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Almost block diagonal linear systems of equations can be exemplified by two modules. This makes it possible to construct all
sequential forms of band and/or block elimination methods. It also allows easy assessment of the methods on the basis of their
operation counts, storage needs, and admissibility of partial pivoting.The outcome of the analysis and implementation is to discover
new methods that outperform a well-known method, a modification of which is, therefore, advocated.

1. Introduction

Systems of equations with almost block diagonal (ABD)
matrix of coefficients are frequently encountered in numer-
ical solutions of sets of ordinary or partial differential equa-
tions. Several such situations were described by Amodio et al.
[1], who also reviewed sequential and parallel solvers to ABD
systems and came to the conclusion that sequential solution
methods needed little further study.

Traditionally, sequential solution methods of ABD sys-
tems performed LU decompositions of the matrix of coef-
ficients G through either band (scalar) elimination or block
tridiagonal elimination. The famous COLROW algorithm
[2], which is highly regarded for its performance, was
incorporated in several applications [3–7]. It utilizes Lam’s
alternating column/row pivoting [8] and Varah’s correspond-
ingly alternating column/row scalar elimination [9]. The
efficient block tridiagonal methods included Keller’s Block
Tridiagonal Row (BTDR) elimination method [10, Section
5, case i] and El-Mistikawy’s Block Tridiagonal Column
(BTDC) elimination method [11]. Both methods could apply
a suitable form of Keller’s mixed pivoting strategy [10], which
is more expensive than Lam’s.

The present paper is intended to explore other variants of
the LU decomposition ofG. It does not follow the traditional
approaches of treating the matrix of coefficients as a banded
matrix or casting it into a block tridiagonal form. It, rather,

adopts a new approach, modular analysis, which offers a
simple and unified way of expressing and assessing solution
methods for ABD systems.

The matrix of coefficients G (or, more specifically, its sig-
nificant part containing the nonzero blocks) is disassembled
into an ordered set of modules. (In fact, two different sets of
modules are identified.) Each module Γ is an entity that has
a head and a tail. By arranging the modules in such a way
that the head of a module is added to the tail of the next,
the significant part of G can be reassembled. The module
exemplifies the matrix, but is much easier to analyze.

All possible methods of LU decomposition of G could be
formulated as decompositions of Γ. This led to the discovery
of two new promising methods: Block Column/Block Row
(BCBR) Elimination and Block Column/Scalar Row (BCSR)
Elimination.

The validity and stability of the elimination methods
are of primary concern to both numerical analysts and
algorithm users. Validity means that division by a zero is
never encountered, whereas stability guards against round-
off-error growth. To insure validity and achieve stability,
pivoting is called for [12]. Full pivoting is computationally
expensive requiring full two-dimensional search for the
pivots. Moreover, it destroys the banded form of thematrix of
coefficients. Partial pivoting strategies, though potentially less
stable, are considerably less expensive. Unidirectional (row
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or column) pivoting makes a minor change to the form of
G by introducing few extraneous elements. Lam’s alternating
pivoting [8], which involves alternating sequences of row
pivoting and column pivoting, maintains the form of G.
When G is nonsingular, Lam’s pivoting guarantees validity,
and if followed by correspondingly alternating elimination
it produces multipliers that are bounded by unity, thus
enhancing stability. This approach was proposed by Varah
[9] in his LG̃U decomposition method. It was developed
afterwards into a more efficient LU version—termed here
Scalar Column/Scalar Row (SCSR) Elimination—that was
adopted by the COLROW solver [2].

The present approach of modular analysis shows that
Lam’s pivoting (with Varah’s arrangement) applies to the
BCBR and BCSR elimination methods, as well. It even
applies to the two block tridiagonal elimination methods
BTDR and BTDC, contrary to the common belief. A more
robust, thoughmore expensive strategy, Local Pivoting, is also
identified. It performs full pivoting over the same segments
of G (or Γ) to which Lam’s pivoting is applied. Keller’s mixed
pivoting [10] is midway between Lam’s and local pivoting.

Modular analysis also allows easy estimation of the oper-
ation counts and storage needs, revealing the method with
the best performance on each account. The method having
the least operation count is BCBR elimination, whereas the
method requiring the least storage is BTDC elimination [11].
Both methods achieve savings of leading order importance,
for large block sizes, in comparison with other methods.

