving Ordinary Differential Equations have initially been
proposed by Milne [7] who used them as starting values for predictor-corrector algorithm,
Rosser [8] developed Milne’s method in form of implicit methods, and Shampine and Watts
[9] also contributed greatly to the development and application of block methods. Fatunla
[10] gave a generalization to blockmethods using some definition inmatrix form uponwhich
the methods derived in this paper will follow.

Hybrid methods, using collocation technique, were discussed by Ehigie et al. [6]
and the continuous linear multistep scheme (CLMS) generated was used to obtain block
schemes that serve as predictor-corrector schemes which were of Stormer-Cowell type.
This collocation method is preferred because it is self-starting and it is convenient for easy
generation of block or parallel schemes. Also the paper will consider various properties and
conditions for a convergent method.

2. Theoretical Procedure

The procedure for the derivation of our methods in a multistep collocation technique is
discussed by the methods in previous papers by Okunuga and Ehigie [1] and Ehigie et al. [6].

Consider the second-order equation

y′′ = f
(
x, y, y′), y(x0) = a, y′(x0) = b. (2.1)

The numerical solution to (2.1) can be obtained using a k-step explicit LinearMultistep
Method (LMM) of the form

k∑

j=0

αjyn+j = h2
k∑

j=0

βjfn+j , (2.2)

where yn+j ≈ y(xn + jh), fn+j ≡ f(xn + jh, y(xn + jh), y′(xn + jh)), and xn is a discrete point
at node point n. Where, αj and βj are parameters to be determined and usually βk = 0 for an
explicit scheme.

Most of the problems encountered in solving the general second-order equation (2.1)
is in the evaluation of the derivative term y′ present in the equation. This often makes
different authors to either reduce the second-order equation to system of first-order ordinary
differential equations or are restricted to solve the equation of the form y′′ = f(x, y), while y′

is set to zero. However, by the introduction a of continuous scheme, this is easily taken care
of. Thus if y(x) is a basis polynomial of the form

y(x) =
p∑

j=0

aj

(
x − xn

h

)j

. (2.3)
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To derive an m point block method, where m is a positive integer, we set p = 2(m − 1)
for an explicit scheme or p = 2m + 1 for an implicit scheme, interpolating (2.3) at points xn+j ,
j = 0, 1, 2, . . . , k, and collocating y′′(x) at points xn+j , j = 0, 1, 2, . . . , k, will result to a (p + 1)
system of equation for arbitrary k, Okunuga and Ehigie [1],

y
(
xn+j
)
= yn+j , j = 0, 1, 2, . . . , k − 1,

f
(
xn+j
)
= fn+j , j = 0, 1, 2, . . . , k.

(2.4)

The coefficients a0, a1, a2, . . . , ap are obtained and substituted in (2.3) to obtain the
Continuous Linear Multistep Scheme (CLMS) of the form

Y (x) =
k−1∑

j=0

αj(x)yn+j + h2
k∑

j=0

βj(x)fn+j . (2.5)

This is evaluated for at xn+i, i = 0, 1, 2, . . . m to obtain an m-point block method
generally represented by Fatunla [10]. With the m-vector Ym and Fm specified as,

Yn =
[
yn+1, yn+2, yn+3, . . . , yn+m

]T
,

Yn−1 =
[
yn, yn−1, yn−2, . . . , yn−m+1

]T
,

Fn−1 =
[
fn, fn−1, fn−2, . . . , fn−m+1

]T
,

Fn =
[
fn+1, fn+2, fn+3, . . . , fn+m

]T
.

(2.6)

The r-block, m-point EBM will be generally represented as

Yn =
r∑

i=0

A(i)Yn−1 + h2
r∑

i=0

B(i)Fn−1, (2.7)

where A(i) and B(i), i = 0, 1, 2, . . . , r, are m × m square matrix with elements ai
lj , b

i
lj for l, j =

1, 2, . . . , m. The block scheme (2.7) is explicit if the coefficient Matrix B(0) is a null matrix.

