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Two types of approximation schemes are established for incompressible miscible displacements in porous media. First, standard
mixed finite element method is used to approximate the velocity and pressure. And then parallel non-overlapping domain
decomposition methods combined with the characteristics method are presented for the concentration. These methods use the
characteristic method to handle the material derivative term of the concentration equation in the subdomains and explicit flux
calculations on the interdomain boundaries by integral mean method or extrapolation method to predict the inner-boundary
conditions. Thus, the velocity and pressure can be approximated simultaneously, and the parallelism can be achieved for the
concentration equation.The explicit nature of the flux prediction induces a time step limitation that is necessary to preserve stability.
These schemes hold the advantages of nonoverlapping domain decomposition methods and the characteristic method. Optimal
error estimates in 𝐿

2-norm are derived for these two schemes, respectively.

1. Introduction

The two-phase fluid displacements in porous media is one
of the most important basic problems in the oil reservoir
numerical simulation. It is governed by a nonlinear cou-
pled system of partial differential equations with initial and
boundary values. In this paper, we will consider the following
incompressible miscible case: the pressure is governed by
an elliptic equation and the concentration is governed by a
convection-diffusion equation [1–5].

−∇ ⋅ (
𝑘 (𝑥)

𝜇 (𝑐)
(∇𝑝−𝛾 (𝑐) ∇𝑑 (𝑥)))≡∇ ⋅ u=𝑞, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

(1a)

𝜙
𝜕𝑐

𝜕𝑡
+u ⋅ ∇𝑐 − ∇ ⋅ (𝐷 (u) ∇𝑐)=(𝑐̃ − 𝑐) 𝑞̃, 𝑥 ∈ Ω, 𝑡 ∈ 𝐽,

(1b)

u ⋅ 𝜈 = (𝐷 (u) ∇𝑐) ⋅ 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ∈ 𝐽, (1c)

𝑐 (𝑥, 0) = 𝑐
0
(𝑥) , 𝑥 ∈ Ω, (1d)

where Ω is a bounded domain in R2, 𝐽 = (0, 𝑇], and 𝑞̃ =

max{𝑞, 0} is nonzero at injection wells only. The variables in
(1a)–(1d) are the pressure 𝑝(𝑥, 𝑡) in the fluid mixture, the
Darcy velocity u = (𝑢

1
, 𝑢
2
)
󸀠, and the relative concentration

𝑐(𝑥, 𝑡) of the injected fluid. The 𝜈 is the unit outward normal
vector on boundary 𝜕Ω.

The coefficients and data in (1a)–(1d) are 𝑘(𝑥): the
permeability of the porous media; 𝜇(𝑐), the viscosity of the
fluid mixture; 𝑞(𝑥, 𝑡): representing flow rates at wells; 𝛾(𝑐)

and 𝑑(𝑥), the gravity coefficient and vertical coordinate; 𝜙(𝑥):
the porosity of the rock; c̃(𝑥, 𝑡), the injected concentration
at injection wells (𝑞 > 0) and the resident concentration at
production wells (𝑞 < 0). Here, 𝐷(u) is a tensor 2 × 2 matrix
and generally has the form

𝐷 (u) = 𝜙 (𝑥) {𝑑
𝑚
𝐼 + |u| (𝑑𝑙𝐸 (u) + 𝑑

𝑡
𝐸
⊥
(u))} , (2)
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where 2 × 2 matrix 𝐸 = (𝑒
𝑖𝑗
) satisfies 𝑒

𝑖𝑗
= 𝑢

𝑖
𝑢
𝑗
/|u|2,

𝐸
⊥

= 𝐼 − 𝐸, 𝑑
𝑚

is the molecular diffusivity, and 𝑑
𝑙
, 𝑑
𝑡

are longitudinal and transverse dispersivities, respectively.
Furthermore, a compatibility condition ∫

Ω
𝑞(𝑥, 𝑡)𝑑𝑥 = 0

must be imposed to determine the pressure.
The pressure equation is elliptic and easily handled by

standard mixed finite element method, which has been
proven to be an effective numerical method for solving fluid
problems. It has an advantage to approximate the unknown
variable and its diffusive flux simultaneously. There are many
research articles on this method [6–9]. The concentration
equation is parabolic and normally convection dominated.
It is well known that standard Galerkin scheme applied
to the convection dominated problems does not work well
and produces excessive numerical diffusion or nonphysical
oscillation. A variety of numerical techniques have been
introduced to obtain better approximations for (1a)–(1d),
such as characteristic finite difference method [10], charac-
teristic finite element method [11], the modified of charac-
teristic finite element method (MMOC-Galerkin) [12], and
the Eulerian-Lagrangian localized adjoint method (ELLAM)
[13].

It is well known that parallel algorithms, based upon
overlapping or non-overlapping domain decompositions, are
effective ways to solve the large scale of PDE systems for
most practical problems in engineering (e.g., see [14–17]).
We have presented parallel Galerkin domain decomposition
procedures for parabolic equation [18–20]. These procedures
use implicit Galerkinmethods in the subdomains and explicit
flux calculations on the interdomain boundaries by integral
mean method or extrapolation-integral mean method. Some
constraints for time step are still needed for these procedures
to preserve stability, but less severe than that for fully explicit
methods. With respect to the accuracy order of ℎ, 𝐿2-norm
error estimates are optimal for higher-order finite element
spaces and almost optimal for linear finite element space in
twodimensional domain. Compared with Dawson-Dupont’s
schemes [21], these 𝐿

2-norm error estimates avoid the loss of
𝐻
−1/2 factor.
We also have considered using the procedures in [18] for

wave equation [22] and convection-diffusion equation [23].
This paper is one of our sequent research papers. The main
purpose is to use parallel Galerkin domain decomposition
procedures in [18] combined with the characteristic method
for the concentration equation of incompressible miscible
displacements in porous media. This paper is organized as
follows. In Section 2, we first present mixed finite element
method for the velocity and pressure and then formulate
parallel non-overlapping domain decomposition methods
combined with the characteristics method for the concen-
tration. We establish the combined approximation schemes.
Auxiliary lemmas are listed in Section 3, which show some
properties of finite element spaces and projections. In Sec-
tion 4, we derive the optimal-order 𝐿2-norm error estimates.
Finally in Section 5, we extend the consideration for another
approximate scheme by using extrapolation method. It is
worthwhile to specially emphasize that the research of this
paper is creative. No former researchers discussed it. These

schemes not only hold the advantages of non-overlapping
domain decomposition methods, but also hold the advan-
tages of the characteristic method.

2. Formulation of the Methods

In this paper, we adopt notations and norms of usual Sobolev
spaces [3]:

𝐻
𝑚

(Ω) = {𝑓 :
𝜕
|𝛼|

𝑓

𝜕𝑥𝛼
∈ 𝐿
2
(Ω) for |𝛼| ≤ 𝑚} ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑚
= ∑

|𝛼|≤𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
|𝛼|

𝑓

𝜕𝑥𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

, 𝑚 ≥ 0,

𝑊
𝑚

∞
(Ω) = {𝑓 :

𝜕
|𝛼|

𝑓

𝜕𝑥𝛼
∈ 𝐿
∞

(Ω) for |𝛼| ≤ 𝑚} ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑊𝑚
∞

= max
|𝛼|≤𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
|𝛼|

𝑓

𝜕𝑥𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

, 𝑚 ≥ 0.

(3)

In particular, 𝐻0(Ω) and 𝑊
0

∞
(Ω) = 𝐿

∞
(Ω). The inner pro-

duct on 𝐿
2
(Ω) is denoted by (⋅, ⋅).

We also use the following spaces that incorporate time
dependence. Let [𝑎, 𝑏] ⊂ 𝐽 and let 𝑋 be any of the spaces just
defined. For 𝑓(𝑥, 𝑡) suitably smooth on Ω × [𝑎, 𝑏], we let

𝐻
𝑚

(𝑎, 𝑏; 𝑋) = {𝑓 : ∫

𝑏

𝑎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
𝛼
𝑓 (⋅, 𝑡)

𝜕𝑡𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

𝑑𝑡 < ∞, for 𝛼 ≤ 𝑚} ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑚(𝑎,𝑏;𝑋)

= (

𝑚

∑

𝛼=0

∫

𝑏

𝑎

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
𝛼
𝑓 (⋅, 𝑡)

𝜕𝑡𝛼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑋

𝑑𝑡)

1/2

, 𝑚 ≥ 0.

(4)

Similarly,𝑊𝑚
∞

(𝑎, 𝑏; 𝑋) and the norm ‖𝑓‖
𝑊
𝑚

∞
(𝑎,𝑏;𝑋)

are defined.
If [𝑎, 𝑏] = 𝐽, we simplify our notation and write 𝐿

∞
(𝑊
1

∞
) for

𝐿
∞

(0, 𝑇;𝑊
1

∞
(Ω)), and so forth.

If 𝑓 = (𝑓
1
, 𝑓
2
) is a vector function, we note that 𝑓 ∈ 𝑋 if

𝑓
1

∈ 𝑋 and 𝑓
2

∈ 𝑋. We also use the vector-function spaces
and norms:

𝐻
𝑚

(div; Ω) = {𝑓 : 𝑓
1
, 𝑓
2
, ∇ ⋅ 𝑓 ∈ 𝐻

𝑚
(Ω)} ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐻
𝑚
(div;Ω) =

󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩

2

𝑚
+

󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩

2

𝑚
+

󵄩󵄩󵄩󵄩∇ ⋅ 𝑓
󵄩󵄩󵄩󵄩

2

𝑚
, 𝑚 ≥ 0,

𝐻 (div; Ω) = 𝐻
0
(div; Ω) .

