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1. Introduction

Cutting and Packing problems are scientifically challenging problems with a wide spectrum
of applications. They are very interesting NP-hard combinatorial optimization problems; that
is, no procedure is able to exactly solve them in deterministic polynomial time. They are
encountered in a variety of real-world applications including production and packing for
the textile, apparel, naval, automobile, aerospace, and food industries. They are bottleneck
problems in computer aided design where design plans are to be generated for industrial
plants, electronic modules, nuclear and thermal plants, and so forth [1].

Cutting and packing problems consist of packing a set of geometric objects/items
of fixed dimensions and shape into a region Ω of predetermined shape while accounting
for the design and technological considerations of the problem [1]. The packing identifies
the arrangement and positions of the geometric objects that determine the dimensions of
the containing shape and reach the extremum of a specific objective function [1]. When
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the geometric objects are ϕ objects, the packing problem reduces to a mathematical model
whose constraints reflect the conditions of arrangement of ϕ objects within the given region,
the mutual nonintersection conditions for ϕ objects, and any technological constraints that
cannot be reduced to purely geometric constraints [1] (as guillotine cuts for rectangular
packing). One approach to solve this complex problem is to arrange the ϕ objects according
to some prescribed order in Ω, and to search for the exact local extremum [1]. However, the
search for exact local extrema is time consuming without any guarantee of a sufficiently good
convergence to optimum [1].

This paper focuses on problems dealing with circular ϕ objects, being two- or three-
dimensional. These problems have a wide spectrum of applications ranging from natural
sciences, to engineering design, to every day life. They include the coverage of a geographical
area with cell transmitters, storage of cylindrical drums into containers or stocking them into
an open area, packaging bottles or cans into the smallest box, planting trees in a given region
as to maximize the forest density and the distance between the trees, and so forth [2].

Packing circular objects is a challenge to discrete and computational geometry [2].
With a large number of circular objects to pack, the optimal solution is very difficult to find.
An optimal solution may be rotated, reflected or the circular objects reordered; hence, the
number of equivalent optimal solutions blows up as the number of circular objects increases
[2–4]. In addition, one or more of the circular objects may be moved slightly without affecting
the optimal solution. In fact, there exists a continuum of optimal solutions [2–4]. Last, there
is the issue of computational accuracy and precision.

Obviously, packing circular objects gives rise to optimization problems, but their
classification into continuous or discrete problems is fuzzy. Indeed, the positions of the
circular objects are continuous whereas the structure of an optimal pattern has a discrete
nature [5]. The recent trend is to design solution techniques that tackle (to some extent) these
two aspects simultaneously.

Many variants of packing circular objects in the plane have been formulated as
nonconvex optimization problems; with the hope that these formulations when solved using
available nonlinear programming (NLP) solvers yield high quality approximate solutions
[6]. However, most NLP solvers fail to identify global optima. In fact, problems with circular
objects are very hard optimization problems. They have a large number of variables and
local minima. Thus, they require to be tackled with algorithms which mix local searches
with heuristic procedures in order to widely explore the search space [7, 8]. The recent trend
has been to adopt approximation methods (heuristics) which combine methods of global
(heuristic) search and methods of local exhaustive (exact) search of local minima or their
approximations [9].

This paper provides an extensive survey of recent literature on packing circular
objects. Literature can be classified into two categories: papers seeking optimal solutions or
demonstrating the optimality of some patterns, and papers attempting to improve previously
published results [10]. Independently of their classification, these papers search for the
best solutions regardless of the margin of improvement or the computational expense [10].
Section 2 considers the casewhere the regionΩ is a regular polygonwhereas Section 3 focuses
on the case the region Ω is circular. Finally, Section 4 is a summary.

2. Polygonal Region Ω

In this section, we distinguish between the two- and the three-dimensional case.
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2.1. Two-Dimensional Case

Packing circles in a two-dimensional geometrical form such as a unit square or a unit-side
triangle [11] is the best known type of extremal planar geometry problems [12]. Herein, the
cases where the region Ω is a square, a rectangle, and a polygon are discussed.

2.1.1. Packing Circles into a Square

One of the problems that attractedmost attention consists in packing n identical circles within
a unit square with the objective of maximizing the minimum distance between the centers of
the circles; that is, of identifying the maximum radius r of n identical circles that fit into a
square whose side length is one (i.e., fixed and known). The problem, which is a geometrical
one, can be viewed as a continuous global optimization one. It can be stated as finding the
optimal level of the decision variables r and (xi, yi), i ∈ I = {1, 2, . . . , n}, thus

Maximize r

Subject to r ≤ xi ≤ 1 − r i ∈ I

r ≤ yi ≤ 1 − r i ∈ I

√
(xi − xj)

2 + (yi − yj)
2 ≥ 2r 1 ≤ i < j ≤ n,

(2.1)

where (xi, yi), i ∈ I, denote the coordinates of the center of circle i, and√
(xi − xj)

2 + (yi − yj)
2 is the Euclidean distance separating the centers of circles i and j, 1 ≤

i < j ≤ n.
This packing problem is equivalent to the problem of scattering n points in a unit

square such that the minimal distance d between any pair of points is maximized. This
scattering problem can be stated as a difference of convex functions program [13] or as an
all-quadratic optimization problem [14] or as a continuous nonlinear inequality-constrained
global optimization one [15]. The first two formulations are interesting to mathematicians
since they are hard optimization problems; however, they are of little practical value [16].
The last formulation, which uses the geometrical aspect of the problem, is more effective. It
can be stated as

Maximize d

Subject to 0 ≤ x
′
i ≤ 1 i ∈ I

0 ≤ y
′
i ≤ 1 i ∈ I

d ≤
√
(x′

i − x
′
j)

2 + (y′
i − y

′
j)

2 1 ≤ i < j ≤ n,

(2.2)
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where (x
′
i, y

′
i), i ∈ I, denote the coordinates of point i. The optimal solution of the original

problem is related to that of the scattering problem as follows:

r =
d

2
(
d + 1

) ,

xi = x
′
i(1 − 2r) + r,

yi = y
′
i(1 − 2r) + r.

(2.3)

Maranas et al. [15] solve this scattering problem using MINOS and the GAMS modeling
language. They employ a multistart strategy to enhance the probability of finding global
solutions for problems with up to 30 circles.