3. Derivation of Explicit Block Methods

To derive a 1 block 3-point Explicit Block Method (EBM) that is,m = 3, we set p = 4. Let y(x)
be a basis function so that

y(x) =
p∑

j=0

aj

(
x − xn

h

)j

(3.1)



4 Advances in Numerical Analysis

while we interpolate (3.1) at point x = xn and xn−1 and collocate y′′(x) at xn, xn−1, and xn−2 to
obtain a system of equations

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0

1 −1 1 −1 1

0 0 2 0 0

0 0 2 −6 12

0 0 2 −12 48

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

a0

a1

a2

a3

a4

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

yn

yn−1

h2fn

h2fn−1

h2fn−2

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (3.2)

Solving the matrix equation above, we obtain

a0 = yn,

a1 = yn − yn−1 +
7
24

h2fn +
1
4
h2fn−1 − 1

24
h2fn−2,

a2 =
1
2
h2fn,

a3 =
1
4
h2fn − 1

3
h2fn−1 +

1
12

h2fn−2,

a4 =
1
24

h2fn − 1
12

h2fn−1 +
1
24

h2fn−2.

(3.3)

Substituting the values a0, a1, a2, a3, and a4 in (3.1), we obtain the CLMS

y(x) =
(
x − xn

h

)
yn−1 −

((
x − xn

h

)
+ 1
)
yn

+ h2

(
7
24

(
x − xn

h

)
+
1
2

(
x − xn

h

)2

+
1
4

(
x − xn

h

)3

+
1
24

(
x − xn

h

)4
)

fn

+ h2

(
1
4

(
x − xn

h

)
− 1
3

(
x − xn

h

)3

− 1
12

(
x − xn

h

)4
)

fn−1

+ h2

(

− 1
24

(
x − xn

h

)
+

1
24

(
x − xn

h

)3

+
1
24

(
x − xn

h

)4
)

fn−2.

(3.4)

On evaluating (3.4) at points x = xn+i, i = 1, 2, 3, we obtained the convergent explicit
3-point EBM as

yn+1 = −yn−1 + 2yn + h2
(
13
12

fn − 1
6
fn−1 +

1
12

fn−2

)
,

yn+2 = −2yn−1 + 3yn + h2
(
21
4
fn − 7

2
fn−1 +

5
4
fn−2

)
,

yn+3 = −3yn−1 + 4yn + h2
(
31
2
fn − 15fn−1 +

11
2
fn−2

)
.

(3.5)
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Differentiating (3.4) and evaluating again at the same 3 discrete points of i, we obtain
a block of first-order derivatives which can be used to determine the derivative term in the
initial value problem (2.1).

y′
n+1 =

1
h

(
yn − yn−1

)
+ h

(
53
24

fn − 13
12

fn−1 +
3
8
fn−2

)
,

y′
n+2 =

1
h

(
yn − yn−1

)
+ h

(
53
8
fn − 77

12
fn−1 +

55
24

fn−2

)
,

y′
n+3 =

1
h

(
yn − yn−1

)
+ h

(
349
24

fn − 71
4
fn−1 +

161
24

fn−2

)
.

(3.6)

Expressing the schemes (3.5) as block using previous definition (2.7), we obtain

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

yn+1

yn+2

yn+3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 −1 2

0 −2 3

0 −3 4

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

yn−2

yn−1

yn

⎞

⎟⎟
⎠ + h2

⎛

⎜⎜⎜⎜⎜
⎝

1
12

−1
6

13
12

5
4

−7
2

21
4

11
2

−15 31
2

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

fn−2

fn−1

fn

⎞

⎟⎟
⎠. (3.7)

Equation (3.7) is therefore said to be of the form (2.7). Thus (3.7) is represented
notationally as Yn = A(1)Yn−1 + h2B(1)Fn−1.

