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A new Monte Carlo approach for evaluating the generalized eigenpair of real symmetric matrices
will be proposed. Algorithm for the three smallest eigenpairs based on the partitioning inverse
Monte Carlo iterative (IMCI) method will be considered.

1. Introduction

It is well known that the problem of calculating the largest or smallest generalized eigenvalue
problem is one of the most important problems in science and engineering [1, 2]. This
problem arises naturally in many applications. Mathematically, it is a generalization of the
symmetric eigenvalue problem, and it can be reduced to an equivalent symmetric eigenvalue
problem. Let A,B ∈ �n×n be real symmetric matrices and the matrix B a positive definite
matrix. Consider the problem of evaluating the eigenvalues of the pencil (A,B), that is, the
values for which

Ax = λBx. (1.1)

A generalized eigenvalue problem (1.1) is said to be symmetric positive definite (S/PD) if A
is symmetric and B is positive definite.
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Input:
Initial vector x0

begin

Set λ(1)
1 =

xT
0Ax0

xT
0Bx0

For j = 0, 1, 2, . . .
begin

Solve linear system Azj+1 = Bxj for zj+1

Set λ(j+1)
1 =

zTj+1Azj+1

zTj+1Bzj+1

Set xj+1 =
zj+1

‖zj+1‖
Output: xj , λ

(j)
1

end
end

Algorithm 1

2. Inverse Vector Iteration Method

Another procedure for eigenvalue prediction is to use the Rayleigh quotient given by [3]

λ = μ(x) =
xTAx

xTBx
. (2.1)

since B is positive definite, then (2.1) is well defined.

Theorem 2.1. Suppose that λmin = λ1 < λ2 ≤ · · · ≤ λn−1 < λn = λmax are n eigenvalues for pencil
(A,B) and v1, . . . , vn, corresponding eigenvectors. Then for arbitrary initial vector x one has [3]

λ1 < μ(x) < λn, (2.2)

where μ(x) is as introduced in (2.1).

Theorem 2.2. The inverse vector iteration method for arbitrary choice vector x0 is convergent to the
smallest eigenvalue and corresponding eigenvector for pencil (A,B). Also, the rate of convergence
depends on O(λ2/λ1)

k, where k is number of iterations [3].

Algorithm 1 evaluates the smallest eigenpair based on the inverse vector iteration [4].
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3. Monte Carlo Method for Matrix Computations

Suppose that the matrixA ∈ �n×n and two vectors f, h ∈ �n are given. Consider the following
Markov chain Ti with length i:

Ti : k0 −→ k1 · · · −→ ki, (3.1)

where for j = 1, . . . , i, kj ∈ {1, 2, . . . , n}. The statistical nature of constructing the chain (3.1)
follows as

p(k0 = α) = pα, p
(
kj = β | kj−1 = α

)
= pαβ, (3.2)

where pα and pαβ show the probability of starting chain at α and transition probability from
state α to β, respectively.

In fact

n∑

α=1

pα = 1,
n∑

β=1

pαβ = 1, α = 1, 2, . . . , n. (3.3)

Define the random variableWj using the following recursion for

W0 = 1, Wj = Wj−1
akj−1kj

pkj−1kj
, j = 1, 2, . . . , i. (3.4)

Now, define the following random variable:

Θ[h] =
hk0

pk0

∞∑

j=0

Wjfkj . (3.5)

Theorem 3.1. Consider the following system:

Ax = b. (3.6)

Let the nonsingular matrix M ∈ �n, such that MA = I − L, then the system (3.6) can be presented
in the following form:

x = Lx + f, (3.7)

where f = Mb. Then under conditionMaxi
∑n

j=1 |lij | < 1, one has [5]

E{Θ[h]} = 〈h, x〉. (3.8)
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Suppose that x(i) is the ith iterative solution of the following recursion relation with
x(0) = f . If we set the random variable

Θi[h] =
hk0

pk0

i∑

j=0

Wjfkj , (3.9)

then

E{Θi[h]} =
〈
h, x(i+1)

