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Most of the real-life decision-making problems have more than one conflicting and incom-
mensurable objective functions. In this paper, we present a multiobjective two-stage stochastic
linear programming problem considering some parameters of the linear constraints as interval
type discrete random variables with known probability distribution. Randomness of the discrete
intervals are considered for the model parameters. Further, the concepts of best optimum
and worst optimum solution are analyzed in two-stage stochastic programming. To solve the
stated problem, first we remove the randomness of the problem and formulate an equivalent
deterministic linear programming model with multiobjective interval coefficients. Then the
deterministic multiobjectivemodel is solved usingweightingmethod, wherewe apply the solution
procedure of interval linear programming technique. We obtain the upper and lower bound of
the objective function as the best and the worst value, respectively. It highlights the possible
risk involved in the decision-making tool. A numerical example is presented to demonstrate the
proposed solution procedure.

1. Introduction

The input parameters of the mathematical programming model are not exactly known
because relevant data are inexistent or scarce, difficult to obtain or estimate, the system is
subject to changes, and so forth, that is, input parameters are uncertain in nature. This type
of situations are mainly occurs in real-life decision-making problems. These uncertainties
in the input parameters of the model can characterized by random variables with known
probability distribution. The occurrence of randomness in the model parameters can be
formulated as stochastic programming (SP) model. SP is widely used in many real-world
decision-making problems of management science, engineering, and technology. Also, it
has been applied to a wide variety of areas such as, manufacturing product and capacity
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planning, electrical generation capacity planning, financial planning and control, supply
chain management, airline planning (fleet assignment), water resource modeling, forestry
planning, dairy farm expansion planning, macroeconomic modeling and planning, portfolio
selection, traffic management, transportation, telecommunications, and banking.

An efficient method known as two-stage stochastic programming (TSP) in which
policy scenarios is desired for studying problems with uncertainty. In TSP paradigm, the
decision variables are partitioned into two sets. The decision variables which are decided
before the actual realization of the uncertain parameters are known as first stage variables.
Afterward, once the random events have exhibited themselves, further decision can be
made by selecting the values of the second-stage, or recourse variables at a certain cost
that is, a second-stage decision variables can be made to minimize “penalties” that may
occurs due to any infeasibility [1]. The formulation of two-stage stochastic programming
problems was first introduced by Dantzig [2]. Further it was developed by Beale [3] and
Dantzig and Madansky [4]. However, TSP can barely deal with independent uncertainties
of the left-hand side coefficients in each constraint or the objective function. It also requires
probabilistic specifications for uncertain parameters while in many pragmatic problems, the
quality of information that can be obtained is usually not satisfactory enough to be presented
as probability distributions.

Interval Linear programming (ILP) is an alternative approach for handling uncertain-
ties in the constraints as well as in the objective functions. It can deal with uncertainties
that cannot be quantified as distribution functions, since interval numbers (a lower- and
upper-bounded range of real numbers) are acceptable as uncertain inputs. The ILP can be
transformed into two deterministic submodels, which correspond to worst lower bound and
best upper bounds of desired objective function value. For this we develop methods that
find the best optimum (highest maximum or lowest minimum as appropriate), and worst
optimum (lowest maximum or highest minimum as appropriate), and the coefficient settings
(within their intervals) which achieve these two extremes.

Interval analysis was introduced by Moore [5]. The growing efficiency of interval
analysis for solving some deterministic real-life problems during the last decade enabled
extension at the formalism to the probabilistic case. Thus, instead of using a single random
variable, we adopt an interval random variable, which has the ability to represent not only
the randomness via probability theory, but also imprecision and nonspecificity via intervals.
In this context, interval random variables plays an important role in optimization theory.

2. Literature Review

Some of the important literatures related to TSP and ILP have been presented below.
Tong [6] focussed on two types of linear programming problems such as, interval