4. Derivation of Implicit Block Methods

To derive a 1 block 3-point Implicit Block Method (IBM), we also define the following terms:

Yn =
[
yn+1, yn+2, yn+3

]T
,

Yn−1 =
[
yn, yn−1, yn−2

]T
,

Fn =
[
fn+1, fn+2, fn+3

]T
,

Fn−1 =
[
fn, fn−1, fn−2

]T
.

(4.1)

The 3- point IBM will be generally represented as

Yn = A(1)Yn−1 + h2
(
B(1)Fn−1 + B(0)Fn

)
, (4.2)

where A(1), B(0), and B(1) are 3 × 3 square matrix. Let y(x) be a basis function so that

y(x) =
p∑

j=0

aj

(
x − xn

h

)j

. (4.3)
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Setting p = 7 for an implicit 3-point block scheme, we will interpolate (4.3) at points xn and
xn−1 and collocate y′′(x) at 6 points xn+i, i = −2,−1, 0, 1, 2, 3, to obtain a system of equations
represented by the matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 −1 1 −1 1 −1 1 −1
1 0 0 0 0 0 0 0

0 0 2 −12 48 −160 480 −1344
0 0 2 −6 12 −20 30 −42
0 0 2 0 0 0 0 0

0 0 2 6 12 20 30 42

0 0 2 12 48 160 480 1344

0 0 2 18 108 540 2430 10206

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0

a1

a2

a3

a4

a5

a6

a7

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

yn−1

yn

h2fn−2

h2fn−1

h2fn

h2fn+1

h2fn+2

h2fn+3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.4)

Solving the matrix equation, we obtain

a0 = yn,

a1 = yn +
271
2016

h2fn−1 +
1111
2520

h2fn − yn−1 − 451
5040

h2fn+1 +
131
5040

h2fn+2 − 41
5040

h2fn−2,

− 37
10080

h2fn+3,

a2 =
1
2
fn,

a3 = − 1
18

h2fn − 1
24

h2fn+2 +
1

120
h2fn−2 +

1
6
h2fn+1 − 1

12
h2fn−1 +

1
180

h2fn+3,

a4 = − 5
48

h2fn − 1
288

h2fn+2 − 1
288

h2fn−2 +
1
18

h2fn+1 +
1
18

h2fn−1,

a5 =
1
48

h2fn +
7
480

h2fn+2 − 1
480

h2fn−2 − 7
240

h2fn+1 − 1
480

h2fn−1 − 1
480

h2fn+3,

a6 =
1
120

h2fn +
1

720
h2fn+2 +

1
720

h2fn−2 +
1
180

h2fn+1 − 1
180

h2fn−1,

a7 = − 1
504

h2fn − 1
1008

h2fn+2 +
1

5040
h2fn−2 +

1
504

h2fn+1 − 1
1080

h2fn−1 − 1
5040

h2fn+3.

(4.5)

Substituting the ai, i = 0, 1, . . . , 7 in (4.3), we obtain the CLMS,

y(x) = −
(
x − xn

h

)
yn−1 +

((
x − xn

h

)
+ 1
)
yn

+ h2

(

− 451
5040

(
x − xn

h

)
+
1
6

(
x − xn

h

)3

+
1
18

(
x − xn

h

)4

− 7
240

(
x − xn

h

)5

− 1
180

(
x − xn

h

)6

+
1
504

(
x − xn

h

)7
)

fn+1
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+ h2

(

− 131
5040

(
x − xn

h

)
− 1
24

(
x − xn

h

)3

− 1
288

(
x − xn

h

)4

+
7

480

(
x − xn

h

)5

+
1
720

(
x − xn

h

)6

− 1
1008

(
x − xn

h

)7
)

fn+2

+ h2

(

− 37
10080

(
x − xn

h

)
+

1
180

(
x − xn

h

)3

− 1
480

(
x − xn

h

)5

+
1

5040

(
x − xn

h

)7
)