Based on the previous assessment, and realizing that
programming factors might affect the performance, four
competing elimination methods were implemented. The
COLROWalgorithm, which was designed to give SCSR elim-
ination its best performance, wasmodified to performBTDC,
BCBR, or BCSR elimination, instead. The four methods
were applied to the same problems, and the execution times
were recorded. BCSR elimination proved to be an effective
modification to the COLROW algorithm.

2. Problem Description

Consider the almost block diagonal system of equationsGz =
g whose augmented matrix of coefficients G+ = [G ... g] has
the form

G
+ =

[[[[[[[[[[[[[[[[
[

𝐶𝑚1 𝐷𝑚1 𝑔𝑚1
𝐴𝑛1 𝐵𝑛1 𝐶𝑛2 𝐷𝑛2 𝑔𝑛1
𝐴𝑚1 𝐵𝑚1 𝐶𝑚2 𝐷𝑚2 𝑔𝑚2
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
... 𝐴𝑛𝑗−1 𝐵𝑛𝑗−1 𝐶𝑛𝑗 𝐷𝑛𝑗 𝑔𝑛𝑗−1
... 𝐴𝑚𝑗−1 𝐵𝑚𝑗−1 𝐶𝑚𝑗 𝐷𝑚𝑗 𝑔𝑚𝑗

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
... 𝐴𝑛𝐽−1 𝐵𝑛𝐽−1 𝐶𝑛𝐽 𝐷𝑛𝐽 𝑔𝑛𝐽−1
... 𝐴𝑚𝐽−1 𝐵𝑚𝐽−1 𝐶𝑚𝐽 𝐷𝑚𝐽 𝑔𝑚𝐽

𝐴𝑛𝐽 𝐵𝑛𝐽 𝑔𝑛𝐽

]]]]]]]]]]]]]]]]
]
(1)

The blocks with leading characters 𝐴, 𝐵, 𝐶, and 𝐷 have 𝑚,𝑛, 𝑚, and 𝑛 columns, respectively. The blocks with leading
character 𝑔 have 𝑟 columns indicating as many right-hand
sides. The trailing character 𝑚 or 𝑛 (and subsequently 𝑝 =𝑚 + 𝑛) indicates the number of rows of a block or the order
of a square matrix such as an identity matrix 𝐼 and a lower 𝐿
or an upper𝑈 triangular matrix. Blanks indicate zero blocks.

The matrix of unknowns z is written, similarly, as

z = [𝑧𝑚𝑡1 𝑧𝑛𝑡1 𝑧𝑚𝑡2 𝑧𝑛𝑡2 ⋅ ⋅ ⋅ 𝑧𝑚𝑡𝑗 𝑧𝑛𝑡𝑗 ⋅ ⋅ ⋅ 𝑧𝑚𝑡𝐽 𝑧𝑛𝑡𝐽]𝑡, (2)

where the superscript 𝑡 denotes the transpose.
Such a system of equations results, for example, in the

finite difference solution of 𝑝 first order ODEs on a grid of𝐽 points with 𝑚 conditions at one side to be marked with𝑗 = 1 and 𝑛 conditions at the other side that is to be marked
with 𝑗 = 𝐽. Then, each column of the submatrix [𝑧𝑚𝑡𝑗 𝑧𝑛𝑡𝑗]𝑡
contains the𝑝 unknowns of the 𝑗th grid point, corresponding
to a right-hand side.

3. Modular Analysis

The description of the decomposition methods for the aug-
mented matrix of coefficients G+ can be made easy and
concise through the introduction of modules of G+. Two
different modules are identified:

The Aligned Module (A-Module)

Γ+𝐴𝑗 ≡ [Γ𝐴𝑗 𝛾𝐴𝑗 ]

= [[[[
[

𝐶𝑚#𝑗 𝐷𝑚#𝑗 𝑔𝑚#𝑗𝐴𝑛𝑗 𝐵𝑛𝑗 𝐶𝑛𝑗+1 𝐷𝑛𝑗+1 𝑔𝑛𝑗
𝐴𝑚𝑗 𝐵𝑚𝑗 𝐶𝑚⇒𝑗+1 𝐷𝑚⇒𝑗+1 𝑔𝑚⇒𝑗+1

]]]]
]𝑗 = 1 ⟶𝐽 − 1.

