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A parametric equation for a modified Bézier curve is proposed for curve fitting applications. The proposed equation contains
shaping parameters to adjust the shape of the fitted curve. This flexibility of shape control is expected to produce a curve which
is capable of following any sets of discrete data points. A Differential Evolution (DE) optimization based technique is proposed
to find the optimum value of these shaping parameters. The optimality of the fitted curve is defined in terms of some proposed
cost parameters. These parameters are defined based on sum of squares errors. Numerical results are presented highlighting the
effectiveness of the proposed curves compared with conventional Bézier curves. From the obtained results, it is observed that the
proposed method produces a curve that fits the data points more accurately.

1. Introduction

Bézier curve is a curve fitting tool for constructing free-form
smooth parametric curves. Bézier curves are widely used in
computer aided geometry design, data structure modelling,
mesh generating techniques, and computer graphics applica-
tions [1–3]. These curves are also used in different fields of
mechanical and electrical engineering formodelling complex
surface geometries [1]. Because of the wide field of applica-
tions, efficient techniques for improving and controlling the
shape of Bézier curves have become an important field of
research [4, 5].

A standard curve fitting problem is defined by a set of
raw data points, referred to as control points. The polygon
obtained by connecting all the control points is termed as the
control polygon. For most applications, it is required to find a
free-form curve thatmost closely follows the control polygon.
Conventional least-squares curve fitting techniques can fit a
mathematical equation through the control points. However,
this technique is not always applicable as the control points do
not necessarily follow any standard mathematical equation
models. Spline interpolation results in a continuous curve

that matches the control polygon to a high degree [1], but the
curve is expressed in terms of piece-wise defined functions. In
many cases a single equation for the whole curve is required
for mathematical operations. In such cases spline interpola-
tions are not useful. In case of an interpolating polynomial,
the interpolated curve goes through all the control points;
however, the interpolated region between two control points
often deviates significantly from the control polygon. This
problem arises because the interpolating polynomial only
tries to match the control points and does not take into
account the slope variation of the control polygon. As a result,
the shape of the curve between the control points is not always
accurate. A Bézier curve, unlike a polynomial interpolated
curve, does not necessarily go through all the control points.
It goes through the two terminal control points. The number
and orientation of the intermediate control points govern the
shape of the Bézier curve [6]. Because of the Bernstein basis
used by the Bézier curve, it creates a smooth shape and in
most cases follow the general trend of the control polygon
and its shape [7, 8].This fact is illustrated in Figure 1.The data
points used for the test function, 𝑓

1
, are tabulated in Table 1.

The figure shows that interpolating polynomial shows highly
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Figure 1: Comparison of interpolated curve and Bézier curve for test function 𝑓
1
: (a) fitted curve, (b) slope of the curve.

Table 1: Table for test function, 𝑓
1
.

𝑖 𝑥
𝑖

𝑦
𝑖

𝑦
𝑏𝑖

𝑦
𝑚𝑖

𝜁
𝑖

Performance
0 0 −0.2 −0.2000 −0.2207 1.1034

1 0.2 0.4 0.3262 0.4005 0.8550

2 0.4 0.8 0.7225 0.7892 2.4631

3 0.6 1.2 0.9747 1.1809 −1.1786 𝜀
𝑏𝑐

= 1.5609

4 0.8 1.3 1.0345 1.4154 2.6882 𝜀
𝑚𝑐

= 0.2710

5 1.0 1.4 0.8562 1.0731 2.9621 𝜀
𝑏𝑠

= 117.7463

6 1.1 0.6 0.6948 0.7126 −2.7567 𝜀
𝑚𝑠

= 77.0282

7 1.2 0.2 0.5154 0.3577 −2.8568 𝑓cost, 𝑏 = 13.3355

8 1.4 0.1 0.2373 0.0419 2.6472 𝑓cost, 𝑚 = 7.9738

9 1.6 0.1 0.1174 0.0998 1.9715

10 1.7 0.1 0.1016 0.1159 0.9570

11 1.8 0.1 0.1000 0.0997 0.9974

oscillatory nature and fails to follow the shape. However, the
Bézier curve follows the shape of the curve and approximates
the slope of the curve reasonably accurately throughout the
region of interest.