fn+3

+ h2

(

− 41
5040

(
x − xn

h

)
+

1
120

(
x − xn

h

)3

− 1
288

(
x − xn

h

)4

− 1
480

(
x − xn

h

)5

+
1
720

(
x − xn

h

)6

− 1
5040

(
x − xn

h

)7
)

fn−2

+ h2

(
271
2016

(
x − xn

h

)
− 1
12

(
x − xn

h

)3

+
1
18

(
x − xn

h

)4

− 1
480

(
x − xn

h

)5

− 1
180

(
x − xn

h

)6

+
1

1080

(
x − xn

h

)7
)

fn−1

+ h2

(
1111
2520

(
x − xn

h

)
+
1
2

(
x − xn

h

)2

− 1
18

(
x − xn

h

)3

− 1
48

(
x − xn

h

)4

+
1
48

(
x − xn

h

)5

+
1
120

(
x − xn

h

)6

− 1
504

(
x − xn

h

)7
)

fn.

(4.6)

On evaluating (4.6) at points x = xn+1, xn+2 and xn+3, we obtain the 3-point implicit
block Linear Multistep methods

yn+1 = −yn−1 + 2yn + h2
(

1
10

fn+1 − 1
240

fn+2

)
+ h2
(

97
120

fn +
1
10

fn−1 − 1
240

fn−2

)
,

yn+2 = −2yn−1 + 3yn + h2
(
121
120

fn+1 +
11
120

fn+2 − 1
240

fn+3

)
+ h2
(
103
60

fn +
47
240

fn−1 − 1
120

fn−2

)
,

yn+3 = −3yn−1 + 4yn + h2
(
29
15

fn+1 +
127
120

fn+2 +
1
15

fn+3

)
+ h2
(
161
60

fn +
4
15

fn−1 − 1
120

fn−2

)
.

(4.7)

On differentiating (4.6) and evaluating again at the same 3 discrete points of x, we
obtain

y′
n+1 =

1
h

(
yn − yn−1

)
+ h

(
589
1260

fn+1 − 389
10080

fn+2 +
1
252

fn+3

)

+ h

(
5029
5040

fn +
22
315

fn−1 − 1
2016

fn−2

)
,
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y′
n+2 =

1
h

(
yn − yn−1

)
+ h

(
5933
5040

fn+1 +
407
1008

fn+2 − 149
10080

fn+3

)

+ h

(
2063
2520

fn +
1243
10080

fn−1 − 41
5040

fn−2

)
,

y′
n+3 =

1
h

(
yn − yn−1

)
+ h

(
157
252

fn+1 +
14059
10080

fn+2 +
397
1260

fn+3

)

+ h

(
5813
5040

fn +
1
315

fn−1 +
107
10080

fn−2

)
.

(4.8)

The derivative formulae will be used to obtain the first derivative term in (2.1).
Expressing the schemes (4.7) as block using our previous definition according to Fatunla
[10], (4.7) becomes

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

yn+1

yn+2

yn+3

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

0 −1 2

0 −2 3

0 −3 4

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

yn−2

yn−1

yn

⎞

⎟⎟
⎠ + h2

⎛

⎜⎜⎜⎜⎜
⎝

1
10

− 1
240

0

121
120

11
120

− 1
240

29
15

127
120

1
15

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

fn+1

fn+2

fn+3

⎞

⎟⎟
⎠

+ h2

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

− 1
240

1
10

97
120

− 1
120

47
240

103
60

− 1
120

4
15

161
60

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

fn−2

fn−1

fn

⎞

⎟⎟
⎠.

(4.9)

This scheme is also of the form (4.2).

