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For wave equations with power nonlinearity we investigate the problem of the existence
or nonexistence of global solutions of the Cauchy characteristic problem in the light cone
of the future.

1. Statement of the problem

Consider a nonlinear wave equation of the type

�u := ∂2u

∂t2
−∆u= f (u) +F, (1.1)

where f and F are the given real functions; note that f is a nonlinear and u is an unknown
real function, ∆=∑n

i=1 ∂
2/∂x2

i .
For (1.1), we consider the Cauchy characteristic problem on finding in a truncated

light cone of the future DT : |x| < t < T , x = (x1, . . . ,xn), n > 1, T = const > 0, a solution
u(x, t) of that equation by the boundary condition

u|ST = g, (1.2)

where g is the given real function on the characteristic conic surface ST : t = |x|, t ≤ T .
When considering the case T = +∞ we assume that D∞ : t > |x| and S∞ = ∂D∞ : t = |x|.

Note that the questions on the existence or nonexistence of a global solution of the
Cauchy problem for semilinear equations of type (1.1) with initial conditions u|t=0 = u0,
∂u/∂t|t=0 = u1 have been considered in [1, 2, 6, 7, 8, 10, 13, 14, 15, 16, 17, 18, 22, 23, 26,
30, 31].

As for the characteristic problem in a linear case, that is, for problem (1.1)-(1.2) when
the right-hand side of (1.1) does not involve the nonlinear summand f (u), this prob-
lem is, as is known, formulated correctly, and the global solvability in the corresponding
spaces of functions takes place [3, 4, 5, 11, 25].

Below we will distinguish the particular cases of the nonlinear function f = f (u),
when problem (1.1)-(1.2) is globally solvable in one case and unsolvable in the other one.
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2. Global solvability of the problem

Consider the case for f (u)=−λ|u|pu, where λ �= 0 and p > 0 are the given real numbers.
In this case (1.1) takes the form

Lu := ∂2u

∂t2
−∆u=−λ|u|pu+F, (2.1)

where for convenience we introduce the notation L =�. As is known, (2.1) appears in
the relativistic quantum mechanics [13, 24, 28, 29].

For the sake of simplicity of our exposition we will assume that the boundary condi-
tion (1.2) is homogeneous, that is,

u|ST = 0. (2.2)

Let
◦
W1

2 (DT ,ST) = {u ∈W1
2 (DT) : u|ST = 0}, where W1

2 (DT) is the known Sobolev
space.

Remark 2.1. The embedding operator I :
◦
W1

2 (DT ,ST)→ Lq(DT) is the linear continuous
compact operator for 1 < q < 2(n + 1)/(n− 1) when n > 1 [21, page 81]. At the same
time, Nemytski’s operator K : Lq(DT)→ L2(DT), acting by the formula Ku = −λ|u|pu,
is continuous and bounded if q ≥ 2(p + 1) [19, page 349], [20, pages 66–67]. Thus if
p < 2/(n− 1), that is, 2(p+ 1) < 2(n+ 1)/(n− 1), then there exists the number q such that
1 < 2(p+ 1)≤ q < 2(n+ 1)/(n− 1), and hence the operator

K0 = KI :
◦
W1

2

(
DT ,ST

)−→ Lq
(
DT
)

(2.3)

is continuous and compact and, more so, from u∈
◦
W1

2 (DT ,ST) follows u∈ Lp+1(DT). As
is mentioned above, here, and in the sequel it will be assumed that p > 0.