AlthoughBézier curves usually follow the general trend of
the control polygon, it often underestimates the slope of the
control polygon. Due to inherit smoothing characteristics, it
fails to follow control polygons with sharply varying sides.
Also, Bézier curves lack flexibility of controlling the shape of
the curve. It is not possible to generate multiple Bézier curves
with different shapes for the same control polygon. This
flexibility is often desired to fine-tune and optimize a curve-
fitting problem. For this reason, modified versions of Bézier
curves with shaping parameters have been developed [9, 10].

The methods proposed in [4, 5] give satisfactory results,
but require complex computations. A simpler, yet effective
approach is provided in [11], but themethoddoes not describe
the process of finding the optimal shaping parameters for a
given control polygon. Some work has also concentrated on
modifying the basis of the curves [12, 13]. Although effective,
these methods are also based on complex computations
which are difficult to implement through computer coding.
In this paper, parametric equations of a modified Bézier
curve is presented. The proposed equations contain shaping
parameters that can be used to accurately fit a given set of
control points.The optimum value of the shaping parameters
is calculated using Differential Evolution (DE) optimization
algorithm.

DE algorithm was first developed by Storn and Price in
1997 [14]. Since then, it has been successfully used in many
applications [15]. However, only a few work has investigated
the use of DE algorithm for Bézier curves [16, 17]. The work
of [16] concentrated on creating new set of control points,
rather than changing the equation of the Bézier curve. As a
result, it inherits the same weakness of conventional Bézier
curves when it comes to sharply varying control points. The
work of [17] does not directly relate to curve fitting problems.
In this paper, the DE algorithm is used to find the shaping
parameters of a proposed modified Bézier curve parametric
equation. The paper presents a generalized method that can
be used for curve fitting applications for any arbitrary set of
control points.

The paper is organized as follows. Section 2 contains
formulation of modified Bézier curve and definition of opti-
mality. Section 3 describes the method of optimizing the
shaping parameters using DE algorithm. Section 4 presents
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the numerical simulation results. Concluding remarks are
made in Section 5.

2. Formulation of Modified Bézier Curve and
Defining Optimality

For a set of (𝑛+1) control points (𝑥
𝑖
, 𝑦
𝑖
), where, 𝑖 = 0, 1, . . . , 𝑛,

the parametric equations of the Bézier curve are given by [1]:

𝑥 (𝑢) =
𝑛

∑
𝑖=0

(
𝑛
𝑖
) (1 − 𝑢)𝑛−𝑖𝑢𝑖𝑥

𝑖
,

𝑦 (𝑢) =
𝑛

∑
𝑖=0

(
𝑛
𝑖
) (1 − 𝑢)𝑛−𝑖𝑢𝑖𝑦

𝑖
,

(1)

where

(
𝑛
𝑖
) =

𝑛!

𝑖! (𝑛 − 𝑖)!
. (2)

The parameter 𝑢 ∈ [0, 1] takes on continuous values. As
𝑢 sweeps form 0 to 1, the parametric equations defined in
(1) traces a continuous curve from (𝑥

0
, 𝑦
0
) to (𝑥

𝑛
, 𝑦
𝑛
). The

intermediate control points determine the shape of the curve.
For a given set of control points, the shape of the Bézier curve
cannot be modified. To remove this limitation, additional
shaping parameters must be introduced in the parametric
equations.

To incorporate additional parameters in the Bézier curve
equation, a few constraints must be presatisfied. It is required
that the modified Bézier curve spans the same region as
the conventional Bézier curve, which is limited by the
minimum and maximum value of the 𝑥 coordinates of the
control points. The shaping parameters should not affect the
𝑥 values of the curve. Therefore, the shaping parameters
should appear on the parametric equation of 𝑦 only. The
shaping parameters should provide the flexibility of both
increasing or decreasing the 𝑦 coordinate of any curve point.
Taking these requirements into consideration, the proposed
modified Bézier curve equations are selected as:

𝑥 (𝑢) =
𝑛

∑
𝑖=0

(
𝑛
𝑖
) (1 − 𝑢)𝑛−𝑖𝑢𝑖𝑥

𝑖
,

𝑦 (𝑢) =
𝑛

∑
𝑖=0

Λ
𝑖
(1 − 𝑢)

𝑛−𝑖𝑢𝑖𝑦
𝑖
.