Nurmela and Oestergard [17] introduce, for the circle packing into a unit square, a
different nonlinear programming formulation based on an energy function

∑
i /= j(λ/d

2
ij)

m,

where dij represents the Euclidean distance between the centers of circles i and j, λ is a
scaling factor, and m is a positive integer. The energy function is to be minimized subject
to the items fitting inside the square and not overlapping. The problem is transformed into
an unconstrained one by an appropriate change of variables, and solved using a multistart
hybrid line-search algorithm that uses gradient-type directions at the beginning andNewton-
type directions near the solution. The local optimization is started from at least 50 randomly
generated solutions. The solution obtained by the optimization algorithm is then used as a
starting point to solve a system of nonlinear equations with the aim of improving the accuracy
of the solution. Problems with n ≤ 50 are solved. The approach finds some alternative
solutions and improves some results. It recognizes some regular patterns that are presumably
optimal for small n, but become nonoptimal for large values of n; for instance, the square
lattice packing of n = k2 is optimal for k ≤ 6 but not for k = 7. Graham and Lubachevsky [18]
extend the patterns of [17] using a billiard simulation that allows them to identify threshold
indices above which it is guaranteed that the identified regular patterns become nonoptimal.

Boll et al. [19] propose a two-phase approach. The first phase is an approximation one
which moves each point along the appropriately chosen directions with a step size that is
exponentially decreased during the run. The second phase is a refining one, where the result
of the first phase is the starting point for a billiard simulation. They improved the best known
packing for n = 32, 37, 48, and 50.

Casado et al. [20] subdivide the unit square into k × k subsquares, where k = �√n�.
They construct an initial solution by placing the n points randomly at the center of the n
distinct subsquares. They then perturb each point randomly. They may accept a perturbed
point even when it is nonimproving (i.e., backtracking is allowed during the search). Based
on these results, Szabo [21] develops some new regular patterns of points.

Locatelli and Raber [10] provide an upper bound on the maximum radius of n
identical circles that can fit into a unit square. They model the problem as a quadratic
optimization problem, and introduce two properties that must be satisfied by at least an
optimal solution. They develop a clever and efficient algorithm which starts from a general
rectangular branch-and-bound, and exploits the special structure of the problem and the
properties fulfilled by some of its solutions. They prove the optimality, within a 10−5 precision,
of best known solutions in literature for n = 10, . . . , 31, 33, 34, 35, 38, and 39. They improve
existing packings for n = 32 and prove its optimalitywithin the given tolerance and for n = 37,
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but do not prove its optimality. Their algorithm provides a vivid example of the exponential
growth of the computational effort as n increases. For instance, trying to improve previously
computed solutions requires less than 0.5 seconds for n ≤ 13,more than 2 minutes for n ≤ 21,
and more than 30 minutes for n ≤ 26. For n ≤ 28, the computational time exceeds 27 CPU
hours.

Markot and Csendes [22] and Szabo et al. [23] offer an efficient algorithm for
eliminating large sets of suboptimal solutions of the scattering problem.

Markot and Csendes [24] use interval arithmetic as an accelerating device of an
interval branch-and-bound optimization algorithm. Their computational proof lays the
foundation for solving the previously open instances of packing 28, 29, and 30 circles.

Markot [25] presents a numerically reliable verified method using interval arithmetic
computations, which can be regarded as a “computer-assisted verification method” for
proving the structural properties of circle packing problems. He proves that the best-known
packing structure for 28, 29, and 30 circles results in an optimal and (apart from symmetry
and the occurrence of a free circle) unique packing. That is, in all three cases the guessed
optimal structure is the unique optimal geometric solution of the particular problem.

Addis et al. [26] reformulate the problem as a mathematical program for which
efficient local search procedures exist and identifying feasible solutions is relatively easy;
that is, into a mathematical program with a linear objective function but with reverse
convex quadratic constraints. In fact, they replace the Euclidean distance in the non-overlap
constraints of the scatter point formulation by their squares; that is,

d
2 ≤ (x

′
i − x

′
j)

2
+ (y

′
i − y

′
j)

2
1 ≤ i < j ≤ n. (2.4)

The authors conjecture that the problem possesses a funnel landscape, a feature that is
commonly found in molecular conformation problems. They develop a stochastic search
algorithmwhich consists in a population-based version ofMonotonic Basin Hopping (MBH).
MBH, like iterated search, moves from one local optimum to another without too much
disrupting the structure of the original local optimum. It investigates the neighborhood of
a local optimum by checking if its neighbors could lead to improving solutions, and stops
if the number of nonimproving neighbors exceeds a certain prefixed threshold. A neighbor
is obtained by perturbing the positions of all circles and using the perturbed solution as
a starting point of a local search approach that would converge to a local optimum. The
population-based version of MBH applies MBH to a set of local optima (a population of
parents). Each local optimum (parent) produces a new set of solutions (a population of
children). Subsequently, each solution of the new population (each child) is compared—
based on a dissimilarity measure—with each element in the population of parents looking
for the closest one. If the child is better than its closest parent, it replaces it. After all children
have been compared with the population of parents and a new set of parents has been
obtained, the procedure restarts. This procedure improves 32 best known solutions in the
range 53 ≤ n ≤ 130. In fact, a key to the success of the population based MBH is the
dissimilarity measure which maintains the diversity of the population (thus guarantees the
exploration of wider parts of the solution space) by maintaining a sufficient dissimilarity gap
among the individuals of the population [8]. Different dissimilarity measures, mainly based
on pairwise distances between cluster circles, are introduced [8]. Tests show that although
there is no single dissimilarity measure which dominates the others, it is possible to identify
a group of dissimilarity criteria which guarantees the best performance [8].



6 Advances in Operations Research

Van Dam et al. [27] consider a different but closely related problem to the problem of
packing identical circles into a unit square. Some solutions of the packing problem have a
strong shadow effect; that is, if projected over the x or y axis, the solutions have a number of
distinct projected points that is much lower than the overall number of points. Therefore, the
authors consider solutions with the additional constraint that the projected points are well
separated. The authors propose both a branch-and-bound (which returns optimal solutions
to the modified problem for n ≤ 70), and a heuristic approach for n ≤ 1000 points.

2.1.2. Packing Circles into a Rectangle

One of the problems having a wide industrial application is cylinder palletization. It consists
in identifying the maximum number of identical circles (with a known radius r) that can
be packed into a rectangle of fixed known dimensions (L,W) where the circles should be
totally inside the rectangular box and should not overlap. This problem is classified as a
single knapsack problem according to the typology of Wascher et al. [28].