number and fuzzy number linear programming, respectively, and described their solution
procedures. Li and Huang [7] proposed an interval-parameter two-stage mixed integer linear
programming model is developed for supporting long-term planning of waste management
activities in the City of Regina. Molai and Khorram [8] introduced lower- and upper-
satisfaction functions to estimates the degree to which arithmetic comparisons between two
interval values are satisfied and apply these functions to present a new interpretation of
inequality constraints with interval coefficients in an interval linear programming problem.
Zhou et al. [9] presented an interval linear programming model and its solution procedures.
A two-stage fuzzy random programming or fuzzy random programming with recourse
problem along with its deterministic equivalent model is presented by [10]. Han et
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al. [11] presented an interval-parameter multistage stochastic chance-constrained mixed
integer programming method for interbasin water resources management systems under
uncertainty. Xu et al. [12] presented an inexact two-stage stochastic robust programming
model for water resources allocation problems under uncertainty. Li and Huang [13]
developed an interval-parameter two-stage stochastic nonlinear programming method for
supporting decisions of water-resources allocation within a multireservoir system. Suprajitno
andMohd [14] presented some interval linear programming problems, where the coefficients
and variables are in the form of intervals. Su et al. [15] presented an inexact chance-
constraint mixed integer linear programming model for supporting long-term planning
of waste management in the City of Foshan, China. A new class of fuzzy stochastic
optimization models called two-stage fuzzy stochastic programming with value-at-risk
criteria is presented by [16].

3. Multiobjective Stochastic Programming

Stochastic or probabilistic programming deals with situations where some or all of
the parameters of the optimization problem are described by stochastic (or random or
probabilistic) variables rather than by deterministic quantities. In recent years, multiobjective
stochastic programming problems have become increasingly important in scientifically
based decision making involved in practical problem arising in economic, industry, health
care, transportation, agriculture, military purposes, and technology. Mathematically, a
multiobjective stochastic programming problem can be stated as follows:

max zt =
n∑

j=1

ctjxj , t = 1, 2, . . . , T,

subject to
n∑

j=1

aijxj ≤ bi, i = 1, 2, . . . , m1,

n∑

j=1

dijxj ≤ bm1+i , i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n,

(3.1)

where some of the parameters aij , (i = 1, 2, . . . , m1; j = 1, 2, . . . , n) and bi, (i = 1, 2, . . . , m1)
are discrete random variables with known probability distribution. Rest of the parameters
xj , (j = 1, 2, . . . , n), ctj , (j = 1, 2, . . . , n; t = 1, 2, . . . , R), dij , (i = 1, 2, . . . , m2; j = 1, 2, . . . , n) and
bm1+i, i = 1, 2, . . . , m2 are considered as known intervals.

3.1. Multiobjective Two-Stage Stochastic Programming

In two-stage stochastic programming (TSP), decision variables are divided into two subsets:
(1) a group of variables determined before the realizations of random events are known as
first stage decision variables, and (2) another group of variables known as recourse variables
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which are determined after knowing the realized values of the random events. A general
model of TSP with simple recourse can be formulated as follows [17–19]:

max z =
n∑

j=1

cjxj − E

(
m1∑

i=1

qi
∣∣yi

∣∣
)
,

subject to yi = bi −
n∑

j=1

aijxj , i = 1, 2, . . . , m1,

n∑

j=1

dijxj ≤ bm1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n; yi ≥ 0, i = 1, 2, . . . , m1,

(3.2)

where xj , j = 1, 2, . . . , n and yi, i = 1, 2, . . . , m1 are the first-stage decision variables and second-
stage decision variables, respectively. Further qi, i = 1, 2, . . . , m1 are defined as the penalty
cost associated with the discrepancy between

∑n
j=1 aijxj and bi and E is used to represent the

expected value of the discrete random variables.
Multiobjective optimization problems are appeared in most of the real-life decision-

making problems. Thus, a general model of multiobjective two-stage stochastic programming
of the multiobjective stochastic programming model (3.1) can be stated as follow [20]:

max zt =
n∑

j=1

ctjxj − E

(
m∑

i=1

qti
∣∣yi

∣∣
)
, t = 1, 2, . . . , T,

subject to yi = bi −
n∑

j=1

aijxj , i = 1, 2, . . . , m1,

n∑

j=1

dijxj ≤ bm1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n; yi ≥ 0, i = 1, 2, . . . , m1.

(3.3)

In the next Section some useful definitions related to interval arithmetic are presented.

3.2. Real Interval Arithmetic and Basic Properties with Operations

Many operations (unary and binary) on sets or pairs of real numbers can be immediately
applied to intervals. We can define the classical set operations [21] as follows.

suppose [x] = [xl, xu] and [y] = [yl, yu] are two real intervals such that

(i) equality: [x] = [y] if and only if xl = yl and xu = yu;

(ii) intersection: [x]
⋂

[y] = [max{xl, yl},min{xu, yu}];
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(iii) union:

[x] ∪ [y] =
{[

min
{
xl, yl

}
, max

{
xu, yu

}]
, [x] ∩ [y]/= ∅;

undefined otherwise;
(3.4)

(iv) inequality: [x] < [y] if xu < yl and [x] > [y] if xl > yu;

(v) inclusion: [x] ⊆ [y] if and only if yl ≤ xl and xu ≤ yu;

(vi) maximum: max{[x], [y]} = [k]where kl = max{xl, yl} and ku = max{xu, yu};
(vii) minimum: min{[x], [y]} = [k] where kl = min{xl, yl} and ku = min{xu, yu}.

