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The concept of E-convex function and its generalizations is studied with differentiability assump-
tion. Generalized differentiable E-convexity and generalized differentiable E-invexity are used to
derive the existence of optimal solution of a general optimization problem.

1. Introduction

E-convex function was introduced by Youness [1] and revised by Yang [2]. Chen [3] intro-
duced Semi-E-convex function and studied some of its properties. Syau and Lee [4]
defined E-quasi-convex function, strictly E-quasi-convex function and studied some basic
properties. Fulga and Preda [5] introduced the class of E-preinvex and E-prequasi-invex
functions. All the above E-convex and generalized E-convex functions are defined without
differentiability assumptions. Since last few decades, generalized convex functions like
quasiconvex, pseudoconvex, invex, B-vex, (p, r)-invex, and so forth, have been used in
nonlinear programming to derive the sufficient optimality condition for the existence of local
optimal point. Motivated by earlier works on convexity and E-convexity, we have introduced
the concept of differentiable E-convex function and its generalizations to derive sufficient
optimality condition for the existence of local optimal solution of a nonlinear programming
problem. Some preliminary definitions and results regarding E-convex function are discussed
below, which will be needed in the sequel. Throughout this paper, we consider functions
E : Rn → Rn, f : M → R, and M are nonempty subset of Rn.

Definition 1.1 (see [1]). M is said to be E-convex set if (1− λ)E(x) + λE(y) ∈ M for x, y ∈ M,
λ ∈ [0, 1].
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Definition 1.2 (see [1]). f : M → R is said to be E-convex on M if M is an E-convex set and
for all x, y ∈ M and λ ∈ [0, 1],

f
(
(1 − λ)E(x) + λE

(
y
)) ≤ (1 − λ)f(E(x)) + λf

(
E
(
y
))
. (1.1)

Definition 1.3 (see [3]). Let M be an E-convex set. f is said to be semi-E-convex on M if for
x, y ∈ M and λ ∈ [0, 1],

f
(
λE(x) + (1 − λ)E

(
y
)) ≤ λf(x) + (1 − λ)f

(
y
)
. (1.2)

Definition 1.4 (see [5]). M is said to be E-invexwith respect to η : Rn×Rn → Rn if for x, y ∈ M
and λ ∈ [0, 1], E(y) + λη(E(x), E(y)) ∈ M.

Definition 1.5 (see [6]). Let M be an E-invex set with respect to η : Rn × Rn → Rn. Also
f : M → R is said to be E-preinvex with respect to η on M if for x, y ∈ M and λ ∈ [0, 1],

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(E(x)) + (1 − λ)f

(
E
(
y
))
. (1.3)

Definition 1.6 (see [7]). Let M be an E-invex set with respect to η : Rn × Rn → Rn. Also
f : M → R is said to be semi-E-invex with respect to η at y ∈ M if

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
))) ≤ λf(x) + (1 − λ)f

(
y
)

(1.4)

for all x ∈ M and λ ∈ [0, 1].

Definition 1.7 (see [7]). Let M be a nonempty E-invex subset of Rn with respect to η : Rn ×
Rn → Rn, E : Rn → Rn. Let f : M → R and E(M) be an open set in Rn. Also f and E are
differentiable on M. Then, f is said to be semi-E-quasiinvex at y ∈ M if

f(x) ≤ f
(
y
) ∀x ∈ M =⇒ (∇(f ◦ E)(y))Tη(E(x), E(y)) ≤ 0, (1.5)

or

(∇(f ◦ E)(y))Tη(E(x), E(y)) > 0 ∀x ∈ M =⇒ f(x) > f
(
y
)
. (1.6)

Lemma 1.8 (see [1]). If a setM ⊆ Rn is E-convex, then E(M) ⊆ M.

Lemma 1.9 (see [5]). If M is E-invex, then E(M) ⊆ M.

Lemma 1.10 (see [5]). If {Mi}i∈I is a collection of E-invex sets and Mi ⊆ Rn, for all i ∈ I, then
∩i∈IMi is E-invex.
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2. E-Convexity and Its Generalizations with
Differentiability Assumption

E-convexity and convexity are different from each other in several contests. From the pre-
vious results on E-convex functions, as discussed by our predecessors, one can observe the
following relations between E-convexity and convexity.