Correia et al. [29] introduce a new upper bound for the optimal number of circles
that fit inside a rectangle. In fact, existing bounds for similar problems cannot be adapted to
the circle packing case. For instance, the bound which consists of the ratio of the area of the
rectangle to the area of a circle is inefficient due to the existence of inevitable unused space
among the circles. Other bounds exploit the geometric characteristics of packing rectangles
into a rectangle; thus, are unsuitable for this case. Finally, using the area of the square hull of
the circles does not yield an upper bound for the optimal value, although it can be used
as a lower bound. The developed bound uses a better estimate of the usable area of the
rectangle. It subtracts from the overall area of the rectangle an external area corresponding
to the unused spaces along the pallet borders and an internal area corresponding to the
unused spaces among circles, where the circles have regular arrangements. The analysis of the
results obtained for five distinct sets of problems show that the developed bound dominates
existing upper bounds, and that its gap from a lower bound, obtained by applying simulated
annealing [30] to the cylinder packing problem, is very small.

Birgin et al. [31] tackle this problem by solving a series of decision problems. Each
problem investigates the feasibility of packing k identical circles of known radius r into
(L,W). If such a packing is feasible, k is incremented by one and the decision problem is
solved again. The algorithm stops when the decision problem yields an infeasible packing.
The decision problem is formulated as

Minimize
∑
i<j

max (0, 4r2 − (xi − xj)
2 − (yi − yj)

2)
2

Subject to r ≤ xi ≤ L − r i ∈ I
′
= {1, . . . , k}

r ≤ yi ≤ W − r i ∈ I
′
.

(2.5)

The decision problem is feasible if the value of the objective function is zero, and infeasible
otherwise. In fact, if any pair of circles (i, j) overlap, the Euclidean distance separating their
centers will be less than the sum of their radii:

√
(xi − xj)

2 + (yi − yj)
2 < 2r, (2.6)
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which is equivalent to

4r2 − (xi − xj)
2 − (yi − yj)

2 > 0, (2.7)

and implies that

max
{
4r2 − (xi − xj)

2 + (yi − yj)
2, 0

}
> 0. (2.8)

If the value of the objective function given by (2.5) is zero, then every one of the terms of the
summation equals zero. Thus, none of the pairs of circles overlap.

The problem given by (2.5) is a nonlinear piecewise continuous optimization problem
whose objective function has continuous first derivatives but discontinuous second deriva-
tives. That is, the objective function changes its analytical definition on the boundary that
separates the regions. This is evidently a disadvantage for minimization algorithms based on
quadratic models, like Newton’s method, which enjoys good convergence properties. The
authors overcome the discontinuity issue by means of a continuous regularized Hessian
which ensures more stability of the iterations. They solve the resulting problem using
GENCAN, an augmented Lagrangian method for the minimization of a smooth function
with general constraints. It uses, for the direction chosen at each step inside the faces, a
truncated-Newton approach which employs the regularized Hessian approximations. This
means that the search vector is an approximate minimizer of the quadratic approximation of
the function in the current face. Conjugate gradients are used to find this direction. GENCAN
with the regularized Hessian turns out to be muchmore efficient than the samemethod using
the discontinuous Hessian. The method is restarted with 50 000 initial randomly generated
solutions in search for a global minimum.

A variant of this problem is to consider nonidentical circles. George et al. [32] propose
a nonlinear mixed integer program for packing nonidentical circles (of known radii) into a
rectangle (L,W), of fixed known dimensions. The model regards (xi, yi), i ∈ I, as continuous
variables and uses binary variables δi, i ∈ I, to signal the inclusion/exclusion of a circle from
the pattern. The model can be stated as

Maximize
n∑
i=1

ciδi

Subject to δiri ≤ xi ≤ δi(L − ri) i ∈ I

δiri ≤ yi ≤ δi(W − ri) i ∈ I

√
(xi − xj)

2 + (yi − yj)
2 ≥ δiδj

(
ri + rj

)
1 ≤ i < j ≤ n,

xi ≥ 0, yi ≥ 0, δi ∈ {0, 1} i ∈ I,

(2.9)

where ci, i ∈ I, is the profit obtained when including circle i of radius ri in rectangle (L,W).
This model involves n binary decision variables, 2n continuous decision variables, and 2n +
(n(n − 1)/2) functional constraints reinforcing the fact that a packed circle is totally enclosed
in the rectangle, and that no pair of packed circles overlap. This model is very difficult to
solve using any off-the-shelf nonlinear mixed integer mathematical solver. Indeed, there are



8 Advances in Operations Research

usually many different packing configurations which give the same objective function value.
These feasible solutions differ only in the pattern in which the circles are packed. In addition,
the feasible region is discontinuous; that is, an improving feasible solution occurs only when
an additional whole circle can be placed in the rectangle. Moreover, the problem exhibits
many local optima, and in many cases a globally optimal point is relatively rare compared
to the number of second best solutions. In other words, the objective function consists of a
small number of spikes in a large, relatively flat surface. Evidently, this model could not solve
even small-sized problems. Therefore, the authors solved the problem using constructive
heuristics which produce either unstable or stable configurations. A configuration is stable if
every circle is adjacent to two sides of the containing rectangle, or to one side of the rectangle
and to another larger circle, or to two circles, and is unstable otherwise. These heuristics
apply a set of common sense rules: (a) first fit decreasing packing, (b) corner packing, (c)
edge packing, (d) packing identical circles in a cluster, (e) generating stable configurations,
(f) random positions, (g) spin-out, and (h) shake down. The heuristics are coupled with
a genetic algorithm which chooses the position of every circle. The first fit rule (i.e., rule
(a)) is reinforced for all solutions; that is, the circles are sorted in a nonincreasing order of
their diameters for all solutions. The authors show experimentally that the quasi-random
rule (i.e., rule (f)) coupled with the genetic algorithm yield the best solutions. Hifi et al. [33]
adapt simulated annealing to this variant of the problem. They start from a superoptimal non
feasible solution and restore feasibility by moving some circles out of the strip.

Another problem of interest is to find the dimensions of the rectangle of minimal area
that can contain n nonoverlapping congruent identical circles (of known fixed radius), where
the height to width ratio of the rectangle is variable. In fact, when the aspect ratio of the
enclosing rectangle is fixed, the densest packing minimizes both the area and the perimeter
of the rectangle. However, by allowing a variable aspect ratio, the two optima may differ for
the same number of circles n.