Definition 2.2. Let F ∈ L2(DT) and 0 < p < 2/(n− 1). The function u∈
◦
W1

2 (DT ,ST) is said
to be a strong generalized solution of the nonlinear problem (2.1), (2.2) in the domainDT

if there exists a sequence of functions um ∈
◦
C2(DT ,ST) = {u ∈

◦
C2(DT) : u|ST = 0} such

that um → u in the space
◦
W1

2 (DT ,ST) and [Lum + λ|um|pum] → F in the space L2(DT).
Moreover, the convergence of the sequence {λ|um|pum} to the function λ|u|pu in the

space L2(DT), as um → u in the space
◦
W1

2 (DT ,ST), follows from Remark 2.1, and since
|u|p+1 ∈ L2(DT), therefore on the strength of the boundedness of the domain DT the
function u∈ Lp+1(DT).

Definition 2.3. Let 0 < p < 2/(n− 1), F ∈ L2,loc(D∞), and F ∈ L2(DT) for any T > 0. It is
said that problem (2.1), (2.2) is globally solvable if for any T > 0 this problem has a strong

generalized solution in the domain DT from the space
◦
W1

2 (DT ,ST).
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Lemma 2.4. Let λ > 0, 0 < p < 2/(n− 1), and F ∈ L2(DT). Then for any strong generalized

solution u∈
◦
W1

2 (DT ,ST) of problem (2.1)-(2.2) in the domain DT the estimate

‖u‖◦
W1

2(DT ,ST )
≤√eT‖F‖L2(DT ) (2.4)

is valid.

Proof. Let u∈
◦
W1

2 (DT ,ST) be the strong generalized solution of problem (2.1)-(2.2). By

Definition 2.2 and Remark 2.1 there exists a sequence of functions um ∈
◦
C2(DT ,ST) such

that

lim
m→∞

∥∥um−u∥∥ ◦
W1

2 (DT ,ST )
= 0,

lim
m→∞

∥∥Lum + λ
∣∣um∣∣pum−F∥∥L2(DT ) = 0.

(2.5)

The function um ∈
◦
C2(DT ,ST) can be considered as the solution of the following prob-

lem:

Lum + λ
∣∣um∣∣pum = Fm, (2.6)

um|ST = 0. (2.7)

Here

Fm = Lum + λ
∣∣um∣∣pum. (2.8)

Multiplying both parts of (2.6) by ∂um/∂t and integrating with respect to the domain
Dτ , 0 < τ ≤ T , we obtain

1
2

∫
Dτ

∂

∂t

(
∂um
∂t

)2

dxdt

−
∫
Dτ

∆um
∂um
∂t

dxdt

+
λ

p+ 2

∫
Dτ

∂

∂t

∣∣um∣∣p+2
dxdt

=
∫
Dτ

Fm
∂um
∂t

dxdt.

(2.9)

Let Ωτ := DT ∩{t = τ} and denote by ν = (ν1, . . . ,νn,ν0) the unit vector of the outer
normal to ST \ {(0, . . . ,0,0)}. Taking into account (2.7) and ν|Ωτ = (0, . . . ,0,1), integration
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by parts results easily in

∫
Dτ

∂

∂t

(
∂um
∂t

)2

dxdt =
∫
∂Dτ

(
∂um
∂t

)2

ν0ds=
∫
Ωτ

(
∂um
∂t

)2

dx+
∫
Sτ

(
∂um
∂t

)2

ν0ds,∫
Dτ

∂

∂t

∣∣um∣∣p+2
dxdt =

∫
∂Dτ

∣∣um∣∣p+2
ν0ds=

∫
Ωτ

∣∣um∣∣p+2
dx,∫

Dτ

∂2um
∂x2

i

∂um
∂t

dxdt =
∫
∂Dτ

∂um
∂xi

∂um
∂t

νids− 1
2

∫
Dτ

∂

∂t

(
∂um
∂xi

)2

dxdt

=
∫
∂Dτ

∂um
∂xi

∂um
∂t

νids− 1
2

∫
∂Dτ

(
∂um
∂xi

)2

ν0ds

=
∫
∂Dτ

∂um
∂xi

∂um
∂t

νids− 1
2

∫
Sτ

(
∂um
∂xi

)2

ν0ds− 1
2

∫
Ωτ

(
∂um
∂xi

)2

dx,

(2.10)