(3)

The Displaced Module (D-Module)

Γ+𝐷𝑗 ≡ [Γ𝐷𝑗 𝛾𝐷𝑗 ]

𝑗 = 1 ⟶𝐽 − 2.

=
[[[[[[[[
[

𝐵𝑛#𝑗 𝐶𝑛𝑗+1 𝐷𝑛𝑗+1 𝑔𝑛#𝑗𝐵𝑚#𝑗 𝐶𝑚𝑗+1 𝐷𝑚𝑗+1 𝑔𝑚#𝑗+1
𝐴𝑛𝑗+1 𝐵𝑛⇒𝑗+1 𝑔𝑛⇒𝑗+1
𝐴𝑚𝑗+1 𝐵𝑚⇒𝑗+1 𝑔𝑚⇒𝑗+2

]]]]]]]]
]

(4)

(For convenience, we will occasionally drop the subscript
and/or superscript identifying a module and its components
(given later), as well as the subscript identifying its blocks.)

As a rule, the dotted line defines the partitioning to left
and right entities. The dashed lines define the partitioning

Γ+𝑗 ≡ [
[
𝜎𝑗 𝜙+𝑗𝜓𝑗 𝜂+𝑗 ]] (5)
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to the following components: the stem 𝜎𝑗, the head 𝜂+𝑗 ≡
[𝜂𝑗 ... 𝜃𝑗], and the fins 𝜓𝑗 and 𝜙+𝑗 ≡ [𝜙𝑗 ... 𝜌𝑗].

Each module has a tail 𝜏+𝑗 ≡ [𝜏𝑗 ... 𝜆𝑗]. For Γ+𝐴𝑗 , 𝜏+𝐴𝑗 =
[𝐶𝑚#
𝑗 𝐷𝑚#

𝑗

... 𝑔𝑚#
𝑗] which is defined through the head-tail

relation

𝜂+𝐴𝑗−1 + 𝜏+𝐴𝑗 = [𝐶𝑚𝑗 𝐷𝑚𝑗 𝑔𝑚𝑗]. (6)

For 𝜏+𝐷𝑗 = [
[
𝐵𝑛#𝑗 𝑔𝑛#𝑗𝐵𝑚#𝑗 𝑔𝑚#𝑗+1

]
]Γ+𝐷𝑗 ,        which is, likewise, defined

through the head-tail relation

𝜂+𝐷𝑗−1 + 𝜏+𝐷𝑗 = .[𝐵𝑛𝑗 𝑔𝑛𝑗𝐵𝑚𝑗 𝑔𝑚𝑗+1] (7)

This makes it possible to construct the significant part
of G+ by arranging each set of modules in such a way that
the tail of Γ+𝑗 adds to the head of Γ+𝑗−1, for 𝑗 = 0 → 𝐽.
Minor adjustments need only to be invoked at both ends of
G+. Specifically, we define the truncated modules

Γ+𝐴𝐽 = ,[
[
𝐶𝑚#𝐽 𝐷𝑚#𝐽 𝑔𝑚#𝐽𝐴𝑛𝐽 𝐵𝑛𝐽 𝑔𝑛𝐽 ]]

Γ+𝐷0 = ,[[[[
[

𝐶𝑚1 𝐷𝑚1 𝑔𝑚1𝐴𝑛1 𝐵𝑛⇒1 𝑔𝑛⇒1
𝐴𝑚1 𝐵𝑚⇒1 𝑔𝑚⇒2

]]]]
]

Γ+𝐷𝐽−1 = ,[[[[
[

𝐵𝑛#𝐽−1 𝐶𝑛𝐽 𝐷𝑛𝐽 𝑔𝑛#𝐽−1𝐵𝑚#𝐽−1 𝐶𝑚𝐽 𝐷𝑚𝐽 𝑔𝑚#𝐽
𝐴𝑛𝐽 𝐵𝑛⇒𝐽 𝑔𝑛⇒𝐽

]]]]
]

= [𝐵𝑛#𝐽 𝑔𝑛#𝐽].Γ+𝐷𝐽

Γ+𝐴0 ≡ 𝜂+𝐴0 = 0,

(8)

The head of the module Γ+ is yet to be defined. It is taken
to be related to the other components of Γ+ by