Lubachevsky and Graham [34] use a computational technique that consists of two
independent algorithms: a restricted search and a compactor simulation. The restricted search
operates on the assumption that the desired minimum is achieved on a set of configurations
which is much smaller than the set of all possible configurations. The set is restricted
to include only hexagonal patterns, square-grid patterns, their hybrids, and the patterns
obtained by removing some circles from these patterns. A configuration is defined by 6
parameters: the number w of circles in the longest row, the number of rows arranged in
a hexagonal alternating pattern, those rows—among the hexagonally arranged rows—that
have w − 1 circles each, the number of rows that are stacked in the square-grid pattern,
those among the square-grid rows that consist of w − 1 circles each, and the number
of “monovacancies” or holes. These six integers are subject to a set of constraints which
induce the pattern and its enclosing rectangle. The restricted search procedure does not
necessarily produce the global optimum. The compactor simulation generates a random
starting feasible but sparse configuration with the n circles lying inside a (large) rectangle.
Then, the simulation imitates a compactor with each side of the rectangle pressing against the
circles, so that the circles are forced towards each other until they jam. Possible circle-circle or
circle-boundary conflicts are resolved using a simulation of hard collisions so that no overlap
or boundary-penetrating circles occur during the process. The simulation is repeated many
times, with different starting circle configurations, and the packing resulting in the smallest
perimeter of the enclosing rectangle is retained as a candidate for the optimal packing. The
compactor simulation makes no assumption regarding the resulting packing pattern; that is,
the circles are free to choose any final configuration as long as it is jammed. However, this
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results in the simulation needing a large number of initial configurations prior to reaching
a good candidate packing (of the same quality as that obtained by the restricted search).
For example, it may take a fraction of a second to find the minimum perimeter packing of
15 circles by the restricted search but days with thousands of attempts to produce the same
answer by simulation. Using these two techniques, the authors conjecture the minima for
n ≤ 5000.

Lubachevsky and Graham [35] note that in many of the identified best con-
figurations, the circles form the usual regular square-grid or hexagonal patterns or
their hybrids. However, for most values of n ≤ 5000, for example, for n =
7, 13, 17, 21, 22, 26, 31, 37, 38, 41, 43, . . . , 4997, 4998, 4999, 5000, they prove that the opti-
mum cannot possibly be achieved by such regular arrangements. In general, the deviations of
the optimal packing from the regular patterns are predictable small localized modifications
to regular patterns. However, some of the identified best configurations show unexpected
substantial extended irregularities. These correspond, for the range n ≤ 62, to the instances
with n = k(k + 1) + 1, k = 3, 4, 5, 6, 7, that is, for n = 13, 21, 31, 43, and 57. The height-to-width
ratio of minimum perimeter rectangles containing n congruent circles tends to 1 as n → ∞.

Another problem of interest is packing circles into a rectangle of fixed length L and
minimumwidthW without exceeding the dimensions of the rectangle or having overlapping
circles; that is, the circle two-dimensional open dimension problem [28].

Stoyan and Yaskov [36] propose a mathematical model for the nonidentical circles
variant of the problem

Minimize W

Subject to ri ≤ xi ≤ L − ri i ∈ I

ri ≤ yi ≤ W − ri i ∈ I

(xi − xj)
2 + (yi − yj)

2 ≤ (ri + rj)
2 1 ≤ i < j ≤ n

W ≥ 0, xi ≥ 0, yi ≥ 0, i ∈ I.

(2.10)

The authors discuss the peculiarities as well as the characteristics of the feasible region of the
resulting multidimensional multiextremal problem. They then solve it using a combination of
branch-and-bound and the reduced gradient method. They search for the global extremum
of the linear objective function by investigating all extreme points, which are sorted via a
constructed search tree. Each extreme point is uniquely determined by an end-node of the
search tree where the node corresponds to a quadratic system of 2n+1 equations. They move
from one extreme point to another having a smaller objective function value via a computed
step size. They illustrate the application of their approach via a set of examples, and indicate
that they find a global minimum if n ≤ 8. However, for n > 8, their approach can obtain, in
general, only some approximation of the global minimum.

For the same problem and model formulation, Stoyan and Yaskov [9] offer an original
method of jumping from one local minimum to another in search for an approximation
of a global minimum. For a given local minimum, the method chooses, by means of
Lagrangian multipliers, two nonidentical circles and interchanges their positions. That is,
the radii of these two circles can be taken as variables; thus, the method is not suitable for
packing identical circles. The method increases the dimension of the problem but permits
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the transition from one local minimum to another such that the transition decreases the
objective function value. In fact, the solution method is based on simultaneously increasing
the problem’s dimension and choosing the movement direction from one local minimum to
another via a reduced gradient method as well as on the concept of active inequalities and
the Newton method. Since some systems of active inequalities can be inconsistent, a way to
overcome the inconsistencies is considered. The final solution depends on the choice of the
first extreme point. Therefore, obtaining a good approximation of a global minimum requires
applying the afore-described approach with different starting extreme points. Computational
tests show that the method, which can be viewed as a tunneling method—for escaping
from local minimizers—coupled with an efficient local solver and a multistart strategy, is
sufficiently effective for n up to 35 circles. Indeed, it performs better than the branch-and-
bound method of [36].

For the same problem, Hifi and M’Hallah [37] propose a constructive heuristic and a
genetic algorithm. Both algorithms search for a good order of the pieces and use an adaptation
of the best local position procedure (BLPP) [38, 39] to pack the circles. The adapted BLPP
(ABLPP) positions circles in the upper left-most available position but takes advantage of
the circularity of the pieces to explore more promising positions. ABLPP is simpler and faster
than BLPP since a positioned circle cannot be further translated, and a circle can be positioned
in holes generated by already packed ones.