(1) All convex functions are E-convex but all E-convex functions are not necessarily
convex. (In particular, E-convex function reduces to convex function in case E(x) =
x for all x in the domain of E.)

(2) A real-valued function on Rn may not be convex on a subset of Rn, but E-convex on
that set.

(3) An E-convex function may not be convex on a set M but E-convex on E(M).

(4) It is not necessarily true that ifM is an E-convex set then E(M) is a convex set.

In this section we study E-convex and generalized E-convex functions with differen-
tiability assumption.

2.1. Some New Results on E-Convexity with Differentiability

E-convexity at a point may be interpreted as follows.
Let M be a nonempty subset of Rn, E : Rn → Rn. A function f : M → R is said to be

E-convex at x ∈ M ifM is an E-convex set and

f(λE(x) + (1 − λ)E(x)) ≤ λ
(
f ◦ E)(x) + (1 − λ)

(
f ◦ E)(x) (2.1)

for all x ∈ Nδ(x) and λ ∈ [0, 1], where Nδ(x) is δ-neighborhood of x, for small δ > 0.
It may be observed that a function may not be convex at a point but E-convex at that

point with a suitable mapping E.

Example 2.1. Consider M = {(x, y) ∈ R2 | y ≥ 0}. E : R2 → R2 is E(x, y) = (0, y) and
f(x, y) = x3 + y2. Also f is not convex at (−1, 1). For all (x, y) ∈ Nδ(−1, 1), δ > 0, and
λ ∈ [0, 1], f(λE(x, y)+(1−λ)E(−1, 1))−λ(f◦E)(x, y)−(1−λ)(f◦E)(−1, 1) = −λ(1−λ)(y−1)2 ≤ 0.
Hence, f is E-convex at (−1, 1).

Proposition 2.2. Let M ⊆ Rn, E : Rn → Rn be a homeomorphism. If f : M → R attains a local
minimum point in the neighborhood of E(x), then it is E-convex at x.

Proof. Suppose f has a local minimum point in a neighborhood Nε(E(x)) of E(x) for some
x ∈ M, ε > 0. This implies f is convex on Nε(E(x)). That is,

f(λz + (1 − λ)E(x)) ≤ λf(z) + (1 − λ)f(E(x)) ∀z ∈ Nε(E(x)). (2.2)

Since E : Rn → Rn is a homeomorphism, so inverse of the neighborhood Nε(E(x)) is a
neighborhood of x say Nδ(x) for some δ > 0. Hence, there exists x ∈ Nδ(x) such that E(x) =
z, E(x) ∈ Nε(E(x)). Replacing z by E(x) in the above inequality, we conclude that f is E-
convex at x.
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In the above discussion, it is clear that if a local minimum exists in a neighborhood
of E(x), then f is E-convex at x. But it is not necessarily true that if f is E-convex at x then
E(x) is local minimum point. Consider the above example where f is E-convex at (−1, 1) but
E(−1, 1) is not local minimum point of f .

Theorem 2.3. Let M be an open E-convex subset of Rn, f and E are differentiable functions, and let
E be a homeomorphism. Then, f is E-convex at x ∈ M if and only if

(
f ◦ E)(x) ≥ (f ◦ E)(x) + (∇(f ◦ E)(x))T (E(x) − E(x)) (2.3)

for all E(x) ∈ Nε(E(x)) whereNε(E(x)) is ε-neighborhood of E(x), ε > 0.

Proof. Since M is an E-convex set, by Lemma 1.8, E(M) ⊆ M. Also, E(M) is an open set
as E is a homeomorphism. Hence, there exists ε > 0 such that E(x) ∈ Nε(E(x)) for all x ∈
Nδ(x), δ > 0, very small. So, f is differentiable on E(M). Using expansion of f at E(x) in the
neighborhood Nε(E(x)),

f(E(x) + λ(z − E(x))) = f(E(x)) + λ∇f(E(x))T (z − E(x))

+ α[E(x), λ(z − E(x))]λ‖z − E(x)‖,
(2.4)

where z ∈ Nε(E(x)) and limλ→ 0α[E(x), λ(z−E(x))] = 0. Since f is E-convex at x ∈ M, so for
all x ∈ Nδ(x), λ ∈ (0, 1], x /=x,