(5)

We need some assumptions. The regularity assumptions
on the solution of (1a)–(1d) are noted by [4]:

(𝑃) :

{{

{{

{

𝑐 ∈ 𝐿
∞

(𝐻
2
) ∩ 𝐻

1
(𝐻
1
) ∩ 𝐿

∞
(𝑊
1

∞
) ∩ 𝐻

2
(𝐿
2
) ,

𝑝 ∈ 𝐿
∞

(𝐻
1
) ,

u ∈ 𝐿
∞

(𝐻
1
(div))∩𝐿

∞
(𝑊
1

∞
)∩𝑊

1

∞
(𝐿
∞

)∩𝐻
2
(𝐿
2
) .

(6)
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We also require the following assumptions on the coeffi-
cients in (1a)–(1d) [4]. Let 𝑎

0
, 𝑎
1
, 𝜙
0
, 𝜙
1
, 𝑑
0
, 𝑑
1
,𝐾
1
, and𝐾

2
be

positive constants such that

(𝑄) :

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0 < 𝑎
0
≤

𝑘 (𝑥)

𝜇 (𝑐)
≤ 𝑎
1
, 0 < 𝜙

0
≤ 𝜙 (𝑥) ≤ 𝜙

1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕 (𝑘/𝜇)

𝜕𝑐
(𝑥, 𝑐)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝛾

𝜕𝑐
(𝑥, 𝑐)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨∇𝜙 (𝑥)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑞̃ (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑞̃

𝜕𝑡
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
1
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐷

𝜕u
(u)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝐷
−1

𝜕u
(u)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
2
,

𝑑
0

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

≤

2

∑

𝑖,𝑗=1

𝐷(u) 𝜉
𝑖
𝜉
𝑗
≤ 𝑑

1

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩

2

, ∀𝜉 ∈ R2.

(7)

Further assumptions will be made in individual theorems as
necessary.

For convenience, we assume that (1a)–(1d) is Ω periodic
(see [4]); that is, all functions will be assumed to be spa-
tially Ω-periodic throughout the rest of this paper. This is
physically reasonable, because no-flow conditions (1c) are
generally treated by reflection, and in general, interior flow
patterns are much more important than boundary effects in
reservoir simulation. Thus, the boundary conditions (1c) can
be dropped.

Throughout the analysis, 𝐶 and 𝐾
𝑖
(𝑖 = 3, . . . , 6) will

denote generic positive constants, independent of ℎ
𝑐
, ℎ
𝑝
,

Δ𝑡
𝑐
, and Δ𝑡

𝑝
, but possibly depending on constants in (𝑄),

norms in (𝑃). Similarly, 𝜀 will denote a generic small positive
constant.

2.1. A Mixed Finite Element Method for the Pressure and
Velocity. Let

𝐻 = {𝜒 ∈ 𝐻 (div; Ω) | 𝜒 ⋅ 𝜈 = 0 on 𝜕Ω} , (8)

𝑊 =
𝐿
2
(Ω)

{𝑤 ≡ constant onΩ}
. (9)

As in [4], the pressure equation (1a) is equal to the
following saddle-point problem of finding amap (u, 𝑝) : 𝐽 →

𝐻 × 𝑊 such that

(a) 𝐴 (𝑐; u, 𝑣) + 𝐵 (𝑣, 𝑝)

= (𝛾 (𝑐) ∇𝑑, 𝑣) , ∀𝑣 ∈ 𝐻 (div; Ω) ,

(b) 𝐵 (u, 𝑤) = − (𝑞, 𝑤) , ∀𝑤 ∈ 𝐿
2
(Ω) ,

(10)

where the bilinear forms

𝐴 (𝑐; u, 𝑣) = (
𝜇 (𝑐)

𝑘 (𝑥)
u, 𝑣) ,

𝐵 (𝑣, 𝑝) = − (∇ ⋅ 𝑣, 𝑝) ,

𝐵 (u, 𝑤) = − (∇ ⋅ u, 𝑤) .

(11)

For ℎ
𝑝

> 0, we discrete (10) in space on a quasi-
uniform mesh T

ℎ
𝑝

of Ω with diameter of element ≤ ℎ
𝑝
. Let

𝑉
ℎ
𝑝

× 𝑊
ℎ
𝑝

⊂ 𝐻×𝑊 be Raviart-Thomas spaces [6, 7] of index
𝑙 = 0 for this mesh.

The mixed method for pressure and velocity, given a
concentration approximation 𝐶 at a time 𝑡 ∈ 𝐽, consists of
𝑈 ∈ 𝑉

ℎ
𝑝

and 𝑃 ∈ 𝑊
ℎ
𝑝

such that

𝐴 (𝐶;𝑈, 𝑣) + 𝐵 (𝑣, 𝑃) = (𝛾 (𝑐) ∇𝑑, 𝑣) , ∀𝑣 ∈ 𝑉
ℎ
𝑝

,

𝐵 (𝑈, 𝑤) = − (𝑞, 𝑤) , ∀𝑤 ∈ 𝑊
ℎ
𝑝

.

(12)

Existence and uniqueness of 𝑈 and 𝑃 are proved in [1], based
on ideas of [24].

2.2. A Characteristic DDM for the Concentration. In this
section, we assume 𝑢 in (1a)–(1d) is given. Define

𝑀 = {𝑣 ∈ 𝐿
2
(Ω) | 𝑣 is piecewise constant} ,

𝑀 is dense in 𝐿
2
(Ω) .

(13)

Let

𝜓 (𝑥) = [|u (𝑥)|
2
+ (𝜙 (𝑥))

2

]
1/2

= [(𝑢
1
(𝑥))

2

+ (𝑢
2
(𝑥))

2

+ (𝜙 (𝑥))
2

]
1/2

,

(14)

and let the characteristic direction associated with the opera-
tor 𝜙𝜕𝑐/𝜕𝑡 + u ⋅ ∇𝑐 be denoted by 𝜏, where

𝜓 (𝑥)
𝜕𝑐

𝜕𝜏
= 𝜙 (𝑥)

𝜕𝑐

𝜕𝑡
+ u ⋅ ∇𝑐. (15)

The weak form of (1a)–(1d) is finding a map 𝑐 : 𝐽 →

𝐿
2
(Ω) such that

(a) (𝜓
𝜕𝑐

𝜕𝜏
, 𝜑) + ((𝐷 (u) ∇𝑐) , ∇𝜑)

= ((𝑐̃ − 𝑐) 𝑞̃, 𝜑) , ∀𝜑 ∈ 𝐿
2
(Ω) ,

(b) 𝑐 (𝑥, 0) = 𝑐
0
(𝑥) , ∀𝑥 ∈ Ω.

(16)

Part 𝐽 into 0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑇, withΔ𝑡

𝑛

𝑐
= 𝑡
𝑛
−𝑡
𝑛−1.

The analysis is valid for variable time steps, but we drop the
superscript from Δ𝑡

𝑐
for convenience. For functions 𝑓 on

Ω×𝐽, we write𝑓
𝑛
(𝑥) for𝑓(𝑥, 𝑡

𝑛
). Approximate (𝜕𝑐

𝑛
/𝜕𝜏)(𝑥) =

(𝜕𝑐/𝜕𝜏)(𝑥, 𝑡
𝑛
) by a backward difference quotient in the 𝜏-

direction,

𝜕𝑐
𝑛

𝜕𝜏
(𝑥) ≃

𝑐
𝑛
(𝑥) − 𝑐

𝑛−1
(𝑥 − (u (𝑥) /𝜙 (𝑥)) Δ𝑡

𝑐
)

Δ𝑡
𝑐
√1 + |u (𝑥)|

2
/(𝜙 (𝑥))

2

. (17)

If we let 𝑥 = 𝑥 − (u(𝑥)/𝜙(𝑥))Δ𝑡
𝑐
and 𝑓(𝑥) = 𝑓(𝑥), then

we get

𝜓
𝜕𝑐
𝑛

𝜕𝜏
≃ 𝜙

𝑐
𝑛
− 𝑐
𝑛−1

Δ𝑡
𝑐

. (18)

Since the problem is Ω-periodic [4], 𝑐𝑛−1 is always defined
and the tangent to the characteristic (i.e., the 𝜏 segment)
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ν1

Γ1
Ω1

νΓ

Γ
Ω2 ν2

Γ2

Figure 1: The domain Ω with the interdomain boundary Γ.

cannot cross a boundary to an undefined location. The
difference quotient relates the concentration at a given 𝑥 at
time 𝑡

𝑛 to the concentration that would flow to 𝑥 from time
𝑡
𝑛−1 if the problem were purely hyperbolic.

The time difference (18) will be combined with a charac-
teristic DDM in the space variables. We recall the domain
decomposition procedures in [18] here. For simplicity and
without losing generality, we only discuss the case of two
subdomains. But the algorithms and theories can be extended
to the case of many subdomains. Divide Ω into two subdo-
mains Ω

𝑗
(𝑗 = 1, 2) by an interdomain boundary Γ, which

is a surface of dimension 𝑑 − 1, see Figure 1. We denote by
Γ
𝑗
= 𝜕Ω

𝑗
⋂𝜕Ω the part of the boundary of the subdomains

which coincides with 𝜕Ω. Denote the unit vector normal to Γ

as 𝜈
Γ
, which points from Ω

1
toward Ω

2
.