An interval is said to be positive if xl > 0 and negative if xu < 0.
Using unary operations, we can define the following:

(i) width: w([x]) = xu − xl;

(ii) midpoint: mid([x]) = (xl + xu)/2;

(iii) radius: rad([x]) = (xu − xl)/2;

(iv) absolute value: |[x]| = {|y| : xl ≤ y ≤ xu};
(v) interior: int([x]) = (xl, xu).

For pairs of real numbers, the some classical binary operators are defined as:

(i) addition: [x] + [y] = [xl + yl, xu + yu];

(ii) subtraction: [x] − [y] = [xl − yu, xu − yl];

(iii) multiplication: [x] · [y] = [min{xlyl, xlyu, xuyl, xuyu},max{xlyl, xlyu, xuyl, xuyu}];
(iv) division: If 0 /∈ [y], then [x]/[y] = [x] · [1/yu , 1/yl];

(v) scalar Multiplication of [x]: Scalar multiplication of interval for α ∈ R is given as:

α[x] =

{[
αxl, αxu

]
, if α ≥ 0;

[
αxu, αxl

]
, if α < 0;

(3.5)

(vi) power of [x]: Power of interval for n ∈ Z is given as: when n positive and odd or
[x] is positive, then [x]n = [(xl)n, (xu)n] when n positive and even, then

[x]n =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[(
xl
)n
, (xu)n

]
, if xl ≥ 0;

[
(xu)n,

(
xl
)n]

, if xu < 0;

[
0,max

{(
xl
)n
, (xu)n

}]
, otherwise,

(3.6)

when n negative, [x]n = 1/[x]|n|;

(vii) square root of [x]: For an interval [x] such that xl ≥ 0, define the square root of [x]
denoted by

√
[x] as:

√
[x] = {√y : xl ≤ y ≤ xu}.
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3.3. Interval Linear Programming

A linear programming model having the coefficients as real intervals is known as interval
linear programming (ILP). Mathematically, an ILP model can be stated as follows [22, 23]:

max z′ =
n∑

j=1

[
cj
]
xj

subject to
n∑

j=1

[
aij

]
xj ≤ [bi], i = 1, 2, . . . , m1

n∑

j=1

[
dij

]
xj ≥ [bm1+i], i = 1, 2, . . . , m2

xj ≥ 0, j = 1, 2, . . . , n,

(3.7)

where xj , j = 1, 2, . . . , n are the decision variables. However, [cj], [aij], [dij], [bi], and [bm1+i],
i = 1, 2, . . . , m2, j = 1, 2, . . . , n are real intervals. These interval parameters are defined as
follows:

[cj] = [clj , c
u
j ], where clj , c

u
j ∈ R, clj and cuj are called lower and upper bounds of [cj],

respectively.

[aij] = [al
ij , a

u
ij], where al

ij , a
u
ij ∈ R, al

ij and au
ij are called lower and upper bounds of

[aij], respectively.

[dij] = [dl
ij , d

u
ij], where dl

ij , d
u
ij ∈ R, dl

ij and du
ij are called lower and upper bounds of

[dij], respectively.

[bm1+i] = [blm1+i
, bum1+i

], where blm1+i
, bum1+i

∈ R, blm1+i and bum1+i
are called lower and

upper bounds of [bm1+i], respectively.

[bi] = [bli, b
u
i ], where bli, b

u
i ∈ R, bli and bui are called lower and upper bounds of [bi],

respectively.

4. Some Definitions on Interval Random Variable

In this Section, we have given some important definitions related to interval random variable.

Definition 4.1 (interval random variable [21]). Let (Ω,F,P) be a probability space. Interval
random variable [X] is a function [X]: Ω → R defined by [X](ω) = [Xl(ω), Xu(ω)], ∀ω ∈ Ω,
specified by a pair of F-measurable functions Xl, Xu: Ω → R such as Xl ≤ Xu almost surely.

Definition 4.2 (interval discrete random variable [21]). interval random variable is said to be
discrete if it takes values in a finite subset of R with probability mass function f : R → [0, 1]
defined by f([x]) = Pr([X] = [x]).