λ
((
f ◦ E)(x) − (f ◦ E)(x)) ≥ f(E(x) + λ(E(x) − E(x))) − (f ◦ E)(x). (2.5)

Since E is a homeomorphism, there exists x ∈ Nδ(x) such that E(x) = z. Replacing z by E(x)
in (2.4) and using above inequality, we get

(
f ◦ E)(x) − (f ◦ E)(x) ≥ (∇(f ◦ E)(x))T (E(x) − E(x)

+α[E(x), λ(E(x) − E(x))]‖E(x) − E(x)‖),
(2.6)

where limλ→ 0α[E(x), λ(E(x) − E(x))] = 0. Hence, (2.3) follows.
The converse part follows directly from (2.4).

It is obvious that if E(x) is a local minimum point of f , then ∇(f ◦ E)(x) = 0. The
following result proves the sufficient part for the existence of local optimal solution, proof of
which is easy and straightforward. We leave this to the reader.

Corollary 2.4. Let M ⊆ Rn be an open E-convex set, and let f be a differentiable E-convex function
at x. If E : Rn → Rn is a homeomorphism and ∇(f ◦ E)(x) = 0, then E(x) is the local minimum of
f .
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2.2. Some New Results on Generalized E-Convexity with Differentiability

Here, we introduce some generalizations of E-convex function like semi-E-convex, E-invex,
semi-E-invex, E-pseudoinvex, E-quasi-invex and so forth, with differentiability assumption
and discuss their properties.

2.2.1. Semi-E-Convex Function

Chen [3] introduced a new class of semi-E-convex functions without differentiability
assumption. Semi-E-convexity at a point may be understood as follows:

f : M → R is said to be semi-E-convex at x ∈ M ifM is an E-convex set and

f(λE(x) + (1 − λ)E(x)) ≤ λf(x) + (1 − λ)f(x) (2.7)

for all x ∈ Nδ(x) and λ ∈ [0, 1], where Nδ(x) is δ-neighborhood of x.
The following result proves the necessary and sufficient condition for the existence of

a semi-E-convex function at a point.

Theorem 2.5. Suppose f : M → R and E : Rn → Rn are differentiable functions. Let E be a
homeomorphism and let x be a fixed point of E. Then, f is semi-E-convex at x ∈ M if and only if

f(x) ≥ f(x) +
(∇(f ◦ E)(x))T (E(x) − E(x)) (2.8)

for all E(x) ∈ Nε(E(x)), very small ε > 0.

Proof. Proceeding as in Theorem 2.3, we get the following relation from the expansion of
f at E(x) in the neighborhood Nε(E(x)), where x is the fixed point of E. (Since E is a
homeomorphism, there exists ε > 0 such that E(x) ∈ Nε(E(x)) for all x ∈ Nδ(x), very small
δ > 0):

f(E(x) + λ(E(x) − E(x))) =
(
f ◦ E)(x) + λ

(∇(f ◦ E)(x))T (E(x) − E(x))

+ α[E(x), λ(E(x) − E(x))]λ‖E(x) − E(x)‖,
(2.9)

where E(x) ∈ Nε(E(x)), limλ→ 0α[E(x), λ(E(x) − E(x))] = 0. Since f is semi-E-convex at
x ∈ M, and x is a fixed point of E, so, for all x ∈ Nδ(x), λ ∈ (0, 1], x /=x,

λ
(
f(x) − f(x)

) ≥ f(E(x) + λ(E(x) − E(x))) − (f ◦ E)(x). (2.10)

Using (2.9), the above inequality reduces to

f(x) − f(x) ≥ (∇(f ◦ E)(x))T (E(x) − E(x)

+α[E(x), λ(E(x) − E(x))]‖E(x) − E(x)‖),
(2.11)
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where limλ→ 0α[E(x), λ(E(x) − E(x))] = 0. Hence Inequality (2.8) follows for all E(x) ∈
Nε(E(x)).

Conversely, suppose Inequality (2.8) holds at the fixed point x of E for all E(x) ∈
Nε(E(x)). Using (2.9) and E(x) = x in (2.8), we can conclude that f is semi-E-convex at
x ∈ M.