〉
. (3.10)

By simulating N random paths with length i

T
(s)
i : k(s)

0 −→ k
(s)
1 −→ · · · −→ k

(s)
i , s = 1, 2, . . . ,N, (3.11)

we can find

Θ(s)
i (h) =

hk0

p
(s)
k0

i∑

j=0

W
(s)
j fkj , s = 1, . . . ,N. (3.12)

The Monte Carlo estimation can be evaluated by

Θi =
1
N

N∑

s=1

Θ(s)
i (h) (3.13)

which is an approximation of 〈h, x(i+1)〉.
From all possible permissible densities, we apply the following:

pα =
|hα|∑n
α=1|hα|

,

pαβ =

∣∣aαβ

∣∣
∑n

β=1

∣∣aαβ

∣∣ , α = 1, 2, . . . , n.

(3.14)

The choice of the initial density vector and the transition probability matrix leads to an almost
Optimal Monte Carlo (MAO) algorithm.

Theorem 3.2. Using the above choice p = {pα}nα=1 and P = {pαβ}nα,β=1 the variance of the unbiased
estimator for obtaining the inverse matrix is minimized [4].

There is a global algorithm that evaluates the solution of system (3.6) for everymatrixA.
The complexity of algorithm is O(n2lN), where l and N are the average length of Markov
chian and the number of simulated paths, respectively [2].
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input:
A ∈ Rn×n, f0 ∈ Rn

begin
Starting from initial vector f0
For j = 1, 2, . . .
begin

Using global algorithm, calculate the sequence of Monte Carlo
iterations by solving the following system

Afj = Bfj−1
Set

λ(j) =
〈Afj, hj〉
〈Bfj, hj〉

=
〈Bfj−1, hj〉
〈Bfj, hj〉

Output:
Smallest eigenvector λ(j)

1 , and corresponding eigenvector fj .
end

end

Algorithm 2

4. Inverse Monte Carlo Iterative Algorithm (IMCI)

Inverse Monte Carlo iterative algorithm can be applied when A is a nonsingular matrix. In
this method, we calculate the following functional in each steps:

〈
Afj, hj

〉

〈
Bfj, hj

〉 =

〈
Bfj−1, hj

〉

〈
Bfj , hj

〉 . (4.1)

It is more efficient that we first evaluate the inverse matrix using the Monte Carlo algorithm
[1, 2, 4]. The algorithm can be realized as in Algorithm 2.

5. Partitioning IMCI

Let the matrix A be partitioned into four blocks A1, A2, A3, and A4, where A1 and A4 are
square matrices of order p and q such that p + q = n:

A =

(
A1 A2

A3 A4

)

. (5.1)

By assumption that all the indicated matrix inversions are realized, it is easy to verify that

A−1 =

(
B L

M N

)

, (5.2)
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Partitioning inverse (S, n)
begin:

n = rank(S); p = n/2
A = S[1 : p, 1 : p]; B = S[1 : p, p + 1 : n]
C = S[p + 1 : n, 1 : p]; D = S[p + 1 : n, p + 1 : n]
m = size (A)

ifm ≤ threshold
AA = Monte Carlo procedure (A)

else begin:
AA = Partitioning inverse (A,m)
N = Partitioning inverse (D − C ∗AA ∗ B)
M = −N ∗ C ∗AA; L = −AA ∗ B ∗N
K = AA −AA ∗ B ∗M
SS[1 : p, 1 : p] = K; SS[1 : p, p + 1 : n] = L
SS[p + 1 : n, 1 : p] = M; SS[p + 1 : n, p + 1 : n] = N

end
end

Algorithm 3

where

N =
(
A4 −A3A

−1
1 A2

)−1
, M = −NA3A

−1
1 ,

L = −A−1
1 A2N, K = A−1

1 −A−1
1 A2M.

(5.3)

Thus inverting a matrix of order n comes down to inverting four matrices, of which two
have order p and two have order q, and several matrix multiplications. Therefore the basic
Monte Carlo for solving Afj = Bfj−1 will be called as the dimension of matrix Aand equals
to threshold. This action causes the convergence acceleration. Now, we can use the following
recursion algorithm to obtain the inverse of matrix A (see Algorithm 3).