whence, by virtue of (2.9), it follows that

∫
Dτ

Fm
∂um
∂t

dxdt =
∫
Sτ

1
2ν0

[ n∑
i=1

(
∂um
∂xi

ν0− ∂um
∂t

νi

)2

+
(
∂um
∂t

)2
(

ν2
0−

n∑
j=1

ν2
j

)]
ds

+
1
2

∫
Ωτ

[(
∂um
∂t

)2

+
n∑
i=1

(
∂um
∂xi

)2
]
dx+

λ

p+ 2

∫
Ωτ

∣∣um∣∣p+2
dx.

(2.11)

Since Sτ is the characteristic surface,(
ν2

0−
n∑
j=1

ν2
j

)∣∣∣∣∣
Sτ

= 0. (2.12)

Taking into account that the operator (ν0(∂/∂xi)− νi(∂/∂t)), i= 1,2, . . . ,n, is the inter-
nal differential operator on Sτ , by means of (2.7) we have(

∂um
∂xi

ν0− ∂um
∂t

νi

)∣∣∣∣
Sτ

= 0, i= 1,2, . . . ,n. (2.13)

By (2.12) and (2.13), from (2.11) we get

∫
Ωτ

[(
∂um
∂t

)2

+
n∑
i=1

(
∂um
∂xi

)2
]
dx+

2λ
p+ 2

∫
Ωτ

∣∣um∣∣p+2
dx = 2

∫
Dτ

Fm
∂um
∂t

dxdt. (2.14)

In the notation w(δ) = ∫Ωδ
[(∂um/∂t)2 +

∑n
i=1(∂um/∂xi)2]dx, taking into account that

λ/(p+ 2) > 0 and also the inequality 2Fm(∂um/∂t) ≤ ε(∂um/∂t)2 + (1/ε)F2
m which is valid

for any ε = const > 0, (2.14) yields

w(δ)≤ ε
∫ δ

0
w(σ)dσ +

1
ε

∥∥Fm∥∥2
L2(Dδ), 0 < δ ≤ T. (2.15)
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From (2.15), if we take into account that the value ‖Fm‖2
L2(Dδ) as the function of δ is

nondecreasing, by Gronwall’s lemma [12, page 13] we find that

w(δ)≤ 1
ε

∥∥Fm∥∥2

L2

(
Dδ

) expδε. (2.16)

Because inf ε>0(expδε/ε)= eδ, which is achieved for ε = 1/δ, we obtain

w(δ)≤ eδ∥∥Fm∥∥2
L2(Dδ), 0 < δ ≤ T. (2.17)

From (2.17) in its turn it follows that

∥∥um∥∥2◦
W1

2 (DT ,ST )
=
∫
DT

[(
∂um
∂t

)2

+
n∑
i=1

(
∂um
∂xi

)2
]
dxdt

=
∫ T

0
w(δ)dδ ≤ eT2

∥∥Fm∥∥2
L2(DT )

(2.18)

and hence ∥∥um∥∥ ◦
W1

2 (DT ,ST )
≤√eT∥∥Fm∥∥L2(Dτ ). (2.19)

Here we have used the fact that in the space
◦
W1

2 (DT ,ST) the norm

∥∥u∥∥W1
2 (DT ) =

{∫
DT

[
u2 +

(
∂u

∂t

)2

+
n∑
i=1

(
∂u

∂xi

)2
]
dxdt

}1/2

(2.20)

is equivalent to the norm

∥∥u∥∥={∫
DT

[(
∂u

∂t

)2

+
n∑
i=1

(
∂u

∂xi

)2
]
dxdt

}1/2

, (2.21)

since from the equalities u|ST = 0 and u(x, t)= ∫ t|x|(∂u(x,τ)/∂t)dτ, (x, t)∈DT , which are

valid for any function u∈
◦
C2(DT ,ST), in a standard way we obtain the following inequal-

ity [21, page 63]: ∫
DT

u2(x, t)dxdt ≤ T2
∫
DT

(
∂u

∂t

)2

dxdt. (2.22)