5. Order, Consistency, Stability, and Convergence of the Methods

5.1. Order of the Methods

The methods (3.5) and (4.7) so derived are methods belonging to the class of LMM (2.2). So,
if LMM (2.2) is a method associated with a linear difference operator,

Ł
[
y(x);h

]
=

k∑

j=0

(
αjy
(
x + jh

) − h2βjy
′′(x + jh

))
, (5.1)

where y(x) is an arbitrary function continuously differentiable on the interval [a, b]. The
Taylors series expansion about the point x,

Ł
[
y(x);h

]
= c0y(x) + c1hy

′(x) + c2h
2y′′(x) + · · · + cqh

qy(q)(x), (5.2)
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where

c0 = α0 + α1 + α2 + · · · + αk,

c1 = α1 + 2α2 + · · · + kαk,

c2 =
1
2!

(
α1 + 22α2 + · · · + k2αk

)
− (β1 + β2 + · · · + βk

)
,

...

cq =
1
q!

(α1 + 2qα2 + · · · + kqαk) − 1
(
q − 2

)
!

(
β1 + 2q−2β2 + · · · + kq−2βk

)
,

q = 3, 4, . . . .

(5.3)

Definition 5.1. The method (2.2) is said to be of order p if

c0 = c1 = c2 = · · · = cp+1 = 0, cp+2 /= 0. (5.4)

cp+2 is the error constant and cp+2h
p+2y(p+2)(xn) is the truncation error at point xn.

Applying this definition to the individual methods (3.5) and (4.7) which make up the
block explicit and implicit methods which is of the form (2.2), it is easily verified that each
of the explicit methods (3.5) is of order p = (3, 3, 3)T with error constants [1/12, 4/3, 41/6]T .
Also applying this definitions on the implicit methods (4.7), the implicit method was of order
p = (6, 6, 6)T with error constants [−439/4320,−3479/2880,−1393/180]T .

Definition 5.2. A Linear MultistepMethod of the form (2.2) is said to be consistent if the LMM
is of order p ≥ 1.

Since the methods derived in (3.5) and (4.7) are of order p ≥ 1, therefore, the methods
are consistent according to Definition 5.2.

5.2. 0-Stability of the Method

From literature, it is known that stability of a linear multistep method determines the manner
in which the error is propagated as the numerical computation proceeds. Hence, it would
be necessary to investigate the stability properties of the newly developed methods. In this
paper, the 0-stability and the Region of Absolute Stability (RAS) of themethods are discussed.

Definition 5.3. The first characteristic polynomial, ρ(ξ), associated with the linear multistep
method (2.2), where it is the polynomial of degree k whose coefficients are αj and the second
characteristic polynomial σ(ξ) whose coefficients are βj ,is defined by

ρ(ξ) =
k∑

j=0

αjξ
j , (5.5a)

σ(ξ) =
k∑

j=0

βjξ
j , (5.5b)

where ξ ∈ C, C is a set of complex numbers and a free variable. Stability is determined by the
location of the roots of the characteristic polynomial.
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Definition 5.4. The block method of form (2.7) and (4.2) is said to be 0-stable if the roots ξj ,
j = 1(1)k, of the first characteristic polynomial ρ(ξ) = det[

∑k
i=0 Aiξ

k−1] = 0, A0 = −I, satisfy
|ξ| ≤ 1. If one of the roots is +1, we call the roots the principal roots of ρ(ξ).

Definition 5.5. The Region of Absolute Stability (RAS) of methods of (2.7) and (4.2) is the set

R =
{
h2λ : for that h2λ where the roots of the stability polynomial are

of absolute less than one}.
(5.5)

However, in this paper, the boundary locus method will be used to plot and view the RAS.
This is obtained using the first and second characteristic polynomials as

z(θ) =
ρ
(
eiθ
)

σ
(
eiθ
) . (5.6)

Resolving this to real and imaginary parts and evaluating for values of θ ∈ (0, 2π) give the
region of stability on a graph.