𝜂+ = 𝜓𝜎−1𝜙+, (9)

in order to allow for decompositions of Γ+ having the form
Γ+ = 𝜇𝜈+ = [𝑀Ψ] [𝑁 Φ+]. (10)

The generic relations 𝜎 = 𝑀𝑁, 𝜓 = Ψ𝑁, 𝜙+ = 𝑀Φ+,
and 𝜂+ = ΨΦ+ then hold, leading to 𝜂+ = ΨΦ+ =(𝜓𝑁−1)(𝑀−1𝜙+) = 𝜓(𝑁−1𝑀−1)𝜙+ = 𝜓𝜎−1𝜙+1 as defined in
(9).

3.1. Elimination Methods. All elimination methods can be
expressed in terms of decompositions of the stem 𝜎𝑗. Only
thoseworthymethods that allow alternating column/rowpiv-
oting and elimination are presented here. Several inflections
of the blocks ofG are involved and are defined in the appendix
section. The sequence in which the blocks are manipulated
for: decomposing the stem, processing the fins, and handling
the head (evaluating the head and applying the head-tail
relation to determine the tail of the succeeding module Γ𝑗+1),
is mentioned along with the equations (from the appendix
section) involved.The correctness of the decompositionsmay
be checked by carrying out the matrix multiplications, using
the equalities of the appendix section, and comparing with
the un-decomposed form of the module.

The following threemethods can be generated fromeither
module. They will be given in terms of the aligned module.

3.1.1. Scalar Column/Scalar Row (SCSR) Elimination. This is
the method implemented by the COLROW algorithm. It
performs scalar decomposition of the stem 𝜎. The triangular
matrices 𝐿 and 𝑈 appear explicitly. If unit diagonal, they are
marked with a circumflex ̂:

Γ𝐴 = [
[
𝐿𝑚𝐴𝑛󳰀𝐴𝑚󳰀 𝐵𝑚󳰀󳰀]]

[ 𝐷𝑚󳰀󳰀
𝑈𝑛 𝐶𝑛󳰀 𝐷𝑛󳰀].𝑛 𝑚𝑈̂𝐿̂ (11)

The following sequence of manipulations applies:

Stem: 𝐿𝑚𝑈̂𝑚(𝐴7), 𝐷𝑚󸀠󸀠(𝐴16), 𝐴𝑛󸀠(𝐴9), 𝐵𝑛#(𝐴3𝑏),𝐿̂𝑛𝑈𝑛(𝐴6).
Fins: 𝐴𝑚󸀠(𝐴8), 𝐵𝑚#(𝐴2𝑏), 𝐵𝑚󸀠󸀠(𝐴14), 𝐶𝑛󸀠(𝐴10),𝐷𝑛󸀠(𝐴11).
Head: 𝐶𝑚#(𝐴4𝑏),𝐷𝑚#(𝐴5𝑏).
3.1.2. Block Column/Block Row (BCBR) Elimination. The
method performs block decomposition of the stem 𝜎, in
which the decomposed pivotal blocks C̆𝑚#(≡ 𝐿𝑚𝑈̂𝑚) and
B̆𝑛#(≡ 𝐿̂𝑛𝑈𝑛) appear:

Γ𝐴 = [[[[
[

#
𝐴𝑛
𝐴𝑚

]]]]
]
[𝐼𝑚 ∗

𝐶𝑛 𝐷𝑛 ].𝐼𝑛
𝐵𝑚∗

# (12)

The following sequence of manipulations applies:

Stem: C̆𝑚#(𝐴7), 𝐷𝑚󸀠󸀠(𝐴16), 𝐷𝑚∗(𝐴17), 𝐵𝑛#(𝐴3𝑎),
B̆𝑛#(𝐴6).