2.2.2. Generalized E-Invex Function

The class of preinvex functions defined by Ben-Israel and Mond is not necessarily differen-
tiable. Preinvexity, for the differential case, is a sufficient condition for invexity. Indeed, the
converse is not generally true. Fulga and Preda [5] defined E-invex set, E-preinvex function,
and E-prequasiinvex function where differentiability is not required (Section 1). Chen
[3] introduced semi-E-convex, semi-E-quasiconvex, and semi-E-pseudoconvex functions
without differentiability assumption. Jaiswal and Panda [7] studied some generalized E-
invex functions and applied these concepts to study primal dual relations. Here, we define
some more generalized E-invex functions with and without differentiability assumption,
which will be needed in next section. First, we see the following lemma.

Lemma 2.6. Let M be a nonempty E-invex subset of Rn with respect to η : Rn × Rn → Rn. Also
f : M → R are differentiable on M. E(M) is an open set in Rn. If f is E-preinvex on M then
(f ◦ E)(x) ≥ (f ◦ E)(y) + (∇(f ◦ E)(y))Tη(E(x), E(y)) for all x, y ∈ M.

Proof. If E(M) is an open set, f and E are differentiable on M, then f ◦ E is differentiable on
M. From Taylor’s expansion of f at E(y) for some y ∈ M and λ > 0,

f
(
E
(
y
)
+ λη

(
E(x), E

(
y
)))

=
(
f ◦ E)(y) + λ

(∇(f ◦ E)(y))T(η(E(x), E(y)))

+ λ
∥∥η
(
E(x), E

(
y
))∥∥α

(
E
(
y
)
, λη
(
E(x), E

(
y
)))

,
(2.12)

where E(x)/=E(y), limλ→ 0α(E(y), λη(E(x), E(y))) = 0.
If f is E-preinvex on M with respect to η (Definition 1.5), then as λ → 0+, the above

inequality reduces to (f ◦E)(x) ≥ (f ◦E)(y)+(∇(f ◦E)(y))Tη(E(x), E(y)) for all x, y ∈ M.

As a consequence of the above lemma, we may define E-invexity with differentiability
assumption as follows.

Definition 2.7. Let M be a nonempty E-invex subset of Rn with respect to η : Rn × Rn → Rn.
Also f : M → R are differentiable onM. E(M) is an open set in Rn. Then, f is E-invex onM
if (f ◦ E)(x) ≥ (f ◦ E)(y) + (∇(f ◦ E)(y))Tη(E(x), E(y)) for all x, y ∈ M.

From the above discussions on E-invexity and E-preinvexity, it is true that
E-preinvexity with differentiability is a sufficient condition for E-invexity. Also a function
which is not E-convex may be E-invex with respect to some η. This may be verified in the
following example.



Advances in Operations Research 7

Example 2.8. M = {(x, y) ∈ R2 | x, y > 0}, E : R2 → R2 is E(x, y) = (0, y) and f : M → R is
defined by f(x, y) = −x2 − y2, and

η
((
x1, y1

)
,
(
x2, y2

))
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
x2
1

2x2
,
y2
1

2y2

)

, x2 /= 0, y2 /= 0,

(

0,
y2
1

2y2

)

, x2 = 0, y2 /= 0,

(
x2
1

2x2
, 0

)

, x2 /= 0, y2 = 0,

(0, 0), otherwise.

(2.13)

Definition 2.9. Let M be a nonempty E-invex subset of Rn with respect to η : Rn × Rn → Rn,
let E(M) be an open set in Rn. Suppose f and E are differentiable onM. Then, f is said to be
E-quasiinvex on M if

(
f ◦ E)(x) ≤ (f ◦ E)(y) ∀x, y ∈ M =⇒ (∇(f ◦ E)(y))Tη(E(x), E(y)) ≤ 0 (2.14)

or

(∇(f ◦ E)(y))Tη(E(x), E(y)) > 0 =⇒ (f ◦ E)(x) > (f ◦ E)(y). (2.15)

A function may not be E-invex with respect to some η but E-quasiinvex with respect
to same η. This may be justified in the following example.

Example 2.10. Consider M = {(x, y) ∈ R2 | x, y < 0}, E : R2 → R2 is E(x, y) = (0, y), and f :
M → R is f(x, y) = x3+y3, η : R2×R2 → R2 is η((x1, y1), (x2, y2)) = (x1−x2, y1−y2). Now for
all (x1, y1), (x2, y2) ∈ M, (f ◦E)(x1, y1)−(f ◦E)(x2, y2)−∇(f ◦E)(x2, y2)

Tη(E(x1, y1), E(x2, y2))
= y3

1 + y3
2 − 3y2

2(y1 − y2), which is not always positive. Hence, f is not E-invex with respect to
η on M.