Definition 4.3 (expected value of an interval discrete random variable [21]). Let [X] be an
interval discrete random variable which assumes interval values [x1], [x2], . . . , [xK] with
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probabilities p1, p2, . . . , pK. Then the expected value of an interval discrete random variable is
defined as follows:

E([X]) =
∑

[x]:f([x])>0

[x]f([x]) =
K∑

k=1

[xk]pk. (4.1)

Definition 4.4 (variance of an interval discrete random variable [21]). the variance of an
interval discrete random variable is defined by the following:

V ([X]) =
∑

[x]:f([x])>0

E
(
[X]2
)
− (E([X]))2, (4.2)

where E([X]2) =
∑K

k=1[xk]
2pk.

5. Random Interval Multiobjective Two-Stage Stochastic Programming

Optimization model incorporating some of the input parameters as interval random
variables is modeled as random interval multiobjective two-stage stochastic programming
(RIMTSP) to handle the uncertainties within TSP optimization platform with simple
recourse. Mathematically, it can be presented as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj − E

(
m1∑

i=1

qti
∣∣yi

∣∣
)
, t = 1, 2, . . . , T,

subject to yi = [bi] −
n∑

j=1

[
aij

]
xj , i = 1, 2, . . . , m1,

n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2,

yi ≥ 0, i = 1, 2, . . . , m1, xj ≥ 0, j = 1, 2, . . . , n,

(5.1)

where xj , j = 1, 2, . . . , n, yi, i = 1, 2, . . . , m1 are the first stage decision variables and second
stage decision variables, respectively. Further, [ctj], j = 1, 2, . . . , n, t = 1, 2, . . . , T are the cost
associated with the first stage decision variables and qti , i = 1, 2, . . . , m1, t = 1, 2, . . . , T are the
penalty cost associated with the discrepancy between

∑n
j=1[aij]xj and [bi] of the kth objective

function. The left hand side parameter [aij] and the right hand side parameter [bi] are interval
discrete random variables with known probability distribution. E is used to represent the
expected value associated with the interval random variables.

5.1. Multiobjective Two-Stage Stochastic Programming Problem Where Only
[bi], i = 1, 2, . . . , m1 Are Interval Discrete Random Variables

It is assumed that [bi], i = 1, 2, . . . , m1 are interval discrete random variables which takes
interval values vk

i , k = 1, 2, . . . , K with known probabilities pki , k = 1, 2, . . . , K.
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Thus, the probability mass function (pmf) of the interval discrete random variable [bi]
is given by:

f
([

vk
i

])
= Pr
(
[bi] =

[
vk
i

])
= pki , k = 1, 2, . . . , K. (5.2)

Let

gi(x) =
n∑

j=1

aijxj , i = 1, 2, . . . , m1, (5.3)

where x = x1, x2, . . . , xm1 and gi(x) ≥ 0.

We compute E(qti |yi|) = qtiE(|[bi]−gi(x)|), i = 1, 2, . . . , m1, t = 1, 2, . . . , T in two different
cases as follows.
Case 1. When ([bi] − gi(x)) ≥ 0, we compute

qtiE
(∣∣[bi] − gi(x)

∣∣) = qtiE([bi]) − qtiE
(
gi(x)

)

= qti

K∑

k=1

[
vk
i

]
pki − qtigi(x), i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(5.4)

On simplification, we have

qtiE
(∣∣[bi] − gi

∣∣) = qti

K∑

k=1

[
vk
i

]
pki − qti

n∑

j=1

aijxj , i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.5)

Using (5.5) in the RIMTSP model (5.1), we establish the deterministic model as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m1∑

i=1

⎡

⎣qti

(
K∑

k=1

[
vk
i

]
pki

)
− qti

⎛

⎝
n∑

j=1

aijxj

⎞

⎠

⎤

⎦, t = 1, 2, . . . , T,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(5.6)

Case 2. When ([bi] − gi(x)) < 0, we compute

qtiE
(∣∣[bi] − gi(x)

∣∣) = qtiE
(
gi(x)

) − qtiE([bi])

= qtigi(x) − qti

K∑

k=1

([
vk
i

]
pki

)
, i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(5.7)

On simplification, we have

qtiE
(∣∣[bi] − gi(x)

∣∣) = qti

n∑

j=1

aijxj − qti

K∑

k=1

([
vk
i

]
pki

)
, i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.8)
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Using (5.8) in the RIMTSP model (5.1), we establish the deterministic model as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m∑

i=1

⎡

⎣qti

⎛

⎝
n∑

j=1

aijxj

⎞

⎠ − qti

(
K∑

k=1

[
vk
i

]
pki

)⎤

⎦, t = 1, 2, . . . , T,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(5.9)