LetT
𝑗,ℎ
𝑐

be quasi-uniform partitions ofΩ
𝑗
(𝑗 = 1, 2) and

T
ℎ
𝑐

= T
1,ℎ
𝑐

⋃T
2,ℎ
𝑐

. Here, ℎ denotes the maximal element
diameter of T

ℎ
𝑐

. We construct the finite element space M
ℎ
𝑐

onT
ℎ
𝑐

which satisfies the following condition (I)

(1) For 𝑗 = 1, 2, let M
𝑗,ℎ
𝑐

be a finite element subspace of
𝐻
1
(Ω
𝑗
), and let M

ℎc
⊂ 𝐿

2
(Ω) such that if 𝑣 ∈ M

ℎc
,

then 𝑣|
Ω
𝑗

∈ M
𝑗,ℎ
𝑐

.

(2) For 𝑗 = 1, 2, 𝑃
𝑟
(Ω
𝑗
) ⊂ M

𝑗,ℎ
𝑐

, where 𝑃
𝑟
(Ω
𝑗
)

is a polynomial space of degree at most 𝑟.
(3) For 𝑗 = 1, 2, ℎ ∈ (0, 1], the integer 𝑘 ≥ 1,

and 𝑢 ∈ 𝐻
𝑘
(Ω
𝑗
), there exists a positive constant 𝐶

independent of ℎ such that

inf
𝑣∈M
𝑗,ℎ𝑐

‖𝑢 − 𝑣‖𝐻𝑠(Ω
𝑗
)
≤ 𝐶ℎ

𝜎
‖𝑢‖
𝐻
𝑘
(Ω
𝑗
)
, 0 ≤ 𝑠 ≤ 1, (19)

where 𝜎 = min(𝑟 + 1 − 𝑠, 𝑘 − 𝑠).
From the definition above, we note that functions 𝑣 in

M
ℎc
have a well-defined jump [𝑣] on Γ:

[𝑣] (x) = 𝑣 (x+) − 𝑣 (x−) , ∀x on Γ, (20)

where 𝑣(x±) := lim
𝜆→0

±𝑣(x + 𝜆𝜈
Γ
).

To construct parallel algorithm, for a small constant 0 <

𝐻 < min{diam(Ω
1
), diam(Ω

2
)}, we introduce an integral

mean value of a given function𝑉 ∈ 𝐿
2
(Ω) on the interdomain

boundary Γ as

𝑉
𝐻

(x) =
1

2𝐻
∫

𝐻

−𝐻

𝑉 (x+𝜆𝜈
Γ
) 𝑑𝜆, ∀x on Γ. (21)

Furthermore, we define the extrapolation of 𝑉
𝐻
(x) on Γ as

𝑉̂
𝐻

(x) =
4𝑉
𝐻/2

(x) − 𝑉
𝐻

(x)
3

, ∀x on Γ. (22)

Generally, near the intersection of boundary 𝜕Ω and
inner-boundary Γ, the value of 𝑉 outsideΩ is needed for 𝑉

𝐻

and 𝑉̂
𝐻
. If x ∉ Ω, let x̃ ∈ Ω denote the symmetric point of x

with respect to 𝜕Ω. For a given function 𝑢 ∈ 𝐿
2
(Ω), we define

𝐸𝑢 (x) = {
𝑢 (x) , if x ∈ Ω,

𝑢 (x̃) , if x ∉ Ω.
(23)

By (23), we know 𝑉
𝐻

and 𝑉̂
𝐻

have the values on a strip
domain 𝐺 = {y | y = x + 𝜆𝜈

Γ
, 𝜆 ∈ [−𝐻,𝐻], ∀x on Γ}, see

Figure 2.
Now, we present the non-overlapping characteristic

DDM for the concentration equation:

(𝜙
𝐶
𝑛
− 𝐶̂

𝑛−1

Δ𝑡
𝑐

, 𝑣) + (D∇𝐶
𝑛
, ∇𝑣) + (𝑞

𝑛
𝐶
𝑛
, 𝑣)

+ (𝐶
𝑛−1

𝜇,𝐻
, [𝑣])

Γ

+ (𝑣
𝜇,𝐻

, [𝐶
𝑛−1

])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝐶

𝑛−1
] , [𝑣])

Γ
= (𝑞

𝑛
𝑐̃
𝑛
, 𝑣) , ∀𝑣 ∈ M

ℎ
𝑐

,

(24)

where

𝐶̂
𝑛−1

(𝑥) = 𝐶
𝑛−1

(𝑥 −
𝑈
𝑛
(𝑥)

𝜙 (𝑥)
Δ𝑡
𝑐
) ,

𝐶
𝑛−1

𝜇
= (D∇𝐸𝐶

𝑛−1
) ⋅ 𝜈
Γ
.

(25)

The coefficient 𝐾 will be given in Lemma 3.

2.3. The Combined Approximate Schemes. We now present
our sequential time-stepping procedure that combines (24)
and (12). As in [4], let us part 𝐽 into pressure time steps 0 =

𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑀
= 𝑇, with Δ𝑡

𝑚

𝑝
= 𝑡
𝑚

− 𝑡
𝑚−1

. Each pressure
step is also a concentration step; that is, for each𝑚 there exists
𝑛 such that 𝑡

𝑚
= 𝑡
𝑛; in general, Δ𝑡

𝑝
> Δ𝑡

𝑐
. We may vary Δ𝑡

𝑝
,

but except for Δ𝑡
1

𝑝
we drop the superscript. For functions 𝑓

onΩ×𝐽, we write 𝑓
𝑚
(𝑥) for 𝑓(𝑥, 𝑡

𝑚
); thus, subscripts refer to

pressure steps and superscripts to concentration steps.
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ν1

Γ1
Ω1

νΓ

Γ Ω2 ν2

Γ2H

H

Figure 2: The strip domain 𝐺 with width 2𝐻.

If concentration step 𝑡
𝑛 relates to pressure steps by 𝑡

𝑚−1
<

𝑡
𝑛
≤ 𝑡
𝑚
, we require a velocity approximation for (25) based on

𝑈
𝑚−1

and earlier values. If𝑚 ≥ 2, take the linear extrapolation
of 𝑈

𝑚−1
and 𝑈

𝑚−2
defined by

𝐹𝑈
𝑛
= (1 +

𝑡
𝑛
− 𝑡
𝑚−1

𝑡
𝑚−1

− 𝑡
𝑚−2

)𝑈
𝑚−1

−
𝑡
𝑛
− 𝑡
𝑚−1

𝑡
𝑚−1

− 𝑡
𝑚−2

𝑈
𝑚−2

. (26)

If 𝑚 = 1, set

𝐹𝑈
𝑛
= 𝑈

0
. (27)

We retain the superscript on Δ𝑡
1

𝑝
because 𝐹𝑈

𝑛 is first order
correct in time during the first pressure step and second order
during later steps.

The combined time-stepping procedure is finding a
map 𝐶 : {𝑡

0
, 𝑡
1
, . . . , 𝑡

𝑁
} → M

ℎ
𝑐

and a map (𝑈, 𝑃) :

{𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑀
} → 𝑉

ℎ
𝑝

× 𝑊
ℎ
𝑝

such that

𝐶
0
= 𝐶̃

0

, (28a)

𝐴 (𝐶
𝑚
; 𝑈
𝑚
, 𝑧) + 𝐵 (𝑧, 𝑃

𝑚
) = (𝛾 (𝐶

𝑚
) ∇𝑑, 𝑧) , ∀𝑧 ∈ 𝑉

ℎ
𝑝

,

(28b)

𝐵 (𝑈
𝑚
, 𝑤) = − (𝑞

𝑚
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
𝑝

, 𝑚 ≥ 0, (28c)

(𝜙
𝐶
𝑛
− 𝐶̌

𝑛−1

Δ𝑡
𝑐

, 𝑣) + (D∇𝐶
𝑛
, 𝑣) + (𝑞

𝑛
𝐶
𝑛
, 𝑣) + (𝐶

𝑛−1

𝜇,𝐻
, [𝑣])

Γ

+ (𝑣
𝜇,𝐻

, [𝐶
𝑛−1

])
Γ
+ 𝑑
1
𝐾𝐻

−1
([𝐶

𝑛−1
] , [𝑣])

Γ

= (𝑞
𝑛
𝑐̃
𝑛
, 𝑣) , ∀𝑣 ∈ M

ℎ
𝑐

, 𝑛 ≥ 1,

(28d)

where

𝐶̌
𝑛−1

(𝑥) = 𝐶
𝑛−1

(𝑥̌) = 𝐶
𝑛−1

(𝑥 −
𝐹𝑈
𝑛
(𝑥)

𝜙 (𝑥)
Δ𝑡
𝑐
) , (29)

𝐶̃
0 is given by (45).

The steps of the above calculation are as follows:

Step 1.𝐶0 known → solve (𝑈
0
, 𝑃
0
) by (28b) and (28c);

Step 2. On each domain, use (28d) to parallelly
compute {𝐶

𝑗
}
𝑛
1

𝑗=1
until 𝑡𝑛1 = 𝑡

1
;

Step 3. Then by (28b) and (28c) for (𝑈
1
, 𝑃
1
);

Step 4. Calculate the approximations in turn analog-
ically to get the pressure, velocity, and concentration
at other time-step, respectively.