To solve the same problem, Huang et al. [40] first study a decision problem which
checks the possibility of packing n circles into a rectangle of fixed dimensions. They solve the
decision problem using one of two greedy algorithms: B1.0 and B1.5. Algorithm B1.0 selects
the next circle to be positioned according to the maximum-hole degree (MHD) rule, which is
inspired from human activity in packing. In fact, MHD, positions the current circle into the
maximum hole degree corner position among all its feasible positions in Ω, that is, without
overlapping any of the already packed circles. A corner position is a feasible position of the
current circle in Ω if the current circle is tangent to two already packed circles or tangent
to an already packed circle and to the perimeter of Ω. Algorithm B1.5 improves B1.0 with a
self-look-ahead search strategy that determines, at each iteration, the circle to be packed and
its position. The authors solve the original problem of determining the minimum width of a
rectangle of fixed length and containing the n circles, by applying a dichotomous search to get
rapidly a good enough upper bound for the width. They, then, gradually reduce this upper
bound until neither B1.0 nor B1.5 finds a successful configuration. The final upper bound is
then taken as the minimal width W of the rectangle.

Cui [41] formulates the same problem as a constrained circular cutting problem with
the objective of minimizing material waste, and proposes a heuristic solution strategy that
generates T-shaped cutting patterns.

Castillo et al. [42] model the same problem using 4n linear constraints, n(n − 1)/2
nonlinear constraints (as in [36]), and a set of simple bounds. The objective function can be
of minimizing either the area of the containing rectangle or one of its dimensions. The authors
apply off-the-shelf generic global optimization techniques. To further improve their results,
they apply a posteriori strategy that, given a near-optimal initial arrangement, swaps all pairs
of adjacent sized circles till no possible improvement is possible.

For the same problem, Akeb and Hifi [43] propose three heuristics. The first one
positions the circles ordered in a nonincreasing order of their radii using the best local
position rule. The second applies the first heuristic a fixed number of times using a different
order of the circles each time. Finally, the third combines beam search with a dichotomous
search for the width of the rectangle.
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Birgin and Sobral [44] consider the problem of minimizing the dimensions of an
object that contains n nonoverlapping items where the object can be a two- or three-
dimensional rectangle, triangle, square, or circle, and the items are circular. They develop
twice differentiable nonlinear programming models that reduce the computational cost
of reinforcing the nonoverlap constraints. In fact, the model has the classical constraints
requiring each of the n circles to be totally embedded in the containing circle, but replaces
the nonoverlapping constraints by a single constraint:

∑
i<j

max (0, (ri + rj)
2 − (xi − xj)

2 − (yi − yj)
2)

2
= 0. (2.11)

This constraint has two main advantages. Not all O(n2) terms of the left hand side of the
equation need to be evaluated (i.e., the number of pairs that contribute to the sum is O(n)),
and identifying the pairs of items that contribute to the sum can be undertaken in O(n). The
models are solved, starting from several randomly generated initial solutions, using a local
solver that is based on an augmented Lagrangian method for smooth general constrained
minimization.

2.1.3. Packing Circles in a Compact Polygon Set

Stoyan and Patsuk [45] consider the problem of covering a compact polygonal set by identical
circles of minimal radius. They develop a mathematical model for the problem based on
Voronoi polygons and investigate its characteristics. They then apply a modified version of
the Zoutendijk feasible directions method to search for local minima, and design a special
approach to choose the starting points. They illustrate the success of their proposed approach
with many computational examples.

2.2. Three-Dimensional Case

Packing three-dimensional objects such as spheres arises in various branches of the industry
[46]. For example, random packing of geometric objects has been used as a model to
represent the structure of liquids and glassy materials; to study phenomena such as electrical
conductivity, fluid flow, stress distribution, and other mechanical properties of granular
materials; and to investigate processes such as sedimentation, compaction and sintering
[46, 47]. Furthermore, they have applications in medicine for radio-surgical treatment
planning [48], in powder metallurgy for three-dimensional laser cutting [49], in arranging
and loading containers for transportation [31], in cutting different natural crystals, in layout
of computers, buildings, and so forth. Herein, we consider the case where the region Ω is a
cube, a parallelepiped, a cylinder, and a three-dimensional polytope.

Gensane [50] describes an adaptation of the billiard simulation for finding the largest
radius r of n identical spheres that can fit inside a cube. Billiard simulation is a stochastic
method that simulates the idealized movement of billiard balls inside a domain, with
the initial centers of the balls and their directions being randomly fixed. The obtained
configuration is the result of these probabilistic choices. To improve the convergence of the
stochastic algorithm, he introduces systematic perturbations in it. He considers four different
versions of the simulation. In Algorithm 1, the hard spheres do not move along straight lines
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but randomly around themselves, and realize a randomwalk. In Algorithm 2, the magnitude
of the stochastic movements is progressively reduced when the growing spheres yield a jam.
Algorithm 3 introduces simultaneous perturbations of all the spheres. Algorithm 4 alternates
the three types of perturbations. The author applies the perturbed billiard algorithm and
obtains all the optimal and best known patterns for n up to 32. He improves the previous
best known solutions for all 11 ≤ n ≤ 26 except n = 13, 14, and 18. He proves the existence of
the displayed configurations for n = 11, 12, 15, 17, 20, 21, 22, 26, and 32, by constructing them
explicitly. He conjectures that the minimum distance between spheres’ centers of the optimal
patterns is constant in the range 29 ≤ n ≤ 32. He shows that contrary to the two-dimensional
case, his and earlier billiard algorithms are unable to produce all optimal configurations with
a good accuracy without using perturbations.

Stoyan and Yaskov [51] deal with the optimization problem of packing identical
spheres of radius r into a parallelepiped (L,W,H) of minimal height H. They construct a
mathematical model:

Minimize H

Subject to r ≤ xi ≤ L − r i ∈ I

r ≤ yi ≤ W − r i ∈ I

r ≤ zi ≤ H − r i ∈ I

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 ≤ 4r2 1 ≤ i < j ≤ n,

(2.12)

where (xi, yi, zi) are the coordinates of sphere i. This model has a linear objective function
but linear and quadratic constraints. The feasible region is generally disconnected with its
connected component being n(n − 1)/2 connected. Its frontier is formed by 6n linear and
n(n − 1)/2 quadratic inversely convex surfaces. Based on the peculiarities of this multi-
extremal, NP-hard problem, the authors offer a solution strategy which includes a special
search tree construction, a modification of the Zoutendijk method of feasible directions to
calculate local minima, and a modification of the decremental neighborhood method to
search for an approximation to the global minimum.