Fins: 𝐵𝑚#(𝐴2𝑎), 𝐵𝑚󸀠󸀠(𝐴14), 𝐵𝑚∗(𝐴15).
Head: 𝐶𝑚#(𝐴4𝑎),𝐷𝑚#(𝐴5𝑎).
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3.1.3. Block Column/Scalar Row (BCSR) Elimination. The
method has the decomposition

Γ𝐴 = [[[[
[

#
𝐴𝑛 𝑛
𝐴𝑚 𝐵𝑚󳰀󳰀

]]]]
]
[𝐼𝑚 𝐷𝑚∗

𝑈𝑛 𝐶𝑛󳰀 𝐷𝑛󳰀].𝐿̂ (13)

The following sequence of manipulations applies:

Stem: C̆𝑚#(𝐴7), 𝐷𝑚󸀠󸀠(𝐴16), 𝐷𝑚∗(𝐴17), 𝐵𝑛#(𝐴3𝑎),𝐿̂𝑛𝑈𝑛(𝐴6).
Fins: 𝐵𝑚#(𝐴2𝑎), 𝐵𝑚󸀠󸀠(𝐴14), 𝐶𝑛󸀠(𝐴10),𝐷𝑛󸀠(𝐴11).
Head: 𝐶𝑚#(𝐴4𝑏),𝐷𝑚#(𝐴5𝑏).
3.1.4. Block-Tridiagonal Row (BTDR) Elimination. This
method can be generated from the aligned module only. It
performs the identity decomposition 𝜎 = 𝐼𝑝 𝜎̆, leading to
the decomposition

Γ𝐴 = [ 𝐼𝑝𝐴𝑚∗ 𝐵𝑚∗] 𝐼𝑚𝐶𝑛 𝐷𝑛]. (14)

In [10, Section 5, case (i)], scalar row eliminationwas used
to obtain the decomposed stem 𝜎̆. However, 𝜎̆ can, by now,
be obtained by any of the nonidentity (scalar and/or block)
decomposition methods given in Sections 3.1.1–3.1.3.

Using SCSR elimination, the following sequence of
manipulations applies:

Stem: 𝐿𝑚𝑈̂𝑚(𝐴7), 𝐷𝑚󸀠󸀠(𝐴16), 𝐴𝑛󸀠(𝐴9), 𝐵𝑛#(𝐴3𝑏),𝐿̂𝑛𝑈𝑛(𝐴6).
Fins: 𝐴𝑚󸀠(𝐴8), 𝐵𝑚#(𝐴2𝑏), 𝐵𝑚󸀠󸀠(𝐴14), 𝐵𝑚∗(𝐴15),𝐴𝑚󸀠󸀠(𝐴12), 𝐴𝑚∗(𝐴13).
Head: 𝐶𝑚#(𝐴4𝑎),𝐷𝑚#(𝐴5𝑎).
3.1.5. Block-Tridiagonal Column (BTDC) Elimination. This
method can be generated from the displaced module only. It
performs the identity decomposition 𝜎 =𝜎̆ 𝐼𝑝, leading to the
decomposition

Γ𝐷 = [[
[

𝐼𝑛 𝐴𝑛𝐴𝑚
]]
]
[𝐼𝑝 𝐷𝑛∗𝐷𝑚∗]. (15)

In [11], 𝜎̆ was obtained by scalar column elimination. As
with BTDR elimination, 𝜎̆ can, by now, be obtained from any
of the nonidentity decompositions given in Sections 3.1.1–
3.1.3.

Using SCSR elimination, the following sequence of
manipulations applies:

Stem: 𝐿̂𝑛𝑈𝑛(𝐴6), 𝐶𝑛󸀠(𝐴10), 𝐵𝑚󸀠󸀠(𝐴14), 𝐶𝑚#(𝐴4𝑏),𝐿𝑚𝑈̂𝑚(𝐴7).
Fins: 𝐷𝑛󸀠(𝐴11), 𝐷𝑚#(𝐴5𝑏), 𝐷𝑚󸀠󸀠(𝐴16), 𝐷𝑚∗(𝐴17),𝐷𝑛󸀠󸀠(𝐴18),𝐷𝑛∗(𝐴19).
Head: 𝐵𝑛#(𝐴3𝑎), 𝐵𝑚#(𝐴2𝑎).