The convergence analysis will make use of an analogue of
𝑥̂ defined for the exact velocity u𝑛. If 𝑓 is a function onΩ, set

𝑓̌ (𝑥) = 𝑓 (𝑥̌) = 𝑓(𝑥 −
𝐹u𝑛 (𝑥)
𝜙 (𝑥)

Δ𝑡
𝑐
) . (30)

The time step 𝑡
𝑛 will be clear from the context.

Remark 1. In the scheme (28a)–(28d), the numerical flux on Γ

is computed explicitly from𝐶
𝑛−1, so that𝐶𝑛 can be computed

on Ω
1
and Ω

2
fully parallel once 𝐶

𝑛−1 has been got.

3. Auxiliary Lemmas

We adopt some auxiliary lemmas about the finite element
spaces, which will be used in the next section.

3.1. For the Pressure andVelocity. TheRaviart-Thomas spaces
𝑉
ℎ
𝑝

× 𝑊
ℎ
𝑝

in Section 2.1 possess the following approximation
and inverse properties [7]:

(𝐴
𝑝
) :

{{{{{{

{{{{{{

{

inf
𝑣∈𝑉
ℎ𝑝

󵄩󵄩󵄩󵄩𝑓 − 𝑣
󵄩󵄩󵄩󵄩 ≤ 𝐾

3
ℎ
𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩1

,

inf
𝑣∈𝑉
ℎ𝑝

󵄩󵄩󵄩󵄩𝑓 − 𝑣
󵄩󵄩󵄩󵄩𝐻(div) ≤ 𝐾

3
ℎ
𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻1(div),

inf
𝑤∈𝑊
ℎ𝑝

󵄩󵄩󵄩󵄩𝑔 − 𝑤
󵄩󵄩󵄩󵄩 ≤ 𝐾

3
ℎ
𝑝

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩1

,

(𝐼
𝑝
) : {

‖𝑣‖
𝐿
∞ ≤ 𝐾

3
ℎ
−1

𝑝
‖𝑣‖ , ∀𝑣 ∈ 𝑉

ℎ
𝑝

,

‖𝑣‖
𝑊
1

∞
(𝑇
𝑝
)
≤ 𝐾

3
ℎ
−1

𝑝
‖𝑣‖𝐿∞(𝑇

𝑝
)
, ∀𝑣 ∈ 𝑉

ℎ
𝑝

,

(31)

where 𝐾
3
is a positive constant independent of ℎ

𝑝
and 𝑇

𝑝
is

an element of the meshT
ℎp
.
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Define the map (𝑈̃, 𝑃̃) : 𝐽 → 𝑉
ℎ
𝑝

× 𝑊
ℎ
𝑝

by (see [7])

𝐴(𝑐; 𝑈̃, 𝑣) + 𝐵 (𝑣, 𝑃̃) = (𝛾 (𝑐) ∇𝑑, 𝑣) , ∀𝑣 ∈ 𝑉
ℎ
𝑝

,

𝐵 (𝑈̃, 𝑤) = − (𝑞, 𝑤) , ∀𝑤 ∈ 𝑊
ℎ
𝑝

,

(32)

where 𝑐 is the exact solution of (1a)–(1d).
By arguments in [1, 24], the map (𝑈̃, 𝑃̃) exists and (𝐴

𝑝
)

implies that
󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑈̃

󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐻(div)) +
󵄩󵄩󵄩󵄩󵄩
𝑝 − 𝑃̃

󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐿2)

≤ 𝐾
4
{ inf
𝑣∈𝑉
ℎ𝑝

‖𝑢 − 𝑣‖𝐻(div) + inf
𝑤∈𝑊
ℎ𝑝

󵄩󵄩󵄩󵄩𝑝 − 𝑤
󵄩󵄩󵄩󵄩}

≤ 𝐾
4
(‖𝑢‖𝐿∞(𝐻1(div)),

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩𝐿∞(𝐻1)

) ℎ
𝑝
.

(33)

The positive constant 𝐾
4
depends on constant in (𝑄) but

independent of ℎ
𝑝
, 𝑢, 𝑝, and 𝑐.

The estimate (33) and (𝐼
𝑝
) imply that

󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐿∞)

≤ 𝐾
5
. (34)

As in [1], comparison of (32) and (12) implies that
󵄩󵄩󵄩󵄩󵄩
𝑈 − 𝑈̃

󵄩󵄩󵄩󵄩󵄩𝐻(div) +
󵄩󵄩󵄩󵄩󵄩
𝑃 − 𝑃̃

󵄩󵄩󵄩󵄩󵄩
≤ 𝐾

6
(1 +

󵄩󵄩󵄩󵄩󵄩
𝑈̃
󵄩󵄩󵄩󵄩󵄩𝐿∞

) ‖𝑐 − 𝐶‖ . (35)

The estimates (33) and (35) will handle the coupling of
concentration and velocity errors in the convergence analysis.

3.2. For the Concentration. In this section, we adopt some
following lemmas [18].

Lemma 2. For smooth enough function 𝑊, there holds esti-
mates:

󵄩󵄩󵄩󵄩󵄩
𝑊
𝐻

− 𝑊
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

≤ √2𝐻‖∇𝑊‖𝐿2(Ω),

󵄩󵄩󵄩󵄩󵄩
𝑊
𝐻

− 𝑊
󵄩󵄩󵄩󵄩󵄩𝐿∞(Γ)

≤ 𝐶𝐻
2
‖𝑊‖𝑊2,∞(Ω),

𝑊 (x) − 𝑊
𝐻

(x)

= −
1

6
𝐻
2
𝑊
𝜈
2

Γ

(x) − 1

120
𝐻
4
𝑊
𝜈
4

Γ

(x) + 𝑜 (𝐻
6
) , ∀x on Γ,

(36)

where 𝑊
𝜈
2

Γ

and 𝑊
𝜈
4

Γ

are the second and fourth normal deriva-
tive of 𝑊 on Γ, respectively.

Lemma 3. Let 𝐺 = {y | y = x + 𝑡𝜈
Γ
, 𝑡 ∈ [−𝐻,𝐻], ∀x 𝑜𝑛 Γ}.

If 𝜓 ∈ 𝐻
1
(Ω) and 𝐻 > 0 is small, one has

󵄩󵄩󵄩󵄩𝐸𝜓
󵄩󵄩󵄩󵄩𝐿2(𝐺)

≤ √𝐾
󵄩󵄩󵄩󵄩𝜓

󵄩󵄩󵄩󵄩𝐿2(Ω)
,

󵄩󵄩󵄩󵄩∇ (𝐸𝜓) ⋅ 𝜈
Γ

󵄩󵄩󵄩󵄩𝐿2(𝐺)
≤ √𝐾

󵄩󵄩󵄩󵄩∇𝜓
󵄩󵄩󵄩󵄩𝐿2(Ω)

,

(37)

where

𝐾 = {
1, if 𝐺 ⊂ Ω,

2, if 𝐺 ̸⊂ Ω.
(38)

Define an elliptic projection ̃̃
𝐶 ∈ M

ℎc
for 𝑐: ∀𝑣 ∈ M

𝑗,ℎc
,

𝑗 = 1, 2,

(D∇
̃̃
𝐶 (𝑡) , ∇𝑣) + (𝑞 (𝑡)

̃̃
𝐶 (𝑡) , 𝑣)

= ((D∇𝑐 (𝑡) , ∇𝑣) + (𝑞 (𝑡) 𝑐 (𝑡) , 𝑣))

=(𝑞 (𝑡) 𝑐 (𝑡)−𝜙
𝜕𝑐

𝜕𝑡
(𝑡)−u (𝑡) ⋅ ∇𝑐 (𝑡) , 𝑣)+(−1)

𝑗+1
(𝑔, 𝑣)

Γ
,

(39)

where 𝑔 = (D∇𝑐) ⋅ 𝜈
Γ
. Let 𝜂 = 𝑐 −

̃̃
𝐶. From [25–28], we see

the following.

Lemma 4. For 𝜂 defined by (39), there holds the following.
𝐿
2-norm error estimate

max
0≤t≤T

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿2(Ω)

+
󵄩󵄩󵄩󵄩𝜂t

󵄩󵄩󵄩󵄩𝐿2(0,𝑇;𝐿2(Ω))

≤ Cℎ
𝑟+1

c {‖𝑢‖L∞(0,𝑇;𝐻𝑟+1(Ω)) +
󵄩󵄩󵄩󵄩𝑢t

󵄩󵄩󵄩󵄩L2(0,𝑇;𝐻𝑟+1(Ω))} ,

(40)

𝐿
∞-norm error estimate
󵄩󵄩󵄩󵄩𝜂

󵄩󵄩󵄩󵄩𝐿∞(Ω)
+

󵄩󵄩󵄩󵄩𝜂t
󵄩󵄩󵄩󵄩L∞(Ω)

≤ Cℎ
2

c
󵄨󵄨󵄨󵄨ln ℎc

󵄨󵄨󵄨󵄨 {‖𝑢‖W2,∞(Ω) +
󵄩󵄩󵄩󵄩𝑢𝑡

󵄩󵄩󵄩󵄩W2,∞(Ω)} ,

if 𝑟 = 1, 𝑑 = 2,

󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿∞(Ω)

+
󵄩󵄩󵄩󵄩𝜂t

󵄩󵄩󵄩󵄩𝐿∞(Ω)

≤ 𝐶ℎ
𝑟+1

𝑐
{‖𝑢‖𝑊𝑟+1,∞(Ω) +

󵄩󵄩󵄩󵄩𝑢𝑡
󵄩󵄩󵄩󵄩𝑊𝑟+1,∞(Ω)

} , if 𝑟 > 1.