Stoyan and Yaskov [52] use a similar approach for packing identical spheres of radius
r into a right circular cylinder of known radius r and minimal height H. The model they use
is similar to that used in [51] except that the constraints regarding the xi and yi coordinates
of a sphere i, i ∈ I, are replaced by

r ≤ xi ≤ 2r − r i ∈ I,

r ≤ yi ≤ 2r − r i ∈ I,
(2.13)

respectively. The authors obtain the best results to date for n = 498, 499, and 500. Their
approach is very effective for n ≤ 500, and can handle instances with n ≤ 2000 in very short
computational times.

Stoyan et al. [53] use techniques similar to those considered in [9] to identify a packing
of n nonidentical spheres, each of radius ri, i ∈ I, into a parallelepiped of fixed length L
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and width W but of variable height H with the objective of minimizing H. The model is
straightforward:

Minimize H

Subject to ri ≤ xi ≤ L − ri i ∈ I

ri ≤ yi ≤ W − ri i ∈ I

ri ≤ zi ≤ H − ri i ∈ I

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 ≤ (ri + rj)

2 1 ≤ i < j ≤ n.

(2.14)

The authors provide numerical results with up to 60 spheres.Yaskov et al. [54] tackle the
problem of maximizing the number of identical spheres that can be packed into a cylindrical
composed domain. They construct amathematical model based on the concept ofΦ-functions
[55], and design a solution algorithm based on a modification of the optimization method by
groups of variables.

Wang [48] formulates mathematically the automated radio-surgical treatment plan-
ning problem as the packing of spheres into a three-dimensional region with a packing
density greater than a given threshold level. He proves that this packing problem is NP-
complete and proposes an approximate algorithm to solve it.

Sutou and Dai [56] assimilate the automated radio-surgical treatment planning
problem to packing nonidentical spheres in a three-dimensional polytope with the objective
of maximizing the sum of the volumes of the spheres packed in the polytope. They formulate
the problem as a nonconvex optimization one with quadratic constraints and a linear
objective function. On the basis of the special structures associated with this problem,
they propose a variety of algorithms which improve markedly the existing branch-and
bound algorithm for the general nonconvex quadratic program. They incorporate heuristic
algorithms into the branch and bound to strengthen its efficiency. The computational study
demonstrates the efficiency of the proposed algorithm for limited problem sizes.

Stoyan and Chugay [46] consider the problem of packing cylinders and parallelepiped
shapes into a three-dimensional region so that the height of the occupied part of the region
is minimal and the distances between each pair of items, and the distance between each
packed item and the frontier of the region must be greater than or equal to given distances. A
mathematical model of the problem is built and its characteristics are investigated. Methods
for fast construction of starting points, searching for local minima, and a special non-
exhaustive search of local minima to obtain good approximations to a global minimum are
offered.

3. Circular Region Ω

When the ϕ objects and the regionΩ are two-dimensional circles, the problem is referred to as
the circle packing problem (CPP). CPP has many important applications in manufacturing,
logistics, networks, facility layout, and materials science [42]. For example, in the automobile
industry, design engineers have to estimate the size of the hole to be drilled on the body of
the car and through which they plan to pass the bundle of wires that connect car’s sensors
to the display board [57]. The hole has to be large enough to allow all wires to pass, but as
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small as possible to avoid unnecessarily weakening the body [57]. CPP is also encountered in
the manufacturing of sprockets for the motorcycle industry [58]. Similarly, it is of interest to
the telecommunication/electrical/oil companies and refineries which have to pass bundles
of different types of cables, pipes, and insulated pipes through cylindrical shapes over very
long distances. The smaller the diameters of the cylinders, the cheaper the cost is. Finally, CPP
emerges inmaterial science where it is used to interpret topological relationships encountered
when analyzing the normal grain growth in two dimensions [59] and to model certain
absorption patterns of molecules [60].

This section distinguishes between the case the circles are identical and the case the
circles are nonidentical.

3.1. Packing Identical Circles

Packing identical circles into a unit circle has been viewed as a generic problem with little
industrial relevance. Yet, solving it remains challenging. Mladenovic et al. [6] apply a general
reformulation descent heuristic (RD) to the problem of identifying the largest radius of
identical circles that can be packed into a unit containing circle. RD iterates switching from
solving CPP expressed in Cartesian coordinates to solving it expressed in polar coordinates
and vice versa until no further improvement is obtained. The model expressed in Cartesian
coordinates is

Maximize r

Subject to x2
i + y2

i ≤ (1 − r)2 i ∈ I

(xi − xj)
2 + (yi − yj)

2 ≥ 4r2
(
i, j

) ∈ I × I, i < j

− r + ri ≤ xi ≤ r − ri i ∈ I

− r + ri ≤ yi ≤ r − ri i ∈ I

r ≥ 0;

(3.1)

whereas its formulation in polar coordinates is

Maximize r

Subject to ρi + r ≤ 1 i ∈ I

ρ2i + ρ2j − 2ρiρj cos
(
φi − φj

) ≥ 4r2 i ∈ I, j ∈ I, i < j

r ≥ 0, ρi ≥ 0, φi ∈ [0, 2π] i ∈ I;

(3.2)

where (ρi, φi) denote the polar coordinates of circle i, i ∈ I. In fact, ρi is the distance of (xi, yi)
from the origin of the polar coordinate system (which coincides herein with the center of
the containing circle), and φi is the angle of the sector delimited by the line joining (xi, yi)
to the origin of the polar coordinates and the horizontal axis. That is, xi = ρi cos(φi) and
yi = ρi sin(φi). RD allows nonlinear programming solvers using first-order information to
escape stationary points. The experimental results for instances with up to 100 identical circles
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show that RD is 100 times faster than second-order nonlinear programming methods, and
that the best known solution is obtained in 40% of the cases while in other cases the error
never exceeds 1%.

Birgin and Sobral [44] solve their new model, starting from several initial solutions,
using a local solver that is based on an augmented Lagrangian method for smooth general
constrained minimization. Their reported solutions for instances with up to 100 identical
circles coincide with the best known solutions (up to a prescribed tolerance).

Pinter [61] discusses the Lipschitz Global Optimizer (LGO) software which integrates
global and local scope search methods to handle a very general class of nonlinear
optimization models. In particular, he reviews the key features and basic usage of the
LGO implementation linked to the General Algebraic Modeling System (GAMS). Then, he
illustrates its application to packing n identical circles into a unit circle where the objective is
to determine the largest radius of the small circles.