5.2. Multiobjective Two-Stage Stochastic Programming Problem Where Only
[aij], i = 1, 2, . . . , m1, j = 1, 2, . . . , n Are Interval Discrete Random Variables

It is assumed that [aij], i = 1, 2, . . . , m1, j = 1, 2, . . . , n are interval discrete random variables
which takes interval values wr

ij , r = 1, 2, . . . , R with known probabilities prij , r = 1, 2, . . . , R.
Let

fi(x) =
n∑

j=1

[
aij

]
xj , i = 1, 2, . . . , m1, (5.10)

where fi(x) ≥ 0.
Thus, the probabilitymass function (pmf) of the interval discrete random variable [aij]

is given by the following:

f
([

wr
ij

])
= Pr
([

aij

]
=
[
wr

ij

])
= prij , r = 1, 2, . . . , R, i = 1, 2, . . . , m1, j = 1, 2, . . . , n. (5.11)

We compute E(qti |yi|) = qtiE(|bi − fi(x)|), i = 1, 2, . . . , m1, t = 1, 2, . . . , T in two different
cases as follows.
Case 1. When (bi − fi(x)) ≥ 0, we compute

qtiE
(∣∣bi − fi(x)

∣∣) = qtiE(bi) − qtiE
(
fi(x)

)
= qtibi − qti

n∑

j=1

E
([
aij

])
xj

= qtibi − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj , i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(5.12)

Hence,

qtiE
(∣∣bi − fi(x)

∣∣) = qtibi − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj , i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.13)
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Using (5.13) in the RIMTSP model (5.1), we establish the deterministic model as:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m∑

i=1

⎡

⎣qtibi − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj

⎤

⎦, t = 1, 2, . . . , T ,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(5.14)

Case 2. When (bi − fi(x)) < 0, we compute

qtiE
(| bi − fi(x)

)
= qtiE

(
fi(x)

) − qtiE(bi) = qti

n∑

j=1

E
([
aij

])
xj − qtibi

= qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj − qtibi, i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(5.15)

On simplification, we have

qtiE
(∣∣bi − fi(x)

∣∣) = qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj − qtibi, i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.16)

Using (5.16) in the RIMTSP model (5.1), we establish the deterministic model as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m∑

i=1

⎡

⎣qti
n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj − qtibi

⎤

⎦, t = 1, 2, . . . , T,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2

xj ≥ 0, j = 1, 2, . . . , n.

(5.17)

5.3. Multiobjective Two-Stage Stochastic Programming Problem Where
Both [bi] and [aij], i = 1, 2, . . . , m, j = 1, 2, . . . , n Are Interval Discrete
Random Variables

It is assumed that both [bi] and [aij], i = 1, 2, . . . , m1, j = 1, 2, . . . , n are independent interval
discrete random variables which takes interval values vk

i , i = 1, 2, . . . , m1, k = 1, 2, . . . , K with
known probabilities pki , i = 1, 2, . . . , m1, k = 1, 2, . . . , K and wr

ij , i = 1, 2, . . . , m1, r = 1, 2, . . . , R
with known probabilities prij , i = 1, 2, . . . , m1, r = 1, 2, . . . , R.
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Let

hi(x) = [bi] −
n∑

j=1

[
aij

]
xj , (5.18)

where hi(x) ≥ 0.
Thus, the probability mass function (pmf) of the interval discrete random variables

[bi] and [aij] are given by the following:

f
([

vk
i

])
= Pr
(
[bi] =

[
vk
i

])
= pki , k = 1, 2, . . . , K,

f
([

wr
ij

])
= Pr
([

aij

]
=
[
wr

ij

])
= prij , r = 1, 2, . . . , R.

(5.19)

We compute E(qti |yi|) = qtiE(|hi(x)|), i = 1, 2, . . . , m1, t = 1, 2, . . . , T in two different cases
as follows.
Case 1. When hi(x) ≥ 0, we compute

qtiE(|hi|) = qtiE

⎛

⎝[bi] −
n∑

j=1

[
aij

]
xj

⎞

⎠

= qti

K∑

k=1

[
vk
i

]
pki − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj , i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(5.20)

Hence,

qtiE(|hi(x)|) = qti

K∑

k=1

[
vk
i

]
pki − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj , i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.21)

Using (5.21) in the RIMTSP model (5.1), we establish the deterministic model as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m1∑

i=1

⎡

⎣qti
K∑

k=1

[
vk
i

]
pki − qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj

⎤

⎦, t = 1, 2, . . . , T,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i], i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.
(5.22)
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Case 2. When hi(x) < 0, we compute

qtiE(|hi(x)|) = qtiE

⎛

⎝
n∑

j=1

[
aij

]
xi − [bi]

⎞

⎠ = qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj

− qti

K∑

k=1

[
vk
i

]
pki , i = 1, 2, . . . , m1, t = 1, 2, . . . , T.