(41)

For functions𝜓with restrictions in𝐻
1
(Ω
1
)∪𝐻

1
(Ω
2
), we

define a norm
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

2

= (𝐷∇𝜓, ∇𝜓) + 𝑑
1
𝐾𝐻

−1
([𝜓] , [𝜓])

Γ
. (42)

Lemma 5. There exists a positive constant 𝐶
0

= 1 − (√2/2)

such that for small 𝐻 > 0,

𝐶
0

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

2

≤ (D∇𝜓, ∇𝜓) + d
1
KH−1([𝜓] , [𝜓])

Γ

+ 2(𝜓
𝜇,H, [𝜓])

Γ
, ∀𝜓 ∈ M

ℎ
𝑐

.

(43)

As we have shown, the combined approximation scheme
(28d) includes two terms on the interdomain boundary Γ

by integral mean method to present explicit flux calcula-
tion. These terms are distinct ones different from Dawson-
Dupont’s schemes such that the standard elliptic projection
(39) is insufficient for optimal error estimates. To get optimal
error estimates, we need a new elliptic projection including
terms on Γ. This new elliptic projection 𝐶̃ ∈ M

ℎ
𝑐

of the
solution 𝑐 is defined as

(D∇ (𝑐 − 𝐶̃) , ∇𝑣) + ((𝑐 − 𝐶̃)
𝜇,H

, [𝑣])
Γ

+ (𝑣
𝜇,𝐻

, [𝑐 − 𝐶̃])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝑐 − 𝐶̃] , [𝑣])

Γ
= 0, ∀𝑣 ∈ M

ℎ
𝑐

.

(44)
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It follows from Lemma 5 that the projection problem (44) has
a unique solution for small𝐻. Choose the initial 𝐶̃0 to be the
projections of 𝑐

0
(𝑥) by (44) and take the initial conditions

𝐶
0
= 𝐶̃

0

. (45)

Let

𝜉
𝑛
= 𝑐
𝑛
− 𝐶̃

𝑛

, 𝜃
𝑛
= 𝐶

𝑛
− 𝐶̃

𝑛

. (46)

The following lemma gives the bounds of 𝜉𝑛.

Lemma 6. There holds a priori estimates:

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶 {ℎ
𝑟+1

𝑐
+ 𝐻

1/2󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿∞(Ω)

} , (47)

󵄩󵄩󵄩󵄩𝜉t
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ C {ℎ
r+1
c + 𝐻

1/2󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩𝐿∞(Ω)

} . (48)

4. A Priori Error Estimates in 𝐿
2-Norm

Now, we turn to derive an optimal priori error estimate in 𝐿
2-

norm for the concentration of approximation (28d). Optimal
error estimates for velocity in 𝐻(div; Ω) and pressure in
𝐿
2
(Ω) follow at once from (33) and (35).
It follows from trace theorem in [29] that

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

≤ 𝐶
2

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜓
󵄩󵄩󵄩󵄩1

, ∀𝜓 ∈ 𝐻
1
(Ω) (49)

whichwill be used in the following proof.Then, we can derive
an 𝐿

2
(Ω)-norm error estimate for 𝜃𝑛.

Lemma 7. For 𝜃
𝑛 defined by (46), there holds the following

error estimate:

max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝜃
n󵄩󵄩󵄩󵄩
2

≤ 𝐶{𝐻[max
1≤𝑛≤𝑁

(
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

𝐿
∞
(Ω)

+
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

) +
󵄩󵄩󵄩󵄩𝜂t

󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;L∞(Ω))

+
󵄩󵄩󵄩󵄩𝜂𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2

(0,𝑇;𝐿
2
(Ω))

] + (Δtc)
2

+ 𝐻
5
+ ℎ
2l+2
p

+ℎ
2r+2
c + (Δ𝑡

1

𝑝
)
3

+ (Δ𝑡
𝑝
)
4

} ,

(50)

provided

Δ𝑡 ≤ 𝐶
1
𝐻
2
, C

1
=

𝑑
0
(1 − 𝛿)

2
𝐶
3

0

16𝑑
2

1
K2𝐶2

2

, ∀0 < 𝛿 ≪ 1. (51)

Proof. Combining (39) and (44), we have ∀𝑣 ∈ M,

(𝜙
𝐶̃
𝑛

− 𝐶̃
𝑛−1

Δ𝑡
𝑐

, 𝑣) + (D∇𝐶̃
𝑛

, ∇𝑣) + (𝐶̃

𝑛−1

𝜇,𝐻
, [𝑣])

Γ

+ (𝑣
𝜇,𝐻

, [𝐶̃
𝑛−1

])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝐶̃

𝑛−1

] , [𝑣])
Γ

= (𝐶̃

𝑛−1

𝜇,𝐻
− 𝐶̃

𝑛

𝜇,𝐻
, [𝑣])

Γ

+ (𝑣
𝜇,𝐻

, [𝐶̃
𝑛−1

− 𝐶̃
𝑛

])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝐶̃

𝑛−1

− 𝐶̃
𝑛

] , [𝑣])
Γ

+ (𝑞𝑐̃
𝑛
, 𝑣) − (𝑞

𝑛
𝑐
𝑛
, 𝑣) − (u ⋅ ∇𝑐 + 𝜙

𝜕𝑐
𝑛

𝜕𝑡
, 𝑣)

+ (𝜙
𝐶̃
𝑛

− 𝐶̃
𝑛−1

Δ𝑡
𝑐

, 𝑣) + (𝑐
𝑛

𝜇,𝐻
− 𝑐
𝑛

𝜇
, [𝑣])

Γ
.

(52)

Subtracting (52) from (28d) and taking 𝑣 = 𝜃
𝑛, we adopted

the skill of [4] to obtain

(𝜙
𝜃
𝑛
− 𝜃
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
) + (D∇𝜃

𝑛
, ∇𝜃

𝑛
)

+ 𝑑
1
𝐾𝐻

−1
([𝜃
𝑛
] , [𝜃

𝑛
])
Γ
+ 2(𝜃

𝑛

𝜇,𝐻
, [𝜃
𝑛
])
Γ

= (𝜙
𝜕𝑐
𝑛

𝜕𝑡
+ 𝐹u𝑛 ⋅ ∇𝑐

𝑛
− 𝜙

𝑐
𝑛
− ̌𝑐
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
)

+ ((u𝑛 − 𝐹u𝑛) ⋅ ∇𝑐
𝑛
, 𝜃
𝑛
) + (𝜙

𝜉
𝑛
− 𝜉
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
)

+ {(𝜃
𝑛

𝜇,𝐻
− 𝜃
𝑛−1

𝜇,𝐻
, [𝜃
𝑛
])
Γ

+ (𝜃
𝑛

𝜇,𝐻
, [𝜃
𝑛
− 𝜃
𝑛−1

])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝜃
𝑛
− 𝜃
𝑛−1

] , [𝜃
𝑛
])
Γ

+ (D∇ (𝜉
𝑛
− 𝜉
𝑛−1

) , ∇𝜃
𝑛
) + (𝑐

𝑛

𝜇,𝐻
− 𝑐
𝑛−1

𝜇,𝐻
, [𝜃
𝑛
])
Γ

+(𝑐
𝑛

𝜇
− 𝑐
𝑛

𝜇,𝐻
, [𝜃
𝑛
])
Γ
}

+ (𝜙
𝑐̂
𝑛−1

− ̌𝑐
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
) − (𝜙

𝜉̂
𝑛−1

− 𝜉̌
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
)

+ (𝜙
𝜃̂
𝑛−1

− 𝜃̌
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
) − (𝜙

𝜉̌
𝑛−1

− 𝜉
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
)

+ (𝜙
𝜃̌
𝑛−1

− 𝜃
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
) + (𝑞

𝑛
(𝜉
𝑛
− 𝜃
𝑛
) , 𝜃

𝑛
) .

(53)

Since

(𝜃
𝑛

𝜇,𝐻
, [𝜃
𝑛
− 𝜃
𝑛−1

])
Γ
= (𝜃

𝑛

𝜇,𝐻
, [𝜃
𝑛
])
Γ
− (𝜃

𝑛−1

𝜇,𝐻
, [𝜃
𝑛−1

])
Γ

− (𝜃
𝑛

𝜇,𝐻
− 𝜃
𝑛−1

𝜇,𝐻
, [𝜃
𝑛−1

])
Γ

,

(54)
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by summing (53) over 𝑛 we have

1

2
(𝜙𝜃

𝑛
, 𝜃
𝑛
)

+ Δ𝑡
𝑐
[ (D∇𝜃

𝑛
, ∇𝜃

𝑛
) + 𝑑

1
𝐾𝐻

−1
([𝜃
𝑛
] , [𝜃

𝑛
])
Γ

+ (𝜃
𝑛

𝜇,𝐻
, [𝜃
𝑛
])
Γ
]

+ Δ𝑡
𝑐

𝑛−1

∑

𝑘=1

[ (D∇𝜃
𝑘
, ∇𝜃

𝑘
) + 𝑑

1
𝐾𝐻

−1
([𝜃
𝑘
] , [𝜃

𝑘
])
Γ

+2(𝜃
𝑘

𝜇,𝐻
, [𝜃
𝑘
])
Γ

] =
1

2
(𝜙𝜃

0
, 𝜃
0
)