3.2. Packing Nonidentical Circles

One variant of CPP consists in packing n nonidentical circles without overlap into the
smallest containing circle C where each circle i is characterized by its radius ri. The goal
is to search for the best packing of the n circles into C, where the best packing minimizes
waste. CPP, according to the typology of Wascher et al. [28], is a two-dimensional variant of
the Open Dimension Problem since all small items (which are circular) have to be packed
and the extension of the large object (which is circular) is not given but has to be minimized.
CPP is equivalent to finding the coordinates (xi, yi) of every circle i, i ∈ I, the radius r and
coordinates (x, y) of C, such that no pair of circles (i, j) ∈ I × I and i < j overlap. Formally,
the problem can be stated as finding the optimal level of the decision variables r, (x, y), and
(xi, yi), i ∈ I, that is

Minimize r

Subject to (xi − x)2 + (yi − y)2 ≤ (r − ri)
2 i ∈ I

(xi − xj)
2 + (yi − yj)

2 ≥ (
ri + rj

)2 (
i, j

) ∈ I × I, j < i

r ≥ LBr,

(3.3)

where LBr =
√∑

i∈Ir
2
i . The first set of constraints reinforce the complete containment of

every circle within C. The second set reinforces the no overlap constraint of any pair of
distinct circles. Finally, the last constraint provides a positive lower bound for the radius of
the containing circle. It substitutes the nonnegativity constraint whose elimination from the
model makes CPP unbounded. CPP has a linear objective function but non linear constraints.
Even though its set of feasible solutions has piecewise smooth surface frontiers, CPP is a
difficult problem to solve [62]. For all practical purposes, CPP can be solved by setting either
(x, y) = (0, 0) or any other pair of coordinates (xi, yi) = (0, 0).

As in the case of packing circles into a square or a rectangle, Birgin and Sobral [44]
reformulate the non-overlap constraints of CPP using the single constraint given by (2.11).



16 Advances in Operations Research

Alternatively, the problem can be formulated in polar coordinates:

Minimize r

Subject to ρi + ri ≤ r i ∈ I

ρ2i + ρ2j − 2ρiρj cos
(
φi − φj

) ≥ (
ri + rj

)2
i ∈ I, j ∈ I, i < j,

r ≥ 0, ρi ≥ 0, ri ≥ 0, φi ∈ [0, 2π] i ∈ I,

(3.4)

where (ρi, φi) denote the polar coordinates of circle i, i ∈ I. In fact, ρi is the distance of its
center from the center (x, y) of C, and φi is the angle of the sector delimited by the line joining
(xi, yi) to (x, y) and the horizontal axis. That is, xi = ρi cos(φi) + x and yi = ρi sin(φi) + y.

CPP is a difficult problem to solve [62]. It poses several challenges. It cannot be tackled
effectively by purely analytical approaches [42]. It embeds two extremely difficult problems:
a pure continuous optimization problem, and a combinatorial one [63]. In addition, it has
an infinite number of alternative optima [62], an exponential number of local optima which
are not globally optimal, and an uncountable set of stationary points [6] (i.e., solutions that
satisfy the KKT conditions but which do not correspond to local optima [63]). Moreover,
CPP’s solution is sensitive to the choice of the initial solution (as is the case in nonlinear
optimization) [6]. Finally, the larger the number of items, the larger the number of local
minima and stationary points; thus, the simple multistart global optimization strategies need
more local minimizations to reach a global minima [44].

CPP has been tackled by three distinct approaches based on: decision problems (where
packings are obtained using the maximum hole degree rule) coupled with some bounding
mechanism for r, constructive heuristics, and nonlinear programming.

The first approach fixes a value for the radius r of the containing circle C, and solves—
based on the concept of maximum hole degree or of simulation of elastic forces—a decision
problem which checks if a feasible packing of the n circles in C is possible. When such a
packing is feasible, the radius is decreased, and the process is repeated until no feasible
packing is obtained.

Using this approach,Wang et al. [64] describe a quasi-physical quasi-human algorithm
which mimics the physical model in which a number of smooth cylinders are packed inside
a container. A quasi-human strategy is then proposed to trigger a jump for a stuck object
in order to get out of local minima. The algorithm can be assimilated to an adaptive Tabu
search. It randomly generates an initial pattern where every circle has its center inside the
containing circle. It measures the infeasibility of a solution, and translates a circle, whose
position is infeasible, along both axes. The translation distance is a function of an adaptive
step size and the gradient of the objective function of the current pattern. Since the iterative
process converges quickly to (in)feasible local optima, circles are allowed to jump in search
for a new position within the containing circle.

Wenqi and Yan [65] formulate CPP as a potential energy function by simulating a
system of elastic solids. They position all circles randomly inside the containing circle. If
this configuration has no overlapping circles, a feasible solution is at hand. Otherwise, the
elastic repulsion forces generated by the overlaps drive the overlapping circles to restore their
shape and size. The circles move along straight lines, colliding with each other and with the
containing circle until the composition of elastic forces is decreased to zero. If the amount of
overlap is also decreased to zero, then the process stops with a feasible solution. Otherwise,
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the process restarts. The authors then give a quasi-physical algorithm that reaches a global
minimum of the potential energy function by simulating the movements of all overlapping
circles. They improve the quasi-physical algorithm by using two strategies: an early-escape
strategy that helps the search escape from local minima, and a good-prospect strategy that
generates good initial solutions for the search.

Sugihara et al. [57] apply a shrink and shake strategy. They construct a sufficiently
large circle that contains all circles, then reduce its radius by translating circles using a shrink
and shake iterative strategy. They further speed their strategy by using the circle Vonoroi
diagram to determine the translation distance of any protruding circle—while keeping all
circles inside the containing circle.

Zhang and Deng [66] adopt the model of Wang et al. [64], and use a hybrid approach
consisting of simulated annealing to explore the neighborhood of the current solution, and
tabu search to implement the jumps. When exploring the neighborhood of the current
solution, one of the circles whose position is infeasible is translated and the degree of
infeasibility of the neighbor is computed. A neighboring solution that reduces the degree of
infeasibility becomes the incumbent solution whereas a nonimproving solution is accepted
with a given probability, which decreases as the search becomes more selective. As this
method often converges to infeasible local optima very quickly, a tabu search is adopted to
allow circles causing infeasibility to jump out of their current position and randomly get a
new position within the containing circle.