If we assume that (f ◦ E)(x1, y1) ≤ (f ◦ E)(x2, y2) for all (x1, y1), (x2, y2) ∈ M, then
(∇(f ◦ E)(x2, y2))

Tη(E(x1, y1), E(x2, y2)) = 3y2
2(y1 − y2) ≤ 0. Hence, f is E-quasiinvex with

respect to same η on M.

Definition 2.11. LetM be a nonempty E-invex subset of Rn with respect to η : Rn × Rn → Rn,
let E(M) be an open set in Rn. Suppose f and E are differentiable onM. Then, f is said to be
E-pseudoinvex on M if

(∇(f ◦ E)(y))Tη(E(x), E(y)) ≥ 0 ∀x, y ∈ M =⇒ (f ◦ E)(x) ≥ (f ◦ E)(y) (2.16)

or

(
f ◦ E)(x) < (f ◦ E)(y) ∀x, y ∈ M =⇒ (∇(f ◦ E)(y))Tη(E(x), E(y)) < 0. (2.17)
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A function may not be E-invex with respect to some η but E-pseudoinvex with respect
to same η. This can be verified in the following example.

Example 2.12. Consider M = {(x, y) ∈ R2 | x, y > 0}. E : R2 → R2 is E(x, y) = (0, y) and
f : M → R is f(x, y) = −x2 − y2. For η : R2 × R2 → R2, defined by η((x1, y1), (x2, y2)) =
(x1 − x2, y1 − y2), and for all (x1, y1), (x2, y2) ∈ M, y1 /=y2, (f ◦ E)(x1, y1) − (f ◦ E)(x2, y2) −
∇(f ◦E)(x2, y2)

Tη(E(x1, y1), E(x2, y2)) = −(y2 −y1)
2 < 0. Hence, f is not E-invex with respect

to η onM. If∇(f ◦E)(x2, y2))
Tη(E(x1, y1), E(x2, y2)) ≥ 0, then (f ◦E)(x1, y1)−(f ◦E)(x2, y2)−

f(0, y1)− f(0, y2) = (y2 + y1)(y2 − y1) ≥ 0. Hence, f is E-pseudoinvex with respect to η onM.

If a function f : M → R is semi-E-invex with respect to η at each point of an E-invex
set M, then f is said to be semi-E-invex with respect to η on M. Semi-E-invex functions
and some of its generalizations are studied in [7]. Here, we discuss some more results on
generalized semi-E-invex functions.

Proposition 2.13. If f : M → R is semi-E-invex on an E-invex set M, then f(E(y)) ≤ f(y) for
each y ∈ M.

Proof. Since f is semi-E-invex on M ⊆ Rn and M is an E-invex set so for x, y ∈ M and λ ∈
[0, 1], we have E(y)+λη(E(x), E(y)) ∈ M and f(E(y)+λη(E(x), E(y))) ≤ λf(x)+(1−λ)f(y).
In particular, for λ = 0, f(E(y)) ≤ f(y) for each y ∈ M.

An E-invex function with respect to some η may not be semi-E-invex with respect to
same η may be verified in the following example.

Example 2.14. Consider the previous example where M = {(x, y) ∈ R2 | x, y < 0},
E : R2 → R2 is E(x, y) = (0, y) and f : M → R is f(x, y) = x3 + y3,η : R2 × R2 → R2

is η((x1, y1), (x2, y2)) = (x1 − x2, y1 − y2). It is verified that f is E-invex with respect to η on
M. But f(E(2, 0)) > f(2, 0). From Proposition 2.13 it can be concluded that f is not semi-
E-invex with respect to same η. Also, using Definition 1.6, for all (x1, y1), (x2, y2) ∈ M, λ ∈
[0, 1],f(E(x2, y2) +λη(E(x1, y1), E(x2, y2)))−λf(x1, y1)− (1−λ)f(x2, y2) = −(y2 +λy2

1/2y2)
2 +

λ(x2
1 + y2

1) + (1 − λ)(x2
2 + y2

2), which is not always negative. Hence, f is not semi-E-invex with
respect to η on M.