(3)

Here, Λ
𝑖
’s are termed as the shaping coefficients, which

appear in the place of binomial coefficients. As proposed
modified Bézier curve is expected to produce a curve that
modifies the shape of the conventional curve, the shaping
coefficients can be considered as modified versions of the
binomial coefficients.The shaping coefficient can therefore be

expressed as

Λ
𝑖
= 𝜁
𝑖
(
𝑛
𝑖
) , 𝑖 = 0, 1, 2, . . . , 𝑛. (4)

Here, 𝜁
𝑖
’s are defined as the shaping parameters. By finding the

optimum values of 𝜁
𝑖
, a desired curve that follows the control

polygon can be generated.
After defining the modified Bézier curve equations, it

becomes necessary to mathematically define the optimum
curve for a given control polygon. A numerical quantity
must be assigned to all possible curves obtained from (3) for
different sets of shaping parameter values that define howwell
the curve matches the control polygon. The obvious choice
for such a case is the sum of squares error between the control
polygon and themodified Bézier curve. To find this error, it is
first noted that for a curve fitting problem solved by computer
coding, a discrete set of values of the continuous parameter
𝑢 must be selected. (𝑁 + 1) values of 𝑢, uniformly selected in
the range 0 to 1 as 𝑢

𝑘
, 𝑘 = 0, 1, 2, . . . , 𝑁, will result in (𝑁 + 1)

values of 𝑥 and 𝑦 obtained from (3). The following notations
are used to express these points on the curve:

𝑥
𝑚𝑘

= 𝑥 (𝑢
𝑘
) , 𝑦

𝑚𝑘
= 𝑦 (𝑢

𝑘
) , 𝑘 = 0, 1, 2, . . . , 𝑁. (5)

The corresponding point, the control polygon, (𝑥
𝑐𝑘
, 𝑦
𝑐𝑘
), can

be obtained from the linear interpolation of the control points
as

𝑦
𝑐𝑘

= 𝑦
𝑝
+ (𝑥
𝑐𝑘

− 𝑥
𝑝
)

𝑦
𝑞
− 𝑦
𝑝

𝑥
𝑞
− 𝑥
𝑝

. (6)

Here, (𝑥
𝑝
, 𝑦
𝑝
) and (𝑥

𝑞
, 𝑦
𝑞
) are two closest control points that

bound (𝑥
𝑐𝑘
, 𝑦
𝑐𝑘
) such that 𝑥

𝑝
< 𝑥
𝑐𝑘

< 𝑥
𝑞
, and no other

control points exist within this range.Now, the sumof squares
error between the control polygon and the modified Bézier
curve, 𝜀

𝑚𝑐
, is given by

𝜀
𝑚𝑐

=
𝑁

∑
𝑘=0

(𝑦
𝑚𝑘

− 𝑦
𝑐𝑘
)2. (7)

It is noted that𝑦
𝑚𝑘

is a function of 𝜁
𝑖
.Theoptimal curve can be

defined as the curve that generated by a specific set of shaping
parameters that minimizes (7). However, this definition of
optimality does not ensure a curve that follows the shape of
the control polygon. The error defined in (7) becomes zero
for a polynomial interpolated curve, which, as shown before,
does not necessarily guarantee the consistency in shape. To
ensure that the optimal curve follows the shape, the slope of
the control polygonmust be incorporated in the definition of
optimality.