3.2. Solution Procedure. Theprocedure for solving thematrix
equation G+z = g, which can be described in terms of
manipulation of the augmented matrix G+ ≡ [G ... g],
can, similarly, be described in terms of manipulation of
the augmented module Γ+𝑗 ≡ [Γ𝑗 ... 𝛾𝑗]. The manipulation
of G+ applies a forward sweep which corresponds to the
decomposition G+ = LU+ ≡ L[U ... 𝑍] that is followed by
a backward sweep which corresponds to the decomposition
U+ = U[I ... z]. Similarly, the manipulation of Γ+𝑗 applies a
forward sweep involving two steps. The first step performs
the decomposition Γ𝑗+ = 𝜇𝑗𝜈+𝑗 . The second step evaluates
the head 𝜂𝑗+ = Ψ𝑗Φ+𝑗 then applies the head-tail relation to
determine the tail of Γ+𝑗+1. In a backward sweep, two steps
are applied to 𝜈+𝑗 ≡ [𝑁𝑗 Φ𝑗 ... Ζ𝑗] leading to the solution
module 𝑧𝑗 (𝑧𝐴𝑗 = [𝑧𝑚𝑡𝑗 𝑧𝑛𝑡𝑗]𝑡, 𝑧𝐷𝑗 = [𝑧𝑛𝑡𝑗 𝑧𝑚𝑡𝑗+1]𝑡).With 𝑧𝑗+1
known, the first step uses 𝑗+1( 𝐴𝑗+1 = 𝑧𝐴𝑗+1, 𝐷𝑗+1 = 𝑧𝑛𝑗+1) in
the back substitution relation Ζ𝑗 −Φ𝑗 𝑗+1 = 𝜁𝑗 to contract 𝜈+𝑗
to 𝑁+𝑗 ≡ [𝑁𝑗 ... 𝜁𝑗]. The second step solves 𝑁𝑗𝑧𝑗 = 𝜁𝑗 for 𝑧𝑗
which is equivalent to the decomposition𝑁+𝑗 = 𝑁𝑗[𝐼𝑝 ... 𝑧𝑗].
3.3. Operation Counts and Storage Needs. Themodules intro-
duced previously allow easy evaluation of the elimination
methods. The operation counts are measured by the number
of multiplications (mul) with the understanding that the
number of additions is comparable. The storage needs are
measured by the number of locations (loc) required to store
arrays calculated in the forward sweep for use in the backward
sweep, provided that the elements ofG+ are not stored but are
generated when needed, as is usually done in the numerical
solution of a set of ODEs, for example.

Per module (i.e., per grid point), each method requires,
for the manipulation of G+, as many operations as it requires
to manipulate Γ+. All methods require (𝑝3 − 𝑝)/3 (mul) for
decomposing the stem, pmn (mul) for evaluating the head,
and 2𝑝2𝑟 (mul) to handle the right module 𝛾. The methods
differ only in the operation counts for processing the fins 𝜓
and 𝜙, with BCBR elimination requiring the least count pmn
(mul).

Per module, each method requires as many storage
locations as it requires to store 𝜈+ ≡ [𝜈 ... 𝑍]. All methods
require pr (loc) to store 𝑍. They differ in the number of
locations needed for storing the 𝜈’s, with BTDC elimination
requiring the least number pn (loc). Note that, in SCSR and
BCSR eliminations, square blocks need to be reserved for
storing the triangular blocks 𝑈̂𝑚 and/or 𝑈𝑛.

Table 1 contains these information, allowing for clear
comparison among the methods. For example, when 𝑝 ≫ 1,
BCBR elimination achieves savings in operations that are of
leading order significance ∼ 𝑝3/8 and ∼ 𝑝3/2, respectively, in
the two distinguished limits𝑚 ∼ 𝑛 ∼ 𝑝/2 and (𝑚, 𝑛) ∼ (𝑝, 1),
as compared to SCSR elimination.

3.4. Pivoting Strategies. Lam’s alternating pivoting [8] applies
column pivoting to 𝜏𝐴 = [𝐶𝑚# 𝐷𝑚#] in order to form
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Table 1: Operation counts and storage needs.

Method Operation counts (mul) Storage needs (loc)
2𝑝2𝑟 + (𝑝3 − 𝑝) /3 + 2𝑝𝑚𝑛+ 𝑝𝑟 + 𝑝𝑛+

BCBR 0 𝑝𝑛
SCSR (𝑚3 + 𝑛3 − 𝑚2 − 𝑛2) /2 𝑝𝑛 + 𝑚2
BCSR (𝑛3 − 𝑛2) /2 𝑝𝑛
BTDC 𝑝𝑛2 0

Table 2: Execution times in seconds for the first system.

𝑚/𝑛a SCSR BTDC BCBR BCSR
10/1 109 96 93 91
9/2 113 104 106 99
8/3 118 116 115 110
7/4 120 126 122 117
6/5 123 133 133 125
a
𝑚 + 𝑛 = 11.