Huang et al. [67] solve CPP using two heuristics A1.0 and A1.5, which are extensions
of the approach of [68]. They use the notion of the MHD of a position of a circle to be packed
given a fixed value of r and the positions of already packed circles. A1.0 chooses for the circle
to be packed the feasible position having the highest hole degree. It is run n(n−1) times; each
time starting with a different pair of the n circles. A1.5 is a modified version of A1.0. It applies
a self look-ahead search for every feasible corner position of the circle to be packed. Given
the set of i packed circles, A1.5 packs Ci+1 in every feasible corner position and uses A1.0 to
pack all remaining items. If it successfully packs all items, A1.5 stops; else, it chooses for Ci+1

the feasible corner position yielding the infeasible solution having the highest density and
pursues packing the remaining circles. Experimental results, on benchmark instances with
up to 100 circles, show that A1.5 has a good performance in terms of solution quality and
computational time for packing unequal circles.

Huang and Chen [69] propose an improved version of the algorithm of Wang et al.
[64] for solving CPP with equilibrium constraints. An efficient strategy of accelerating the
search process is introduced in the gradient method.

Lu and Huang [70] incorporate the concept of maximum cave degree corner
occupying actions into an improved PERM. The comparison of the proposed algorithm to
existing ones shows that it is less efficient than Zhang and Deng’s [66] for several large-scale
identical circle instances—as is the case for all heuristics based on the concept of maximum
hole degree—but obtains new lower bounds for several benchmark instances of nonidentical
circles.

Akeb et al. [71] solve CPP using an adaptive beam search algorithm that combines
beam search with the notion of local position distance and dichotomous search. It uses a
width first beam search where the decisions at each node of the developed tree are based on
the maximum hole degree that uses the local minimum distance. It escapes local minima by
employing diversification strategies.

Akeb et al. [72] solve CPP using a binary search to determine r, and a beam search
to check the feasibility of packing the n circles into C when the radius is r. A node of level
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�, � = 1, . . . , n, of the beam search tree corresponds to a partial packing of � circles into
C. The potential of each node of the tree is assessed via a lookahead strategy that, starting
with the partial packing of the current node, assigns each unpacked circle to its maximum
hole degree position. The beam search stops either when the lookahead strategy identifies a
feasible packing or when it has fathomed all nodes.

The second approach is a constructive approach that successively packs items and
searches for the smallest radius of the containing circle. For example, Hifi and M’Hallah
[3] propose a dynamic, adaptive, local search algorithm which iterates through two
complementary steps that are dynamically coupled in search for the smallest circle. At each
iteration, the algorithm identifies the set of potential best local positions of a circle Ci, i ∈
N, given the positions of the previously packed circles, and determines for each of these
positions the coordinates and radius of the smallest containing circle. The best local position
minimizes the radius of the current containing circle. That is, every time an additional circle is
packed, both the center and the radius of the containing circle are dynamically updated, and
the smallest containing circle is known. The procedure considers the circles in a nonincreasing
order of their radii.

Hifi and M’Hallah [62] propose a three-phase approximate algorithm. During its first
phase, the algorithm successively packs the ordered set of circles. It searches for each circle’s
“best” position given the positions of the already packed circles where the best position
minimizes the radius of the current containing circle. During its second phase, the algorithm
tries to reduce the radius of the containing circle by applying (i) an intensified search—based
on a reduction search interval—and (ii) a diversified search—based on the application of
a number of layout techniques. During its third and last phase, the algorithm introduces a
restarting procedure that explores the neighborhood of the current solution in search for a
better ordering of the circles.

The third approach tackles CPP using random multistart global optimization run
with off-the shelf optimizers. For example, Pinter and Kampas [73] present numerical
results obtained using LGO. Castillo et al. [42] apply various off-the-shelf generic global
optimization techniques, and compare their performance. They further improve the results
of the generic solvers by implementing a posteriori strategy that, given a near-optimal initial
arrangement, swaps all pairs of adjacent sized circles till no possible improvement is possible.

Addis et al. [63] mix standard local optimization routines with local moves between
minimawhile reinforcing solution dissimilarity but reducing the solution space. The resulting
approach obtains the best known solution for problems with up to 50 circles and ri = i, i =
1, . . . , n.

Hifi and M’Hallah [4] show that the combinatorial structure and the continuous
optimization aspects of CPP should not be treated individually, but must be considered
simultaneously. They base their recommendation on the comparison of the performance of
two newly designed algorithms: BS1 and BS2. BS1 is a two-stage approach. The first stage
uses a beam search (along with the packing heuristic of [3] and nonlinear optimization) to
identify the best ordering of the circles. The second stage considers the circles in the order
identified in stage 1, and uses a beam search to find the best position of each circle. BS2
embeds both searches into a single search-tree, where each level of the tree has two sub-
levels: one for the circle to be packed, and one for the packing position of the circle. The
proposed BS1 and BS2 are constructive in nature but use global optimization techniques
too. They search for the best ordering of the circles and the best position of a circle given
those already packed as to minimize the radius of the current containing circle. They further
improve each local partial solution by applying global optimization techniques. They map



Advances in Operations Research 19

most of the search space, guide the search into the most promising neighborhoods, allow
escape from local minima, and reinforce solution dissimilarity.

Al-Modahka et al. [74] present an adaptive hybrid algorithm that addresses the
combinatorial structure of CPP via a tabu search (TS), and its continuous optimization aspects
via a combination of nested partitioning (NP) and nonlinear optimization. The hybrid TS/NP
algorithm exploits the advantages of TS to undertake a local search aimed at identifying
a good permutation of the circles whereas NP undertakes a global search to identify their
respective best positions. The provided results are further modified/improved using some
diversification strategies. Numerical examples show that the adaptive hybrid algorithm is
both efficient and robust.

4. Conclusion

This paper reviews the recent literature on the NP hard optimization problem of packing
circular items/objects into Euclidean regions of the plane. This challenging and difficult
problem has many real-world applications, and has received a lot of attention. It has been
tackled by constructive approaches coupled with meta-heuristics or local search methods, by
simulation mimicking some physical or molecular phenomena, by branch- and bound-type
approaches, and by nonconvex optimization. Any of these approaches tackles the continuous
and the discrete structures of the problem using good standard local optimization routines,
local moves between local minima, and enforcement of dissimilarity between local minima.
The success of many of these approaches is due to the advancement of computer science
related technology; subsequently, of the capacity of many nonlinear solvers to deal with large
sized instances.
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