The slope of the modified curve can be calculated from
using the chain rule:

(
𝑑𝑦

𝑑𝑥
)
𝑚

= (
𝑑𝑦

𝑑𝑢
)
𝑚

× (
𝑑𝑢

𝑑𝑥
)
𝑚

. (8)
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Completing the differentiations using (3), the slope of the
curve at a discrete point corresponding to 𝑢

𝑘
is given by

(
𝑑𝑦

𝑑𝑥
)
𝑚𝑘

=
∑
𝑛

𝑖=0
Λ
𝑖
(𝑖 − 𝑛𝑢

𝑘
) (1 − 𝑢

𝑘
)𝑛−𝑖−1𝑢𝑖−1

𝑘
𝑦
𝑖

∑
𝑛

𝑗=0
( 𝑛𝑖 ) (𝑗 − 𝑛𝑢

𝑘
) (1 − 𝑢

𝑘
)𝑛−𝑗−1𝑢

𝑗−1

𝑘
𝑥
𝑗

. (9)

The slope of the control polygon at a point 𝑥
𝑘
can be

approximated by the forward difference formula:

(
𝑑𝑦

𝑑𝑥
)
𝑐𝑘

=
𝑦
𝑘+1

− 𝑦
𝑘

𝑥
𝑘+1

− 𝑥
𝑘

. (10)

So, the sum of squares error in estimating the slope of the
control polygon, 𝜀

𝑚𝑠
, is given by

𝜀
𝑚𝑠

=
𝑁

∑
𝑘=0

{(
𝑑𝑦

𝑑𝑥
)
𝑚𝑘

− (
𝑑𝑦

𝑑𝑥
)
𝑐𝑘

}
2

. (11)

The optimal curve should have a low value of 𝜀
𝑚𝑠

as well as a
low value of 𝜀

𝑐𝑠
.

To define the optimality of the curve, a cost function,𝑓cost,
is defined in the following way:

𝑓cost (𝜁0, 𝜁1, . . . , 𝜁𝑛) = 𝑤
1
𝜀
𝑚𝑐

+ 𝑤
2
𝜀
𝑚𝑠

. (12)

Here, 𝑤
1
and 𝑤

2
are weight factors. It is noted that the cost

function depends on the values of the shaping parameters.
The weighted sum definition of the cost function ensures
that both errors are incorporated. The curve created by a
set of shaping parameter values that results in the lowest
value of the cost function is defined as the optimum curve.
The optimum set of values of the shaping parameter can be
determined using DE optimization algorithm.

Although this paper concentrates on planar Bézier curves,
the proposed method can be extended for general Bézier
curves. The planar curves are defined by (3). In case of
generalized curves, there will be additional parametric equa-
tions corresponding to each dimension. A different set of
shaping parameter must be incorporated for each dimension.
The error for each dimension can be calculated separately
and then added together to give a single cost function.
The optimum values of all the shaping parameters can be
determined using the DE algorithm by minimizing cost
function.

3. Optimizing the Shaping Parameters Using
DE Algorithm

DE is a population based heuristic evolutionary optimiza-
tion algorithm [14]. The algorithm represents the potential
solutions in terms of 𝐷 dimensional vectors defined in a
solution space. The number of unknowns is equal to the
dimension. The algorithm works with a predefined number
of potential solution vectors simultaneously. The number

of these solution vectors is called population size. These
population of vectors are modified in each iterative step to
form a new generation. Throughout successive generations,
the vectors converge to the optimum solution.

For the curve fitting problem discussed in this paper,
the solution vectors represent a set of values of the shaping
parameters, 𝜁

𝑖
. Since there are 𝑛 unknowns, they can be

expressed by 𝑛 dimensional vectors Z. The 𝑟th vector in the
𝐺th generation can be represented as

Z
𝑟,𝐺

= [𝜁𝐺,1 𝜁
𝐺,2

⋅ ⋅ ⋅ 𝜁
𝐺,𝑛] . (13)

Here, the subscript𝐺 denotes the generation number. If𝑁
𝑝
is

the population size, then the 𝐺th generation is composed of
𝑁
𝑝
number of such vectors, {Z

1,𝐺
,Z
2,𝐺

, . . . ,Z
𝑁𝑝 ,𝐺

}.
The solution space must be limited by defining possi-

ble range of values of Z vectors in each dimension. This
range is selected based on the optimization problem and
trial and error. In this paper, the limiting values in each
dimension are selected as −3 to 3. This implies that the
shaping parameters can have values ranging from −3 to
3. The initial solution vectors are randomly selected from
a uniform distribution [14]. The successive generations are
formulated using standard mutation, crossover, and selection
operation [14, 15]. As the DE algorithm is well covered in
the literature, these processes are not described here. The
selection operation of DE algorithm is driven by the cost
function which relates the DE algorithm with the physical
problem. The DE algorithm creates successive generations
with new potential solution vectors that have lower cost
values. Thus, over successive generations, the DE algorithm
converges to the optimum solution. The optimum solution
gives the desired shaping parameters that produce the lowest
value defined by (12).