Table 3: Execution times in seconds for the second system.

𝑚/𝑛a SCSR BTDC BCBR BCSR
20/1 67.9 52.0 51.8 51.4
18/3 70.6 59.9 60.0 55.0
16/5 72.0 68.3 73.8 66.3
14/7 73.0 74.2 80.8 73.8
12/9 73.1 78.3 81.4 74.8
11/10 73.6 81.7 82.3 75.9
a
𝑚 + 𝑛 = 21.

and decompose a nonsingular pivotal block 𝐶𝑚# and applies
row pivoting to 𝜏𝐷 = [𝐵𝑛#𝑡 𝐵𝑚#𝑡]𝑡 in order to form and
decompose a nonsingular pivotal block 𝐵𝑛#. These are valid
processes since 𝜏𝐴 is of rank m and 𝜏𝐷 is of rank 𝑛, as can
be shown following the reasoning of Keller [10, Section 5,
Theorem].

To enhance stability further we introduce the Local
pivoting strategy which applies full pivoting (maximumpivot
strategy) to the segments 𝜏𝐴 and 𝜏𝐷. Note that Keller’s mixed
pivoting [10], if interpreted as applying full pivoting to 𝜏𝐴
and row pivoting to 𝜏𝐷, is midway between Lam’s and local
pivoting.

Lam’s, Keller’s, and local pivoting apply to all elimination
methods of Section 3.1. Moreover, in any given problem, each
pivoting strategy would produce the same sequence of pivots,
regardless of the elimination method in use.

4. Implementation

The COLROW algorithm, which is based on SCSR elim-
ination, is modified to perform BTDC, BCBR, or BCSR
elimination, instead. As an illustration, the four methods are
applied to three systems of equations having the augmented
matrix given in (1), with 𝐽 = 11 and 𝑟 = 1. The solution
procedures are repeated 𝑘 times, so that reasonable execution
times can be recorded and compared. All calculations are

carried out in double precision via Compaq Visual Fortran
(version 6.6) that is optimized for speed, on a Pentium 4CPU
rated at 2GHz with 750MB of RAM.

The first system has 𝑝 = 11 and 𝑘 = 106. Different
combinations of 𝑚/𝑛 = 10/1, 9/2, 8/3, 7/4, and 6/5 are
considered. The execution times, without pivoting, are given
in Table 2. All entries include ≈22 seconds that are required
to read, write, and run empty Fortran-Do-Loops. Pivoting
requires additional ≈20 seconds in all methods.

The second (third) system has 𝑝 = 21 (51) and 𝑘 = 105
(104). The execution times, with Lam’s pivoting, are given in
Table 3 (4), for different combinations of𝑚/𝑛.

Although the modified COLROW algorithms may not
produce the best performances of BTDC, BCBR, and BCSR
eliminations, Tables 2, 3, and 4 clearly indicate that they,
in some cases (when 𝑚 ≫ 𝑛), outperform the COLROW
algorithm that is designed to give SCSR elimination its best
performance.

5. Conclusion

Using the novel approach of modular analysis, we have
analyzed the sequential solution methods for almost block
diagonal systems of equations. Two modules have been
identified and have made it possible to express and assess
all possible band and block elimination methods. On the
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Table 4: Execution times in seconds for the third system.

𝑚/𝑛a SCSR BTDC BCBR BCSR
50/1 60.51 38.05 39.19 38.04
46/5 62.71 48.30 57.55 49.15
41/10 65.56 58.97 76.25 61.57
36/15 68.12 65.86 87.53 68.35
31/20 69.09 76.38 110.61 85.24
26/25 69.86 83.95 115.95 94.00
a
𝑚 + 𝑛 = 51.

basis of the operation counts, storage needs, and admissi-
bility of partial pivoting, we have determined four distin-
guished methods: Block Column/Block Row (BCBR) Elim-
ination (having the least operation count), Block Tridiag-
onal Column (BTDC) Elimination (having the least stor-
age need), Block Column/Scalar Row (BCSR) elimination,
and Scalar Column/Scalar Row (SCSR) elimination (imple-
mented in the well-known COLROW algorithm). Appli-
cation of these methods within the COLROW algorithm
shows that they outperform SCSR elimination, in cases of
large top-block/bottom-block row ratio. In such cases, BCSR
elimination is advocated as an effective modification to the
COLROW algorithm.