− Δ𝑡
𝑐
(𝜃
0

𝜇,𝐻
, [𝜃
0
])
Γ

+ Δ𝑡
𝑐

𝑛

∑

𝑘=1

{(𝜃
𝑘

𝜇,𝐻
− 𝜃
𝑘−1

𝜇,𝐻
, [𝜃
𝑘
− 𝜃
𝑘−1

])
Γ

+
𝑑
1
𝐾

𝐻
([𝜃
𝑘
− 𝜃
𝑘−1

] , [𝜃
𝑘
])
Γ

+ (D∇ (𝜉
𝑘
− 𝜉
𝑘−1

) , ∇𝜃
𝑘
)

+ (𝑐
𝑘

𝜇,𝐻
− 𝑐
𝑘−1

𝜇,𝐻
, [𝜃
𝑘
])
Γ

+(𝑐
𝑘

𝜇
− 𝑐
𝑘

𝜇,𝐻
, [𝜃
𝑘
])
Γ
}

−

𝑛

∑

𝑘=1

(𝑞
𝑘
(𝜉
𝑘
− 𝜃
𝑘
) , 𝜃

𝑘
) Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

([𝜙
𝜕𝑐
𝑛

𝜕𝑡
+ 𝐹u𝑛 ⋅ ∇𝑐

𝑛
] − 𝜙

𝑐
𝑛
− ̌𝑐
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

((u𝑘 − 𝐹u𝑘) ⋅ ∇𝑐
𝑘
, 𝜃
𝑘
) Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜉
𝑘
− 𝜉
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝑐̂
𝑛−1

− ̌𝑐
𝑛−1

Δ𝑡
𝑐

, 𝜃
𝑛
)Δ𝑡

𝑐

−

𝑛

∑

𝑘=1

(𝜙
𝜉̂
𝑘−1

− 𝜉̌
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜃̂
𝑘−1

− 𝜃̌
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

−

𝑛

∑

𝑘=1

(𝜙
𝜉̌
𝑘−1

− 𝜉
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜃̌
𝑘−1

− 𝜃
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐
.

(55)

Furthermore, noting that

2(𝜃
𝑛

𝜇,𝐻
, [𝜃
𝑛
])
Γ
≤ 𝜀

󵄩󵄩󵄩󵄩𝜃
𝑛󵄩󵄩󵄩󵄩

2

1,𝐷
+

𝑑
1
𝐾

2𝜀
𝐻
−1󵄩󵄩󵄩󵄩[𝜃

𝑛
]
󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

, (56)

where ‖𝑣‖
2

1,𝐷
= (D∇𝑣, ∇𝑣), and taking 0 < 𝜀 = √2/2 < 1, we

have
1

2

󵄩󵄩󵄩󵄩𝜃
𝑛󵄩󵄩󵄩󵄩

2

+
Δ𝑡
𝑐

2
(1 − 𝐶

0
) ((D∇𝜃

𝑛
, ∇𝜃

𝑛
) + 𝑑

1
𝐾𝐻

−1󵄩󵄩󵄩󵄩[𝜃
𝑛
]
󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

)

+ Δ𝑡
𝑐

𝑛

∑

𝑘=1

[
Δ𝑡
𝑐

2

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶
0
( (D∇𝜃

𝑘
, ∇𝜃

𝑘
)

+𝑑
1
𝐾𝐻

−1󵄩󵄩󵄩󵄩󵄩
[𝜃
𝑘
]
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

) ]

≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝜃
0󵄩󵄩󵄩󵄩󵄩

2

+ Δ𝑡
𝑐

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜃
0

𝜇,𝐻
, [𝜃
0
])
Γ

󵄨󵄨󵄨󵄨󵄨󵄨

+ Δ𝑡
𝑐

𝑛

∑

𝑘=1

[(𝜃
𝑘

𝜇,𝐻
− 𝜃
𝑘−1

𝜇,𝐻
, [𝜃
𝑘
− 𝜃
𝑘−1

])
Γ

+
𝑑
1
𝐾

𝐻
([𝜃
𝑘
− 𝜃
𝑘−1

] , [𝜃
𝑘
])
Γ

+ (D∇ (𝜉
𝑘
− 𝜉
𝑘−1

) , ∇𝜃
𝑘
)

+ (u𝑘
𝜇,𝐻

− u𝑘−1
𝜇,𝐻

, [𝜃
𝑘
])
Γ

+(u𝑘
𝜇
− u𝑘
𝜇,𝐻

, [𝜃
𝑘
])
Γ
]

+ [

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑞
𝑘
𝜃
𝑘
, 𝜃
𝑘
)
󵄨󵄨󵄨󵄨󵄨
Δ𝑡
𝑐
+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
(𝑞
𝑘
𝜉
𝑘
, 𝜃
𝑘
)
󵄨󵄨󵄨󵄨󵄨
Δ𝑡
𝑐
]

+

𝑛

∑

𝑘=1

([𝜙
𝜕𝑐
𝑘

𝜕𝑡
+ 𝐹u𝑘 ⋅ ∇𝑐

𝑘
] − 𝜙

𝑐
𝑘
− ̌𝑐
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

((u𝑘 − 𝐹u𝑘) ⋅ ∇𝑐
𝑘
, 𝜃
𝑘
) Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜉
𝑘
− 𝜉
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝑐̂
𝑘−1

− ̌𝑐
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝜙
𝜉̂
𝑘−1

− 𝜉̌
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Δ𝑡
𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜃̂
𝑘−1

− 𝜃̌
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜉̌
𝑘−1

− 𝜉
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐

+

𝑛

∑

𝑘=1

(𝜙
𝜃̌
𝑘−1

− 𝜃
𝑘−1

Δ𝑡
𝑐

, 𝜃
𝑘
)Δ𝑡

𝑐
.

(57)
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We estimate the terms on the right-hand side of (57) one by
one. We denote the terms as 𝑇

1
, 𝑇
2
, 𝑇
3
, . . . , 𝑇

10
from the third

term on the right-hand side of (57). We turn to analyze them
one by one.

For the term 𝑇
1
, similarly as that of [18], by taking

Δ𝑡
𝑐
≤

𝑑
0
(1 − 𝛿)

2
𝐶
3

0
𝐻
2

16𝑑
2

1
𝐾2𝐶

2

2

, ∀0 < 𝛿 ≪ 1, (58)

we can obtain

󵄨󵄨󵄨󵄨𝑇1
󵄨󵄨󵄨󵄨 ≤

(Δ𝑡
𝑐
)
2

2

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+ 𝐶
0
Δ𝑡
𝑐

𝑛

∑

𝑘=1

[
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷
+ 𝑑
0

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

]

+ (1 − 𝛿) 𝐶
0
Δ𝑡
𝑐

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷

+ (1 − 𝛿) 𝐶
0
Δ𝑡
𝑐

𝑑
1
𝐾

𝐻

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
[𝜃
𝑘
]
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

+ Δ𝑡
𝑐

𝑛

∑

𝑘=1

[
Δ𝑡
𝑐

2
(
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷
+

󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷
)

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑐
𝑘
− 𝑐
𝑘−1󵄩󵄩󵄩󵄩󵄩

2

1,𝐷

+ 𝛿𝐶
0
𝑑
1
𝐾𝐻

−1󵄩󵄩󵄩󵄩󵄩
[𝜃
𝑘
]
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

+𝐶𝐻
5󵄩󵄩󵄩󵄩󵄩

𝑐
𝑘󵄩󵄩󵄩󵄩󵄩

2

𝑊
2,∞
(Ω)

] .

(59)

The analyses of the terms 𝑇
2
, . . . , 𝑇

10
are similar to that of [4]

󵄨󵄨󵄨󵄨𝑇2
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐

𝑛

∑

𝑘=1

(
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

2

) ,

󵄨󵄨󵄨󵄨𝑇3
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐

𝑛

∑

𝑘=1

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2
𝑐

𝜕𝜏2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡𝑘−1,𝑡𝑘;𝐿2)

Δ𝑡
𝑐
+

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

) ,

󵄨󵄨󵄨󵄨𝑇4
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐
(Δ𝑡
𝑝
)
3
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜕
2u

𝜕𝑡2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝑡0 ,𝑡𝑛;𝐿2)

+ 𝐶Δ𝑡
𝑐

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

,

󵄨󵄨󵄨󵄨𝑇5
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐

𝑛

∑

𝑘=1

(ℎ
2𝑟+2

𝑐
‖𝑐‖
2

𝐻
1

(𝑡
𝑘−1
,𝑡
𝑘
;𝐻
𝑟+1

)
+

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

) ,

󵄨󵄨󵄨󵄨𝑇6
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑇7
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑇8
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐
(ℎ
2𝑙+2

𝑝
+ ℎ
2𝑟+2

𝑐
+ (Δ𝑡

𝑐
)
2

(Δ𝑡
1

𝑝
)
3

+(Δ𝑡
𝑝
)
4

) + 𝜖Δ𝑡
𝑐

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1
,

󵄨󵄨󵄨󵄨𝑇9
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑇10
󵄨󵄨󵄨󵄨 ≤ 𝐶Δ𝑡

𝑐
(ℎ
2𝑟+2

𝑐
+

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘−1󵄩󵄩󵄩󵄩󵄩

2

) + 𝜖Δ𝑡
𝑐

𝑛

∑

𝑘=1

󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1
.