6. Finding More Than One Generalized Eigenvalues

Assume that an eigenvalue λ1 and its corresponding eigenvector v1 have been computed
using the partitioning IMCI algorithm. In the first step of the above algorithm, we deflate
the matrix A to the matrix B. Then, we repeat again the first step of the algorithm to obtain
the dominant eigenvalue of B which is the second dominant eigenvalue of A. Let p values of
eigenvalues of pencil (A,B) be computed. Suppose that Vp is a matrix such that the columns
of Vp are p vector of eigenvector of pencil (A,B), that is,

Vp =
[
ν1, . . . , νp

]
, (6.1)

where νi is eigenvector corresponding eigevalue λi, i = 1, 2, . . . , p.
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Table 1:Number of chains N = 80.

Dimension Eigenvalues error Eigenvectors error
λ
(1)
1 λ

(2)
1 λ

(3)
1 v

(1)
1 v

(2)
1 v

(3)
1

64 × 64 1.26 × 10−7 4.5 × 10−7 1.26 × 10−6 8.36 × 10−4 .002813 .008154
128 × 128 1.18 × 10−7 4.46 × 10−7 1.33 × 10−6 6.33 × 10−4 .002534 .008074
256 × 256 6.48 × 10−8 4.37 × 10−7 1.51 × 10−6 3.16 × 10−4 .002151 .008070
512 × 512 7.91 × 10−8 2.87 × 10−7 1.72 × 10−6 1.83 × 10−4 .001284 .007759
1024 × 1024 7.04 × 10−8 1.99 × 10−7 1.79 × 10−6 1.06 × 10−4 .000712 .00769
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Figure 1: Computational times for general and partition methods.

Now, let

(
Ap, B

)
=
(
A +

(
BVp

)
Λ
(
BVp

)T
, B

)
, (6.2)

where

Λ = diag{δi − λi}, δi > λp, i = 1, . . . , p. (6.3)

Hence, if we find the pth smallest eigenpair of pencil (A,B), then we can evalute λp+1, that is,
(p + 1)th smallest eigenvalue of pencil (A,B).

7. Numerical Results

In this section, the experimental results for obtaining the three smallest eigenpairs outlined in
Tables 1, 2, and 3. The numerical tests are performed on Intel(R) (Core(TM)2 CPU, 1.83GHz)
personal machine.
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Table 2: The solution when the number of chains increases.

Number of chains Calculated eignvalues
N Exact λ(1)

1 = .74529395 Exact λ(2)
1 = .85537131 Exact λ(3)

1 = .91032740
20 .74737713 .85513704 .91008238
40 .74529979 .85537157 .91034304
80 .74529407 .85537175 .9102873

Table 3: Total computational time for general and partitioning methods.

Dimension Time (Sec.)
General method Partitioning method

20 × 20 .21 .20
40 × 40 .40 .32
60 × 60 .71 .54
80 × 80 1.25 .60
100 × 100 1.83 .75
120 × 120 2.54 1.18
140 × 140 3.67 1.57
160 × 160 4.42 2.04
180 × 180 5.58 2.54
200 × 200 7.20 3.18
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Figure 2: Regression function y = 0.0000658008x + 0.1048607485.

8. Conclusion and Future Study

We have seen that Monte Carlo algorithms can be used for finding more than one eigenpair
of generalized eigenvalue problems.We analyze the computational complexity, speedup, and
efficiency of the algorithm in the case of dealing with sparse matrices. Finally, a new method



Advances in Numerical Analysis 9

for computing eigenpairs as the partitioned method is presented. In Figure 1 the comparison
of computational times between general Monte Carlo algorithm and partitioning algorithm
is shown. The scatter diagram in Figure 2, shows that there is a linear relationship between
matrix dimension (equivalently, the number of matrix elements) and total computational
time for partitioning IMCI.
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