4. Numerical Simulation and Results

The proposed method is implemented and tested using
computer coding. For simulation, the weight factors of (12)
are selected as 𝑤

1
= 1 and 𝑤

2
= 0.1. The allowed variation

range of 𝜁
𝑖
, for all 𝑖, is selected as −3 to 3. The values of these

parameters are selected from trial and error methods. 40
discrete values of the parameter 𝑢 are selected uniformly over
the range 0 to 1 for simulation. A classical DE algorithm with
population size 20, mutation scale factor = 0.9, and crossover
coefficient = 0.9 is selected [15]. Maximum generation num-
ber is limited to 160.

For testing purposes, the proposedmodified Bézier curve
is used to fit four test functions. The performance of the
modified curve is measured in terms of sum of squares error
between the curve and control polygon, 𝜀

𝑚𝑐
; sum of squares

error between the slope of the curve and the slope of the
control polygon, 𝜀

𝑚𝑠
; and cost function,𝑓cost,𝑚. Conventional

Bézier curves are also used for fitting the same test functions.
The performance of the conventional curve is measured in
terms of the same quantities which are represented as 𝜀

𝑏𝑐
, 𝜀
𝑏𝑠
,

and 𝑓cost,𝑏. The test functions and corresponding results are
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Figure 2: Comparison of modified Bézier curve and conventional Bézier curve for test function 𝑓
1
: (a) fitted curve, (b) slope of the curve.
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Figure 3: Comparison of modified Bézier curve and conventional Bézier curve for test function 𝑓
2
: (a) fitted curve, (b) slope of the curve.

shown in Figures 2, 3, 4, and 5. The data points of the results
are highlighted in Tables 1, 2, 3, and 4. In the data table, 𝑥

𝑖

and 𝑦
𝑖
indicate the control points, 𝑦

𝑏𝑖
refers to corresponding

𝑦 values obtained from the conventional Bézier curve, 𝑦
𝑚𝑖

refers to corresponding 𝑦 values obtained from the modified

curve, and 𝜁
𝑖
refers to the values of the shaping parameters.

The results show that the modified Bézier curve follows the
shape of the sharply varying functionsmuch better compared
to the conventional Bézier curve. The sum of squares error
of the curve and the control polygon is much smaller for the
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Bézier curve

(a)

0

1

0 1 2 3 4 5 6

Control polygon
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4
: (a) fitted curve, (b) slope of the curve.

case of modified Bézier curve.The sum of squares error of the
slope of the curve and the slope of the control polygon is also
smaller for the modified Bézier curve.

To ensure that the DE algorithm reached convergence,
the cost versus generation number plot was observed for all

the test functions. All the plots show a decreasing nature in
the beginning and flats out around iteration 110 to 160. The
flat values of average cost and minimum cost indicate that
saturation is reached [15]. For illustration purposes, only the
plot for test function 𝑓

1
is shown in Figure 6.
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Table 2: Table for test function, 𝑓
2
.

𝑖 𝑥
𝑖

𝑦
𝑖

𝑦
𝑏𝑖

𝑦
𝑚𝑖

𝜁
𝑖

Performance
0 0 1.00 1.0000 0.9971 0.9971
1 0.5 1.10 0.9766 1.1213 0.8039
2 1.0 0.93 0.7251 0.9270 2.3924
3 1.50 0.50 0.3534 0.3192 0.5058 𝜀

𝑏𝑐
= 2.9740

4 2.00 −0.40 0.0379 −0.2884 2.0301 𝜀
𝑚𝑐

= 0.3168
5 2.50 −0.70 −0.0723 −0.5262 2.8836 𝜀

𝑏𝑠
= 12.9069

6 3.00 −0.41 0.0630 −0.2787 2.6308 𝜀
𝑚𝑠

= 5.7855
7 3.50 0.60 0.3825 0.3249 0.7992 𝑓cost, 𝑏 = 4.2646
8 4.00 0.90 0.7396 0.9499 2.1468 𝑓cost, 𝑚 = 0.8954
9 4.50 1.30 0.9769 1.2445 1.3437
10 5.00 1.10 0.9786 1.0629 0.9038
11 5.50 0.70 0.7000 0.6471 0.9244

Table 3: Table for test function, 𝑓
3
.