The stability property of the 3-point EBM is determined by applying the scheme (3.7)
to the test problem, y′′ = λy. By setting z = λh2, the block scheme (3.7) becomes

⎛

⎜⎜
⎝

1 0 0

0 1 0

0 0 1

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

yn+1

yn+2

yn+3

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜⎜⎜
⎝

z

12
−1 − z

6
2 +

13z
12

5z
4

−2 − 7z
2

3 +
21z
4

−11z
2

−3 − 15z 4 +
31z
2

⎞

⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜
⎝

yn−2

yn−1

yn

⎞

⎟⎟
⎠. (5.7)

This is of the form Yn = (A(1) + zB(1))Yn−1. The stability polynomial of this is given as

det
(
ξ −
(
A(1) + zB(1)

))
= 0. (5.8)

Hence the stability polynomial of the 3-point EBM (3.7) is

ξ3 + ξ2
(
−145
12

z − 2
)
+ ξ

(
79
4
z2 +

37
6
z + 1

)
+
(
−z3 + 5

4
z2 − 37

12
z

)
= 0. (5.9)

Substituting z = 0 in (5.9), we obtain all the roots of the derived equation to be less than or
equal to 1; hence it shows that the 3-point EBM generated is 0-stable.

Similarly, this is extended to the 3-point implicit block method (IBM) given in (4.9)
and the stability polynomial obtained is

det
(
ξ
(
I − zB(0)

)
−
(
A(1) + zB(1)

))
= 0 (5.10)
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which gives

ξ3
(
− 59
43200

z3 +
11
360

z2 − 31
120

z + 1
)
+ ξ2
(
−11957
21600

z3 − 2153
480

z2 − 679
80

z − 2
)

+ξ
(

89
4320

z3 +
1
15

z2 − 1
4
z + 1

)
−
(

1
21600

z3 − 1
1440

z2 +
137
240

z

)
= 0.

(5.11)

Substituting z = 0 in (5.11), we obtain all the roots of the derived equation to be less than or
equal to 1; hence it shows that the 3-point IBM generated is 0-stable.

Theorem 5.6. The LMM (2.2) is convergent iff it is consistent and 0-Stable.

The proof is given in Fatunla [11] and Lambert [12].
Since the consistency and 0-stability of the methods have been established, then the

explicit block method (3.5) and the implicit block method (4.7) are convergent.
The Region of Absolute Stability (RAS) of the block methods in this paper are drawn

based on the third scheme of the block. The RAS of the linear multistep methods in the EBM
(3.5) is drawn with the Maple software and displayed in Figure 1 below while the RAS for
the implicit block method (4.7) is displayed in Figure 2.

It is observed that the RAS of the IBM is wider in range than the RAS of the EBM. This
means that the implicit schemes will cope with Initial Value Problems better than the EBM in
implementation with a higher step length.

6. Implementation of Schemes Generated

A Matlab code was developed for the implementation of the schemes in Sections 3 and 4
above. The code was designed so that it determines the initial points of the starting block
methods with the analytical solution if it exists.

Thereafter it generated the values for yn+1, yn+2, and yn+3, using the block schemes
directly for the explicit schemes and predictor-corrector technique for the implicit schemes
using a fixed step size h. So for v = 10 corrections, the sequence of computation follows the
P(EC)v, where P , E, and C denote Predicting, Evaluating and Correcting as it is generally
used in Predictor-Corrector modes for numerical computations with a desired accuracy
Lambert [12].

7. Numerical Experiment

7.1. Experimental Problems

In this paper three standard problems are considered and our newly developed methods are
used to solve these problems. The problems are presented below.

Problem 1. Consider the test problem for second-order ODE given by

y′′ = λy, y(0) = y′(0) = 1, with λ = −1, 0 ≤ x ≤ 1. (7.1)
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Figure 1: RAS for the explicit scheme.
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Figure 2: RAS for implicit scheme.

This problem is known to have an analytical solution of y(x) = cosx + sinx, and the
results are presented in Table 1.