3. Application in Optimization Problem

In this section, the results of previous section are used to derive the sufficient optimality
condition for the existence of solution of a general nonlinear programming problem. Consider
a nonlinear programming problem

(P) min f(x)
subject to g(x) ≤ 0,

(3.1)

where f : M → R, gi : M → Rm, M ⊆ Rn, g = (g1, g2, . . . , gm)
T . M′ = {x ∈ M : gi(x) ≤ 0, i =

1, . . . , m} is the set of feasible solutions.

Theorem 3.1 (sufficient optimality condition). Let M be a nonempty open E-convex subset of
Rn,f : M → R, g : M → Rm, and E : Rn → Rn are differentiable functions. Let E be
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a homeomorphism and let x be a fixed point of E. If f and g are semi-E-convex at x ∈ M′ and
(x, y) ∈ M′ × Rm satisfies

∇[(f ◦ E)(x) + 〈y, (g ◦ E)(x)〉] = 0,
〈
y,
(
g ◦ E)(x)〉 = 0, y ≥ 0,

(3.2)

then x is local optimal solution of (P).

Proof. Since f and g are semi-E-convex at x ∈ M by Theorem 2.5,

f(x) − f(x) ≥ (∇(f ◦ E)(x))T (E(x) − E(x)) ∀E(x) ∈ Nε(E(x)),

g(x) − g(x) ≥ (∇(g ◦ E)(x))T (E(x) − E(x)) ∀E(x) ∈ Nε(E(x)).
(3.3)

Adding the above two inequalities, we have

[
f(x) − f(x)

]
+ yT[g(x) − g(x)

] ≥ ∇
[(
f ◦ E)(x) + yT((g ◦ E)(x))

]T
(E(x) − E(x)). (3.4)

If (3.2) hold, then f(x) − f(x) + yTg(x) ≥ 0 for all E(x) ∈ Nε(E(x)). Since g(x) ≤ 0 for
all x ∈ M′ and y ≥ 0, so yTg(x) ≤ 0. Hence, f(x) − f(x) ≥ 0 for all E(x) ∈ Nε(E(x)). Since E
is a homeomorphism, there exists δ > 0 such that x ∈ Nδ(x) for all E(x) ∈ Nε(E(x)), which
means f(x) ≥ f(x) for all x ∈ Nδ(x). Hence, x is a local optimal solution of (P).

Also we see that a fixed point of E is a local optimal solution of (P) under generalized
E-invexity assumptions.

Lemma 3.2. LetM be a nonempty E-invex subset of Rn with respect to some η : Rn ×Rn → Rn. Let
gi : M → R, i = 1, . . . , m be semi-E-quasiinvex functions with respect to η on M. Then, M′ is an
E-invex set.

Proof. Let Mi = {x ∈ M : gi(x) ≤ 0}, i = 1, . . . , m. M′ = ∩m
i=1Mi and M′ ⊆ M. Since gi,

i = 1, . . . , m are semi-E-quasiinvex function onM, so for all x, y ∈ Mi and λ ∈ [0, 1],gi(E(y) +
λη(E(x), E(y))) ≤ max{gi(x), gi(y)} ≤ 0. Hence, E(y)+λη(E(x), E(y)) ∈ Mi for all x, y ∈ Mi.
So Mi is E-invex with respect to same η. From Lemma 1.10, M′ = ∩m

i=1Mi is E-invex with
respect to same η.

Corollary 3.3. Let M be a nonempty E-invex subset of Rn with respect to some η : Rn × Rn → Rn.
Let gi : M → R, i = 1, . . . , m, be semi-E-quasiinvex functions with respect to η on M. If x is a
feasible solution of (P), then E(x) is also a feasible solution of (P).

Proof. Since x is a feasible solution of (P), so x ∈ M′ ⇒ E(x) ∈ E(M′). Since each gi, i =
1, . . . , m is semi-E-quasiinvex function on M, from Lemma 3.2, M′ is an E-invex set. Also
E(M′) ⊆ M′. Hence, E(x) ∈ M′. That is, E(x) is a feasible solution of (P).