Appendix

In Section 3, two modules, Γ𝐴 and Γ𝐷, of the matrix of
coefficientsG are introduced and decomposed to generate the
elimination methods. The process involves inflections of the
blocks ofG, which proceed for a block𝐸, say, according to the
following scheme:

𝐸 󳨀→ 𝐸# if pivotal󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ Ĕ#↓ ↓𝐸󸀠 󳨀→ 𝐸󸀠󸀠 󳨀󳨀󳨀󳨀󳨀󳨀󳨀→ 𝐸∗
. (A.1)

The following equalities are to be used to determine the
blocks with underscored leading character. The number of
multiplications involved is given between braces:𝐸#-Blocks

𝐵𝑚 − 𝐵𝑚# 𝑎= 𝐴𝑚𝐷𝑚∗ 𝑏= 𝐴𝑚󸀠𝐷𝑚󸀠󸀠 {𝑚2𝑛} , (A.2)

𝐵𝑛 − 𝐵𝑛# 𝑎= 𝐴𝑛𝐷𝑚∗ 𝑏= 𝐴𝑛󸀠𝐷𝑚󸀠󸀠 {𝑚𝑛2} , (A.3)

𝐶𝑚 − 𝐶𝑚# 𝑎= 𝐵𝑚∗𝐶𝑛 𝑏= 𝐵𝑚󸀠󸀠𝐶𝑛󸀠 {𝑚2𝑛} , (A.4)

𝐷𝑚 − 𝐷𝑚# 𝑎= 𝐵𝑚∗𝐷𝑛 𝑏= 𝐵𝑚󸀠󸀠𝐷𝑛󸀠 {𝑚𝑛2} (A.5)

Ĕ#-Blocks (decomposed pivotal blocks)

𝐵𝑛# = B̆𝑛# (≡ 𝐿𝑛𝑈𝑛) {𝑛3 − 𝑛3 } (A.6)

𝐶𝑚# = C̆𝑚# (≡ 𝐿𝑚𝑈𝑚) {𝑚3 − 𝑚3 } , (A.7)

𝐸󸀠-Blocks
𝐴𝑚󸀠𝑈̂𝑚 = 𝐴𝑚 {𝑚2 − 𝑚2 𝑚} , (A.8)

𝐴𝑛󸀠𝑈̂𝑚 = 𝐴𝑛 {𝑚2 − 𝑚2 𝑛} , (A.9)

𝐿̂𝑛𝐶𝑛󸀠 = 𝐶𝑛 {𝑛2 − 𝑛2 𝑚} (A.10)

𝐿̂𝑛𝐷𝑛󸀠 = 𝐷𝑛 {𝑛2 − 𝑛2 𝑛} , (A.11)

𝐸󸀠󸀠 and 𝐸∗-Blocks
𝐴𝑚󸀠󸀠 = 𝐴𝑚󸀠 − 𝐵𝑚∗𝐴𝑛󸀠 {𝑚2𝑛} , (A.12)

𝐴𝑚∗𝐿𝑚 = 𝐴𝑚󸀠󸀠 {𝑚2 + 𝑚2 𝑚} (A.13)

𝐵𝑚󸀠󸀠𝑈𝑛 = 𝐵𝑚# {𝑛2 + 𝑛2 𝑚} , (A.14)

𝐵𝑚∗𝐿̂𝑛 = 𝐵𝑚󸀠󸀠 {𝑛2 − 𝑛2 𝑚} , (A.15)

𝐿𝑚𝐷𝑚󸀠󸀠 = 𝐷𝑚# {𝑚2 + 𝑚2 𝑛} , (A.16)

𝑈̂𝑚𝐷𝑚∗ = 𝐷𝑚󸀠󸀠 {𝑚2 − 𝑚2 𝑛} (A.17)

𝐷𝑛󸀠󸀠 = 𝐷𝑛󸀠 − 𝐶𝑛󸀠𝐷𝑚∗ {𝑚𝑛2} , (A.18)

𝑈𝑛𝐷𝑛∗ = 𝐷𝑛󸀠󸀠 {𝑛2 − 𝑛2 𝑛} . (A.19)
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