(a)

Hence,

qtiE(|hi(x)|) = qti

n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj − qti

K∑

k=1

[
vk
i

]
pki , i = 1, 2, . . . , m1, t = 1, 2, . . . , T. (5.23)

Using (5.23) in the RIMTSP model (5.1), we establish the deterministic model as follows:

max ẑt =
n∑

j=1

[
ctj

]
xj −

m1∑

i=1

⎡

⎣qti
n∑

j=1

(
R∑

r=1

[
wr

ij

]
prij

)
xj − qti

K∑

k=1

[
vk
i

]
pki

⎤

⎦, t = 1, 2, . . . , T,

subject to
n∑

j=1

[
dij

]
xj ≤ [bm1+i] , i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(5.24)

6. Solution Procedures

The proposed RIMTSP model is very difficult to solved directly due to presence of discrete
random intervals in the model input parameters. In order to solve the model, first we
remove the randomness from the model input parameters and then formulate an equivalent
deterministic multiobjective linear programming problem involving discrete real interval
parameters. After that we transform the multiobjective linear programming problem into
a single linear programming problem involving discrete real interval parameters using
weighting method [24]. Further, ILP solution procedure is used to solve the deterministic
model. The steps of the solution procedure of ILP is presented as follows [22].

Step 1. Find the best optimal solution by solving the following LPP:

min z′1 =
n∑

j=1

cljxj ,

subject to
n∑

j=1

al
ijxj ≤ bui , i = 1, 2, . . . , m1,

n∑

j=1

du
ijxj ≥ blm1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(6.1)
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If the objective function is maximization type, then solve the following LPP to find the best
optimal solution:

max z′′1 =
n∑

j=1

cuj xj ,

subject to
n∑

j=1

al
ijxj ≤ bui , i = 1, 2, . . . , m2,

n∑

j=1

du
ijxj ≥ blm1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(6.2)

Step 2. Find the worst optimal solution by solving the following LPP:

min z′2 =
n∑

j=1

cuj xj ,

subject to
n∑

j=1

au
ijxj ≤ bli, i = 1, 2, . . . , m,

n∑

j=1

dl
ijxj ≥ bum1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(6.3)

If the objective function is maximization type, then solve the following LPP to find the worst
optimal solution:

max z′′2 =
n∑

j=1

cljxj ,

subject to
n∑

j=1

au
ijxj ≤ bli, i = 1, 2, . . . , m1,

n∑

j=1

dl
ijxj ≥ bum1+i, i = 1, 2, . . . , m2,

xj ≥ 0, j = 1, 2, . . . , n.

(6.4)
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7. Numerical Example

In this section, a numerical example with two objective functions along with four constraints
among which two of them are deterministic constraints and another two contains the discrete
random interval parameters with known probability distributions is presented as follows:

max z̆1 = [18, 20]x1 + [15, 16]x2 + [14, 15]x3 + [14, 16]x4,

max z̆2 = [13, 14]x1 + [9, 10]x2 + [16, 17]x3 + [12, 14]x4.

subject to [4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4 ≤ [b1],

[4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4 ≤ [b2],

[3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0,

(7.1)

where [b1] and [b2] are the interval discrete random variables with known probability
distributions.

Further, using the above model (7.1), a RIMTSP model with simple unit recourse cost
(i.e., qi = 1, ∀i) is formulated as follows:

max z̆1 = [18, 20]x1 + [15, 16]x2 + [14, 15]x3 + [14, 16]x4 − E
(∣∣y1
∣∣) − E

(∣∣y2
∣∣),

max z̆2 = [13, 14]x1 + [9, 10]x2 + [16, 17]x3 + [12, 14]x4 − E
(∣∣y1
∣∣) − E

(∣∣y2
∣∣),

subject to y1 = [b1] − ([4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4),

y2 = [b2] − ([4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4) ,

[3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0,

(7.2)

where [b1] and [b2] are the interval discrete random variables takes the interval values
associated with the specified probabilities as given in the following:

Pr([b1] = [20, 22]) =
2
5
, Pr([b1] = [18, 20]) =

3
5
,

Pr([b2] = [22, 24]) =
2
9
, Pr([b2] = [19, 21]) =

1
3
, Pr([b2] = [23, 25]) =

4
9
.