Problem 2. The Van der Pol equation which describes the Van der Pol oscillator is the second-
order ODE

y′′ = μ
(
1 − y2

)
y′ − λy, y(0) = A, y′(0) = B, 0 ≤ x ≤ 1. (7.2)

and it assumes some real positive numbers μ and λ. The problem was named after B. Van der
Pol in 1926. This equation has attracted a lot of research attention both in nonlinear mechanics
and control theory. This equation has no solution in terms of known tabulated transcendental
function Fatunla [11]. To solve this directly using the schemes generated, we solve for μ =
10−4, 10−6, and 10−8 with λ = A = B = 1. However, as μ = 0, (7.2) has the analytical solution

y(x) = cos(x) + sin(x). (7.3)

The results are presented using Maximum Error which is given in Table 2.

Problem 3. The third problem is the second order ODE

y′′ = −101y′ − 100y, y(0) = 1, y′(0) = 0, 0 ≤ x ≤ 1, (7.4)

with exact solution

y =
1
99

(
100e−x − e−100x

)
. (7.5)
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Table 1: Result of the test problem (1).

h Explicit max. error Implicit max. error
0.01 5.12 E − 07 6.55 E − 14
0.005 6.30 E − 08 2.12 E − 13
0.0025 7.81 E − 09 1.78 E − 13
0.001 4.95 E − 10 9.43 E − 13
0.0005 5.52 E − 11 8.00 E − 12
0.00025 1.15 E − 11 1.77 E − 11

Table 2: Result of the Van der Pol problem (2).

h

μ = 10−4 μ = 10−6 μ = 10−8

Explicit Implicit Explicit Implicit Explicit Implicit
max. error max. error max. error max. error max. error max. error

0.01 1.15 E − 05 1.10 E − 05 6.22 E − 07 1.10 E − 07 5.13 E − 07 1.10 E − 09
0.005 1.10 E − 05 1.10 E − 05 1.72 E − 07 1.10 E − 07 6.48 E − 08 1.10 E − 09
0.0025 1.10 E − 05 1.10 E − 05 1.17 E − 07 1.10 E − 07 8.90 E − 09 1.10 E − 09
0.001 1.10 E − 05 1.10 E − 05 1.10 E − 07 1.10 E − 07 1.59 E − 09 1.10 E − 09
0.0005 1.10 E − 05 1.10 E − 05 1.10 E − 07 1.10 E − 07 1.16 E − 09 1.10 E − 09
0.00025 1.10 E − 05 1.10 E − 05 1.10 E − 07 1.10 E − 07 1.07 E − 09 1.10 E − 09

Table 3: Result of problem (3).

h Explicit max. error Implicit max. error
0.01 Failed 6.90 E − 06
0.005 Failed 7.05 E − 09
0.0025 Failed 4.34 E − 10
0.001 3.40 E − 06 2.79 E − 12
0.0005 6.17 E − 07 1.10 E − 13
0.00025 9.17 E − 08 5.07 E − 14

The results obtained by using the 3-point EBM and IBM are presented in Table 3.

7.2. Numerical Results

The Numerical results for the solution of the problems illustrated in the previous subsection
will be presented in form of the Maximum Error.

It would be observed that in Problems 2, the explicit methods compare favourably
with the implicit scheme but the accuracy of the methods increases as μ decreases. Whereas
in Problems 1 and 3 the explicit block methods produce a poorer result compared to the
implicit method. However, in Problem 3 the explicit method failed for a step length h = 0.01,
0.005, and 0.0025, while the implicit method shows its superiority by producing results.

8. Conclusion

We have been able to derive some 3-point Implicit and Explicit Block Methods via collocation
multistep technique. This block schemes derived in this paper have been represented in form
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of (2.7), which is a representation given by Fatunla [10]. This representation of the schemes
generated as a single block methods will yield 3 points on implementation. The Order,
Stability, Consistency, and Convergence of these schemes were established as stated. These
derived methods were implemented on standard mechanical problems and their results were
found to be sufficiently accurate for various values of step length.
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