(60)

Combining the above analyses, we have

1

2

󵄩󵄩󵄩󵄩𝜃
𝑛󵄩󵄩󵄩󵄩

2

+
Δ𝑡
𝑐

2
(1 − 𝐶

0
) (

󵄩󵄩󵄩󵄩𝜃
𝑛󵄩󵄩󵄩󵄩

2

1,𝐷
+ 𝑑
1
𝐾𝐻

−1󵄩󵄩󵄩󵄩[𝜃
𝑛
]
󵄩󵄩󵄩󵄩

2

𝐿
2
(Γ)

)

≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝜃
0󵄩󵄩󵄩󵄩󵄩

2

+ Δ𝑡
𝑐

󵄨󵄨󵄨󵄨󵄨󵄨
(𝜃
0

𝜇,𝐻
, [𝜃
0
])
Γ

󵄨󵄨󵄨󵄨󵄨󵄨

+𝐶Δ𝑡
𝑐

𝑛

∑

𝑘=1

[Δ𝑡
𝑐
(
󵄩󵄩󵄩󵄩󵄩
𝜃
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷
+
󵄩󵄩󵄩󵄩󵄩
𝜕
𝑡
𝜉
𝑘󵄩󵄩󵄩󵄩󵄩

2

1,𝐷
)+𝐻

5󵄩󵄩󵄩󵄩󵄩
u𝑘󵄩󵄩󵄩󵄩󵄩
2

𝐻
2,∞
(Ω)

]

+ 𝐶 (ℎ
2𝑙+2

𝑝
+ ℎ
2𝑟+2

𝑐
+ (Δ𝑡

𝑐
)
2

+ (Δ𝑡
1

𝑝
)
3

+ (Δ𝑡
𝑝
)
4

) .

(61)

Taking 𝜃
0
= 0, applying the Gronwall Lemma and Lemmas 5

and 6, we can derive (50).

Applying the triangle inequality, Lemmas 4 and 7, we
have the following error theore.

Theorem 8. Suppose that the assumptions (𝑃), (𝑄), (𝐼), (𝐴
𝑝
),

(𝐼
𝑝
) and 𝑟 ≥ 1, 𝑙 ≥ 0 hold. Assume that the discretization

parameters obey the relations

Δ𝑡c = o (ℎp) , ℎ
𝑟+1

𝑐
= O (ℎp) ,

(Δ𝑡
1

𝑝
)
3/2

= O (ℎ
𝑝
) , (Δ𝑡

𝑝
)
2

= O (ℎ
𝑝
) .

(62)

Then for ℎ
𝑐
, ℎ
𝑝
, and Δ𝑡

𝑐
sufficiently small, the errors of the

approximation (28a)–(28d) for (1a)–(1d) satisfy

max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑐
𝑛
− 𝐶

𝑛󵄩󵄩󵄩󵄩 ≤ 𝐶{Δ𝑡
𝑐
+ (Δ𝑡

𝑝
)
2

+ (Δ𝑡
1

𝑝
)
3/2

+ ℎ
𝑟+1

𝑐

+ℎ
𝑙+1

𝑝
+ 𝐻

5/2
} ,

(63)

provided

Δ𝑡
𝑐
≤ 𝐶

1
𝐻
2
, (64)

where 𝐶
1
is given by (51). Here 𝐶 is a positive constant

dependent on (𝑃), (𝑄), (𝐼), (𝐴
𝑝
), (𝐼

𝑝
), ‖𝜕2𝑐/𝜕𝜏2‖, ‖𝜕u/𝜕𝑡‖, and

‖𝜕
2u/𝜕𝑡2‖, but independent of ℎ

𝑐
, ℎ
𝑝
, Δ𝑡
𝑐
, and Δ𝑡

𝑝
.

By combiningTheorem 8 with (33) and (35), we obtain at
once the following result.

Corollary 9. Under the assumption of Theorem 8, the errors
for velocity u, and pressure 𝑝 are obtained by

max
0≤𝑚≤𝑀

(
󵄩󵄩󵄩󵄩u𝑚 − 𝑈

𝑚

󵄩󵄩󵄩󵄩𝐻(div;Ω) +
󵄩󵄩󵄩󵄩𝑝𝑚 − 𝑃

𝑚

󵄩󵄩󵄩󵄩)

≤𝐶{Δ𝑡
𝑐
+(Δ𝑡

𝑝
)
2

+(Δ𝑡
1

𝑝
)
3/2

+ℎ
𝑟+1

𝑐
+ℎ
𝑙+1

𝑝
+ 𝐻

5/2
} .

(65)

Remark 10. As for the accuracy order of ℎc and ℎp, we know
that (63) and (65) are optimal for the concentration 𝑐, the
velocity u and the pressure 𝑝.
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Figure 3: The exact solution 𝑐(𝑥, 𝑦, 𝑡) = 100𝑡𝑥
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Figure 4: Approximate solution of the characteristic-DDM scheme at 𝑡 = 0.5, ℎ = 1/40.
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5. Extensions

To get higher-order accuracy with respect to 𝐻, we apply
the definition (22) to an extrapolation value 𝐶̂

𝐻
(x) on the

interdomain boundary Γ. Similar to the analysis of [18], we
can present another approximate scheme for (1a)–(1d):

(a) 𝐶
0
= 𝐶̃

0

,

(b) 𝐴 (𝐶
𝑚
; 𝑈
𝑚
, 𝑧)+𝐵 (𝑧, 𝑃

𝑚
)=(𝛾 (𝐶

𝑚
) ∇𝑑, 𝑧) , ∀𝑧∈𝑉

ℎ
𝑝

,

(c) 𝐵 (𝑈
𝑚
, 𝑤) = − (𝑞

𝑚
, 𝑤) , ∀𝑤 ∈ 𝑊

ℎ
𝑝

, 𝑚 ≥ 0,

(d) (𝜙
𝐶
𝑛
− 𝐶̌

𝑛−1

Δ𝑡
𝑐

, 𝑣) + (D∇𝐶
𝑛
, 𝑣) + (𝑞

𝑛
𝐶
𝑛
, 𝑣)

+ (𝐶̂
𝑛−1

𝜇,𝐻
, [𝑣])

Γ

+ (𝑣̂
𝜇,𝐻

, [𝐶
𝑛−1

])
Γ

+𝑑
1
𝐾𝐻

−1
([𝐶

𝑛−1
] , [𝑣])

Γ
=(𝑞

𝑛
𝑐̃
𝑛
, 𝑣) , ∀𝑣∈M

ℎ
𝑐

, 𝑛≥1.

(66)

Since the differences between two schemes (28a)–(28d)
and (66) are the second and third term to calculate the flux
on the inner-domain boundary Γ, the convergence analysis of
the scheme (66) is similar to that of the scheme (28a)–(28d).
For the sake of brevity, we describe the processes of analysis
for (66) simply.

The proof of Theorem 15 is based on the following four
lemmas. The former three lemmas are adopted from [18].
We omit the proof of Lemma 14, which is similar to that of
Lemma 7 in Section 4.

Lemma 11. For sufficiently smooth function 𝑊, there holds
estimates:

󵄩󵄩󵄩󵄩󵄩
𝑊̂
𝐻

− 𝑊
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ)

≤
2√2 + 1

3

√2𝐻‖∇𝑊‖𝐿2(Ω),

󵄩󵄩󵄩󵄩󵄩
𝑊̂
𝐻

− 𝑊
󵄩󵄩󵄩󵄩󵄩𝐿∞(Γ)

≤ 𝐶𝐻
4
‖𝑊‖𝑊4,∞(Ω),

𝑊 (x) − 𝑊̂
𝐻

(x) =
1

480
𝐻
4
𝑊
𝜈
4

Γ

(x) + 𝑜 (𝐻
6
) , ∀x 𝑜𝑛 Γ,

(67)

where 𝑊
𝜈
4

Γ

is the fourth normal derivative of 𝑊 on Γ.

For functions𝜓with restrictions in𝐻
1
(Ω
1
)∪𝐻

1
(Ω
2
), we

use the definition of the norm

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

2

= (𝐷∇𝜓, ∇𝜓) + 𝑑
1
𝐾𝐻

−1
([𝜓] , [𝜓])

Γ
. (68)

Lemma 12. There exists a positive constant 𝐶̃
0
= 1 − (2√2/3)

such that for small 𝐻 > 0,

𝐶̃
0

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

2

≤ (𝐷∇𝜓, ∇𝜓) + 𝑑
1
𝐾𝐻

−1
([𝜓] , [𝜓])

Γ

+ 2(𝜓̂
𝜇,𝐻

, [𝜓])
Γ
, ∀𝑣 ∈ M

ℎc
.

(69)

Similarly as the elliptic projection (44), in order to get
optimal error estimates, we introduce an elliptic projection
𝐶̃ ∈ M

ℎc
of the solution 𝑢 as follows:

(𝐷∇ (𝑐 − 𝐶̃) , ∇𝑣) + (𝑐̂
𝜇,𝐻

−
̂̃
𝐶
𝜇,𝐻

, [𝑣])
Γ

+ (𝑣̂
𝜇,𝐻

, [𝑐 − 𝐶̃])
Γ

+ 𝑑
1
𝐾𝐻

−1
([𝑐 − 𝐶̃] , [𝑣])

Γ
= 0, ∀𝑣 ∈ M

ℎc
.

(70)

It follows from Lemma 12 that the projection problem (70)
has a unique solution for small 𝐻.

Let

𝜉
𝑛
= 𝑐
𝑛
− 𝐶̃

𝑛

, 𝜃
𝑛
= 𝐶

𝑛
− 𝐶̃

𝑛

. (71)

The following lemma gives the bounds of 𝜉𝑛.