(7.3)
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On simplification, the above model (7.2) can be written as follows:

max z̆1 = [18, 20]x1 + [15, 16]x2 + [14, 15]x3 + [14, 16]x4

− E(|[b1] − ([4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4)|)

− E(|[b2] − ([4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4)|),
max z̆2 = [13, 14]x1 + [9, 10]x2 + [16, 17]x3 + [12, 14]x4

− E(|[b1] − ([4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4)|)
− E(|[b2] − ([4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4)|),

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42]

x1, x2, x3, x4 ≥ 0.

(7.4)

Further, using the interval values associated with the probability of occurrence, the
above model (7.4) can be transformed into two equivalent deterministic multiobjective linear
programming models with interval coefficients as follows.
Case 1. When ([b1] − ([4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4)) ≥ 0, ([b2] − ([4, 6]x1 + [3, 4]x2 +
[5, 7]x3 + [2, 4]x4)) ≥ 0.

The model (7.4) can be transformed into an equivalent deterministic multiobjective
linear programming model with interval coefficients as follows:

max z̆11 = [18, 20]x1 + [15, 16]x2 + [14, 15]x3 + [14, 16]x4

−
(
[20, 22] × 2

5
+ [18, 20] × 3

5
− [4, 5]x1 − [2, 4]x2 − [5, 6]x3 − [3, 4]x4

)

−
(
[22, 24] × 1

2
+ [19, 21] × 1

3
+ [23, 25] × 1

6
− [4, 6]x1 − [3, 4]x2

−[5, 7]x3 − [2, 4]x4

)

max z̆12 = [13, 14]x1 + [9, 10]x2 + [16, 17]x3 + [12, 14]x4

−
(
[20, 22] × 2

5
+ [18, 20] × 3

5
− [4, 5]x1 − [2, 4]x2 − [5, 6]x3 − [3, 4]x4

)

−
(
[22, 24] × 1

2
+ [19, 21] × 1

3
+ [23, 25] × 1

6
− [4, 6]x1 − [3, 4]x2

−[5, 7]x3 − [2, 4]x4

)
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subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0 .

(7.5)

On simplification, we get

max z̆11 = [26, 31]x1 + [20, 24]x2 + [24, 28]x3 + [19, 24]x4 − [39.96, 43.96],

max z̆12 = [21, 25]x1 + [14, 18]x2 + [26, 30]x3 + [17, 22]x4 − [39.96, 43.96],

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0.

(7.6)

Case 2. When ([b1] − ([4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4)) < 0, ([b2] − ([4, 6]x1 + [3, 4]x2 +
[5, 7]x3 + [2, 4]x4)) < 0.

The model (7.4) can be transformed into an equivalent deterministic multiobjective
linear programming model with real interval parameters as follows:

max z̆21 = [18, 20]x1 + [15, 16]x2 + [14, 15]x3 + [14, 16]x4

−
(
[4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4 − [20, 22] × 2

5
− [18, 20] × 3

5

)

−
(
[4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4 − [22, 24] × 1

2

−[19, 21] × 1
3
− [23, 25] × 1

6

)

max z̆22 = [13, 14]x1 + [9, 10]x2 + [16, 17]x3 + [12, 14]x4

−
(
[4, 5]x1 + [2, 4]x2 + [5, 6]x3 + [3, 4]x4 − [20, 22] × 2

5
− [18, 20] × 3

5

)

−
(
[4, 6]x1 + [3, 4]x2 + [5, 7]x3 + [2, 4]x4 − [22, 24] × 1

2

−[19, 21] × 1
3
− [23, 25] × 1

6

)

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0.
(7.7)
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Table 1: Optimal solution for Case 1.