𝑖 𝑥
𝑖

𝑦
𝑖

𝑦
𝑏𝑖

y
𝑚𝑖

𝜁
𝑖

Performance
0 0 0 0 0 −2.2409
1 0.7854 0.7071 0.5135 0.6729 1.0097
2 1.5708 1.0000 0.6263 0.9517 1.5724 𝜀

𝑏𝑐
= 1.9505

3 2.3562 0.7071 0.4047 0.6647 2.1276 𝜀
𝑚𝑐

= 0.0105
4 3.1416 0.0000 0.0040 0.0066 −2.6606 𝜀

𝑏𝑠
= 2.7549

5 3.9270 −0.7071 −0.4047 −0.6648 2.1291 𝜀
𝑚𝑠

= 0.5728
6 4.7124 −1.0000 −0.6263 −0.9514 1.5718 𝑓cost, 𝑏 = 2.2260
7 5.4978 −0.7071 −0.5135 −0.6724 1.0081 𝑓cost, 𝑚 = 0.0678
8 6.2832 −0.0000 −0.0000 −0.0000 1.5754

5. Conclusion

A modified parametric equation is developed by modify-
ing the equation of Bézier curve. The resulting modified
curve allows control over the shape of the fitted curve by

Table 4: Table for test function, 𝑓
4
.

𝑖 𝑥
𝑖

𝑦
𝑖

y
𝑏𝑖

𝑦
𝑚𝑖

𝜁
𝑖

Performance
0 0 0 0 0 0.5461
1 0.20 −0.10 −0.1851 −0.1394 0.2394
2 0.30 −0.30 −0.3436 −0.3256 −0.3020
3 0.50 −0.70 −0.6508 −0.7163 2.8020
4 0.70 −1.10 −0.8440 −1.1115 −0.6660
5 0.80 −1.20 −0.8495 −1.2315 1.9287
6 0.90 −1.10 −0.7862 −1.2413 2.0117 𝜀

𝑏𝑐
= 4.7260

7 1.10 −0.90 −0.4626 −0.8119 2.7428 𝜀
𝑚𝑐

= 0.6024
8 1.30 −0.30 −0.0211 0.0393 2.9284 𝜀

𝑏𝑠
= 155.1711

9 1.40 0.70 0.1929 0.4972 1.9595 𝜀
𝑚𝑠

= 78.8906
10 1.50 1.20 0.3446 0.8282 2.9170 𝑓cost, 𝑏 = 20.2431
11 1.70 1.00 0.4338 0.9920 2.5532 𝑓cost, 𝑚 = 8.4915
12 1.90 0.50 0.2366 0.4872 0.9447
13 2.00 0 0.0771 0.1093 −1.6003
14 2.10 −0.50 −0.0844 −0.2551 2.8826
15 2.20 −0.60 −0.2089 −0.5216 1.9124
16 2.60 −0.50 −0.1548 −0.4667 1.9470
17 2.80 −0.10 0.2163 0.0712 1.8031
18 3.00 1.00 1.0000 1.0213 1.0213

introducing shaping parameters. Using DE algorithm, the
optimum value of the shaping parameters can be found. The
optimum curvematches the shape of the control polygon and
the slope of the control polygon with a much higher degree
of accuracy compared to the conventional Bézier curve.
Multiple test functions are used to test the proposed method.
A number of performance parameters are defined, which
shows that the proposed method outperforms conventional
Bézier curve. It is found that for sharply varying data points,
the proposed method produces a curve that follows the
control polygon more closely compared to conventional
Bézier curve. As the proposed method is general, it can be
used on any discrete sets of data of points to produce a highly
accurate shape preserving curve.
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