Lemma 13. There holds a priori estimates:
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩𝐿2(Ω)
≤ 𝐶 {ℎ

𝑟+1

𝑐
+ 𝐻

1/2󵄩󵄩󵄩󵄩𝜂
󵄩󵄩󵄩󵄩𝐿∞(Ω)

} ,

󵄩󵄩󵄩󵄩𝜉𝑡
󵄩󵄩󵄩󵄩𝐿2(Ω)

≤ 𝐶 {ℎ
𝑟+1

𝑐
+ 𝐻

1/2󵄩󵄩󵄩󵄩𝜂𝑡
󵄩󵄩󵄩󵄩𝐿∞(Ω)

} .

(72)

Now, we turn to derive an 𝐿
2
(Ω)-norm error estimate for

𝜃
𝑛.

Lemma 14. For 𝜃
𝑛 defined by (71), there exists the following

error estimate

max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝜃
n󵄩󵄩󵄩󵄩
2

≤ 𝐶{𝐻[max
1≤𝑛≤𝑁

(
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

L∞(Ω) +
󵄩󵄩󵄩󵄩𝜂
𝑛󵄩󵄩󵄩󵄩

2

)

+
󵄩󵄩󵄩󵄩𝜂𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2
(0,𝑇;𝐿

∞
(Ω))

+
󵄩󵄩󵄩󵄩𝜂𝑡

󵄩󵄩󵄩󵄩

2

𝐿
2

(0,𝑇;𝐿
2
(Ω))

]

+ (Δ𝑡
𝑐
)
2

+ 𝐻
9
+ ℎ
2𝑙+2

𝑝
+ ℎ
2r+2
c

+(Δ𝑡
1

𝑝
)
3

+ (Δ𝑡
𝑝
)
4

} ,

(73)

provided

Δ𝑡 ≤ 𝐶̃
1
𝐻
2
, 𝐶̃

1
=

𝑎
0
(1 − 𝛿)

2
𝐶̃
3

0

16𝑎
2

1
𝐾2𝐶

2

2

, ∀0 < 𝛿 ≪ 1. (74)

Theorem 15. Suppose that the assumptions (𝑃), (𝑄), (𝐼), (𝐴
𝑝
),

(𝐼
𝑝
) and 𝑟 ≥ 1, 𝑙 ≥ 0 hold. Assume that the discretization

parameters obey the relations

Δtc = o (ℎ
𝑝
) , ℎ

𝑟+1

𝑐
= O (ℎ

𝑝
),

(Δ𝑡
1

𝑝
)
3/2

= 𝑂 (ℎp) , (Δ𝑡
𝑝
)
2

= 𝑂 (ℎ
𝑝
) .

(75)

Then for ℎc, ℎp and Δ𝑡
𝑐
sufficiently small, the errors of the

approximation (66) for (1a)–(1d) satisfy

max
0≤𝑛≤𝑁

󵄩󵄩󵄩󵄩𝑐
𝑛
− 𝐶

𝑛󵄩󵄩󵄩󵄩

≤ 𝐶{Δ𝑡
𝑐
+ (Δ𝑡

𝑝
)
2

+ (Δ𝑡
1

𝑝
)
3/2

+ ℎ
𝑟+1

𝑐
+ ℎ

l+1
𝑝

+ 𝐻
9/2

} ,

(76)
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Table 1: 𝐿2-norm error estimate of 𝑒
ℎ
= 𝑐 − 𝐶 at time 𝑡 = 0.5.

Grids ℎ 𝐻/ℎ
Characteristic-FEM scheme Characteristic-DDM scheme

‖𝑒
ℎ
‖
𝐿
2 𝛼 ‖𝑒

ℎ
‖
𝐿
2 𝛼

50 × 50 .5000𝑒 − 01 .1826𝑒 + 01 .0921𝑒 − 01 .0878𝑒 − 01

40 × 40 .2500𝑒 − 01 .2091𝑒 + 01 .2448𝑒 − 02 1.9100 .2282𝑒 − 02 1.9439
80 × 80 .1250𝑒 − 01 .2402𝑒 + 01 .6245𝑒 − 03 1.9708 .5781𝑒 − 03 1.9809
160 × 160 .6250𝑒 − 02 .2760𝑒 + 01 .1583𝑒 − 03 1.9800 .1455𝑒 − 03 1.9903

provided

Δ𝑡
𝑐
≤ 𝐶̃

1
𝐻
2
, (77)

where 𝐶̃
1
is given by (74). Here 𝐶 is a positive constant

dependent on (𝑃), (𝑄), (𝐼), (𝐴
𝑝
), (𝐼

𝑝
), ‖𝜕

2
𝑐/𝜕𝜏

2
‖, ‖𝜕u/𝜕𝑡‖,

‖𝜕
2u/𝜕𝑡2‖, but independent of ℎc, ℎp, Δ𝑡

𝑐
and Δ𝑡

𝑝
.

By combining Theorem 15 with (33) and (35), we obtain
at once the following result.

Corollary 16. Under the assumption ofTheorem 15, the errors
for velocity u and pressure 𝑝 are obtained by

max
0≤𝑚≤𝑀

(
󵄩󵄩󵄩󵄩u𝑚 − 𝑈

𝑚

󵄩󵄩󵄩󵄩𝐻(div;Ω) +
󵄩󵄩󵄩󵄩𝑝𝑚 − 𝑃

𝑚

󵄩󵄩󵄩󵄩)

≤ 𝐶{Δ𝑡
𝑐
+ (Δ𝑡

𝑝
)
2

+ (Δ𝑡
1

𝑝
)
3/2

+ ℎ
𝑟+1

𝑐
+ ℎ
𝑙+1

𝑝
+ 𝐻

9/2
} .

(78)

Remark 17. As for the accuracy order of ℎc and ℎ
𝑝
, we know

that (76) and (78) are optimal for the concentration 𝑐, the
velocity u and the pressure 𝑝.

Remark 18. FromTheorem 15, we can know that the scheme
(66) has the same accuracy order as that of the scheme (28a)–
(28d) with respect to Δ𝑡

𝑐
, ℎ
𝑐
and ℎ

𝑝
, except that has an

accuracy of higher order for 𝐻. This shows that the scheme
(66) can use larger width𝐻 of middle strip domain than that
of the scheme (28a)–(28d) so that the time step constraint is
more weaker.

6. Numerical Experiments

In this section, we present some numerical experiments
for the procedures described above. All computer programs
below are written by Fortran 90 code and run on a Lenovo
PC with Intel(R) Core i5 3.2 GHz CPU and 4GB memory.
The resulting linear systems of algebraic equations are solved
by banded Gaussian elimination. Single precision is used for
all calculations.

The main purpose of this paper is to analyze the integral
mean non-overlapping DDM combined with the characteris-
tic method for the concentration equation. There were many
experimental results for the integral mean non-overlapping

DDM in [18–20, 22, 23]. For simplicity, we consider the
following convection dominated diffusion equation

𝜙
𝜕𝑐

𝜕𝑡
+ u ⋅ ∇𝑐 − ∇ ⋅ (D∇𝑐) + 𝑞𝑐 = 𝑓, (𝑥, 𝑡) ∈ Ω × (0,T] ,

𝜕𝑐

𝜕𝜈
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0,T] ,

𝑐
0
= 0, 𝑥 ∈ Ω, 𝑡 = 0,

(79)

where,Ω = [0, 1] × [0, 1], 𝑢
1
= 2+ 𝑥

2

1
, 𝑢
2
= 1+𝑥

2

2
,D = 0.05I,

𝜙 = 0.2, 𝑞 = 2. We choose 𝑓(𝑥, 𝑦, 𝑡) suitably so that the exact
solution of (79) is 𝑐(𝑥, 𝑦, 𝑡) = 100𝑡𝑥

3
(1 − 𝑥)

2 cos(2𝜋𝑦), see
Figure 3.

We consider two scenarios: (1) the characteristic implicit
Galerkin scheme (Charac-teristic-FEM scheme) on uniform
mesh; that is, no domain decomposition; (2) the characteris-
tic integralmeanDDMscheme (Characteristic-DDMscheme)
on global uniform mesh with two equal sub-domains Ω

1
=

(0, 1/2) × (0, 1), Ω
2
= (1/2, 1) × (0, 1), with the interdomain

boundary Γ = {1/2} × (0, 1). In these runs, we approximate
(79) by using linear finite element with 4-node quadrilateral
mesh on 20 × 20, 40 × 40, 80 × 80 and 160 × 160 grids,
respectively. For each dynamic domain decomposition case,
we still take𝐻

5/2
= ℎ
2 to balance error accuracy with respect

to ℎ, 𝐻 and mesh ration Δ𝑡 = 𝐻
5/2 in order to satisfy the

conditional stability due to the explicit calculation of flux on
the interface.

The following Figure 4 presents the approximate solution
of the characteristic integral mean DDM scheme at time 𝑡 =

0.5 with space step size ℎ = 1/40.
Table 1 shows 𝐿

2-norm error estimate of 𝑒
ℎ

= 𝑐 − 𝐶

at time 𝑡 = 0.5, where the error order is choosen as 𝛼 =

log(𝑒
ℎ𝑙
/𝑒
ℎ𝑙−1

)/ log(ℎ
𝑙
/ℎ
𝑙−1

).
Figure 5 shows the convergence order of the characteristic

integral mean DDM scheme.

Remark 19. FromTable 1, we see that the error estimate of the
characteristic integral mean DDM scheme is better than that
of the characteristic implicit Galerkin scheme. From Table 1
and Figure 5, we see that the convergence order is near 2
which is consisting with the analytical results.
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