Types of problem Weights Optimal decision variables Value of the objective function
w1 w2

Case 1

0.1 0.9 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 202.6246

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 111.0178

0.2 0.8 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 205.3631

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 113.1067

0.3 0.7 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 208.1015

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 115.1956

0.4 0.6 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 210.84

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 117.2844

0.5 0.5 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 213.5785

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 119.3733

0.6 0.4 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 216.3169

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 121.4622

0.7 0.3 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 219.0554

x1 = 4.889, x2 = 0, x3 = 1.778, x4 = 0 F̆Worst
1 = 123.5511

0.8 0.2 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 221.7938

x1 = 6.667, x2 = 0, x3 = 0, x4 = 0 F̆Worst
1 = 126.7067

0.9 0.1 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
1 = 224.5323

x1 = 6.667, x2 = 0, x3 = 0, x4 = 0 F̆Worst
1 = 130.04

On simplification, we get

max z̆21 = [7, 12]x1 + [7, 11]x2 + [1, 5]x3 + [6, 11]x4 + [39.96, 43.96],

max z̆22 = [2, 6]x1 + [1, 5]x2 + [3, 7]x3 + [4, 9]x4 + [39.96, 43.96],

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0.

(7.8)

The above deterministic multiobjective linear programming models (7.6) and (7.8) with
interval coefficient can be transformed into a single objective linear programming problem
containing interval coefficient by using weighting method as given in the following:

max F̆1 = w1z̆11 +w2z̆12,

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0, w1 ≥ 0, w2 ≥ 0,
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Table 2: Optimal solution for Case 2.

Types of problem Weights Optimal decision variables Value of the objective function
w1 w2

Case 2

0.1 0.9 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
2 = 104.5446

x1 = 4, x2 = 0, x3 = 0, x4 = 2 F̆Worst
2 = 58.36

0.2 0.8 x1 = 5.692308, x2 = 0, x3 = 3.384615, x4 = 0 F̆Best
2 = 107.2831

x1 = 4, x2 = 0, x3 = 0, x4 = 2 F̆Worst
2 = 60.76

0.3 0.7 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 111.3754

x1 = 6.667, x2 = 0, x3 = 0, x4 = 0 F̆Worst
2 = 63.2933

0.4 0.6 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 116.8215

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 66.76

0.5 0.5 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 122.2677

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 70.46

0.6 0.4 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 127.7138

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 74.16

0.7 0.3 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 133.16

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 77.86

0.8 0.2 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 138.6062

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 81.56

0.9 0.1 x1 = 5.692308, x2 = 3.384615, x3 = 0, x4 = 0 F̆Best
2 = 144.0523

x1 = 5, x2 = 2, x3 = 0, x4 = 0 F̆Worst
2 = 85.26

max F̆2 = w1z̆21 +w2z̆22,

subject to [3, 4]x1 + [5, 6]x2 + [5, 7]x3 + [6, 8]x4 ≤ [32, 34],

[5, 6]x1 + [4, 5]x2 + [4, 6]x3 + [7, 8]x4 ≤ [40, 42],

x1, x2, x3, x4 ≥ 0, w1 ≥ 0, w2 ≥ 0,

(7.9)

where w1 and w2 are the relative weights associated with the respective objective functions
and w1 + w2 = 1. These weights are calculated by using AHP (analytic hierarchy process)
[25].

Using the solution procedure described in Section 6, the above linear programming
models with interval coefficient models (7.9) are solved by using GAMS [26] and LINGO
(language for interactive general optimization)Version 11.0 [27]. The obtained best andworst
optimal solutions are given in the Tables 1 and 2 and are shown in the Figures 1 and 2.

8. Conclusions

Amultiobjective two-stage stochastic programming problem involving some interval discrete
random variable has been presented in this paper. Before solving the problem the determinis-
tic models are established. Then weighting method as well as interval programming method
is applied to make the model solvable. Deterministic models are solved using GAMS and
LINGO softwares and obtained the optimal solutions. From the results Table 1 and Table 2,
we observed the following:
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Figure 2: Optimal solutions of Cases 1 and 2.

(i) the solution obtained by assigning the first pair of weights (w1, w2) that is, 0.1 and
0.9 gives the best lower bound (i.e., 111.02) and worst upper bound (i.e., 202.62) for
the objective function F̆1. However, the solution obtained by using the last pair of
weights (w1, w2) that is, 0.9 and 0.1 gives the worst lower bound (i.e., 130.04) and
best upper bound (i.e., 224.53) for the objective function in Case 1;

(ii) similarly, the solution obtained by assigning the first pair of weights (w1, w2) that
is, 0.1 and 0.9 gives the best lower bound (i.e., 58.36) and worst upper bound
(i.e., 104.54) of the objective function F̆2. However, the solution obtained by using



20 Advances in Operations Research

the last pair of weights (w1, w2) that is, 0.9 and 0.1 gives the worst lower bound
(i.e., 85.26) and best upper bound (i.e., 144.05) for the objective function for Case 2.

Further both the tools (i.e., GAMS and LINGO) are giving the same optimal solutions with
respect to comparison.
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