Theorem 3.4 (sufficient optimality condition). Let M be a nonempty E-invex subset of Rn with
respect to η : Rn × Rn → Rn. Let E(M) be an open set in Rn. Suppose f : Rn → R, g : Rn → Rm
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and E are differentiable functions on M. If f is E-pseudoinvex function with respect to η and for
u ≥ 0, uTg is semi-E-quasiinvex function with respect to the same η at x ∈ M′, where x is a fixed
point of the map E and (x, u) ∈ M′ × Rm, u ≥ 0 satisfies the following system:

∇[(f ◦ E)(x) + 〈u, (g ◦ E)(x)〉] = 0, (3.5)
〈
u,
(
g ◦ E)(x)〉 = 0, (3.6)

then x is a local optimal solution of (P).

Proof. Suppose (x, u) ∈ M′ ×Rm satisfies (3.5) and (3.6). For all y ∈ M′, g(y) ≤ 0. Also, u ≥ 0.
Hence, uTg(y) ≤ 0 for all y ∈ M′. From (3.6), 〈u, (g ◦ E)(x)〉 = 0, that is, uTg(E(x)) = 0. x is a
fixed point of E that is E(x) = x. So uTg(x) = 0. Hence,

uTg
(
y
) ≤ uTg(x) ∀y ∈ M′. (3.7)

Since u ≥ 0 and uTg is semi-E-quasiinvex function with respect to η at x, so the above inequal-
ity implies

∇uTg(E(x))η
(
E
(
y
)
, E(x)

) ≤ 0. (3.8)

From (3.5), ∇f(E(x)) = −∇uTg(E(x)). Putting this value in the above inequality, we have
∇f(E(x))η(E(x), E(y)) ≥ 0.

f is E-pseudoinvex at x with respect to η. Hence, ∇f(E(x))η(E(x), E(y)) ≥ 0 implies

f
(
E
(
y
)) ≥ f(E(x)) = f(x) ∀y ∈ M′. (3.9)

Hence, x is the optimal solution (P) on E(M′).

The following example justifies the above theorem.

Example 3.5. Consider the optimization problem,

(P)min −x2 − y2

subject to x2 + y2 − 4 ≤ 0,
(3.10)

where M = {(x, y) ∈ R2 | x, y > 0}. E : R2 → R2 is E(x, y) = (0, y). This is not a convex
programming problem. Consider η : R2 × R2 → R2 defined by η((x1, y1), (x2, y2)) = (x1 −
x2, y1 −y2). Here,M′ = {(x, y) ∈ M : x2 +y2 − 4 ≤ 0}, and E(M′) = {(0, y) : y ≥ 0, y2 − 4 ≤ 0}.
The sufficient conditions (7-8) reduce to

−2y + u2y = 0, u
(
y2 − 4

)
= 0, u ≥ 0, (3.11)

whose solution is y = 2, u = 1 and E(0, 2) = (0, 2).
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In Example 2.12, we have already proved that f(x, y) = −x2 − y2 is E-pseudoinvex
function with respect to η. Using Definition 1.7, one can verify that ug(x, y) is semi-E-quasi-
invex with respect to same η at (0, 2) ∈ M′, where ug(x, y) = x2+y2−4. So (0, 2) is the optimal
solution of (P) on E(M′).

4. Conclusion

E-convexity and its generalizations are studied by many authors earlier without differentia-
bility assumption. Here, we have studied the the properties of E-convexity, E-invexity, and
their generalizations with differentiable assumption. From the developments of this paper,
we conclude the following interesting properties.

(1) A function may not be convex at a point but E-convex at that point with a suitable
mapping E, and if a local minimum of f exists in a neighborhood of E(x), then f
is E-convex at x. But it is not necessarily true that if f is E-convex at x then E(x) is
local minimum point.

(2) From the relation between E-invexity and its generalizations, one may observe
that a function which is not E-convex may be E-invex with respect to some η
and E-preinvexity with differentiability is a sufficient condition for E-invexity.
Moreover, a function may not be E-invex with respect to some η but E-quasi-invex
with respect to same η, a function may not E-invex with respect to some η but E-
pseudoinvex with respect to the same η and an E-invex function with respect to
some η may not be semi-E-invex with respect to same η.

Here, we have studied E-convexity for first-order differentiable functions. Higher-
order differentiable E-convex functions may be studied in a similar manner to derive the
necessary and sufficient optimality conditions for a general nonlinear programming prob-
lems.
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