By virtue of (2.5) and (2.8), passing to inequality (2.19) to the limit as m→∞, we
obtain (2.4). Thus the lemma is proved. �

Remark 2.5. Before passing to the question on the solvability of the nonlinear problem
(2.1), (2.2), we consider this question for a linear case in the form we need, when in (2.1)
the parameter λ= 0, that is, for the problem

Lu(x, t)= F(x, t), (x, t)∈DT ,

u(x, t)= 0, (x, t)∈ ST. (2.23)
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In this case for F ∈ L2(DT), we analogously introduce the notion of a strong gener-
alized solution u of problem (2.23) for which there exists the sequence of functions

um ∈
◦
C2(DT ,ST), such that limm→∞‖um − u‖ ◦

W1
2 (DT ,ST )

= 0, limm→∞‖Lum − F‖L2(DT ) = 0.

It should be here noted that as we can see from the proof of Lemma 2.4, the a priori
estimate (2.4) is likewise valid for the strong generalized solution of problem (2.23).

Since the space C∞0 (DT) of finite infinitely differentiable functions in DT is dense in
L2(DT), for the given F ∈ L2(DT) there exists the sequence of functions Fm ∈ C∞0 (DT)
such that limm→∞‖Fm − F‖L2(DT ) = 0. For the fixed m, if we continue the function Fm
by zero outside the domain DT and retain the same notation, we will find that Fm ∈
C∞(Rn+1

+ ) for which suppFm ⊂ D∞, where Rn+1
+ = Rn+1 ∩ {t ≥ 0}. Denote by um a solu-

tion of the Cauchy problem Lum = Fm, um|t=0 = 0, ∂um/∂t|t=0 = 0, which, as is known,
exists, is unique, and belongs to the spaceC∞(Rn+1

+ ) [9, page 192]. As far as suppFm ⊂D∞,
um|t=0 = 0, ∂um/∂t|t=0 = 0, taking into account the geometry of the domain of depen-
dence of a solution of the wave equation, we obtain suppFm ⊂D∞ [9, page 191]. Retain-
ing for the narrowing of the function um to the domain DT the same notation, we can

easily see that um ∈
◦
C2(DT ,ST), and by virtue of (2.4) we have∥∥um−uk∥∥ ◦

W1
2 (DT ,ST )

≤√eT∥∥Fm−Fk∥∥L2(DT ). (2.24)

Since the sequence {Fm} is fundamental in L2(DT), the sequence {um}, owing to (2.24),

is likewise fundamental in the complete space
◦
W1

2 (DT ,ST). Therefore there exists the

function u∈
◦
W1

2 (DT ,ST) such that limm→∞‖um−u‖ ◦
W1

2 (DT ,ST )
= 0, and since Lum = Fm→

F in the space L2(DT), this function will, by Remark 2.5, be the strong generalized so-

lution of problem (2.23). The uniqueness of that solution from the space
◦
W1

2 (DT ,ST)
follows from the a priori estimate (2.4). Consequently, for the solution u of problem

(2.23) we can write u= L−1F, where L−1 : L2(DT)→
◦
W1

2 (DT ,ST) is the linear continuous
operator whose norm, by virtue of (2.4), admits the estimate∥∥L−1

∥∥
L2(DT )→

◦
W1

2 (DT ,ST )
≤√eT. (2.25)

Remark 2.6. Taking into account (2.25) for F ∈ L2(DT), 0 < p < 2/(n − 1) and also

Remark 2.1, it is not difficult to see that the function u ∈
◦
W1

2 (DT ,ST) is the strong gen-
eralized solution of problem (2.1)-(2.2) if and only if u is the solution of the functional
equation

u= L−1(− λ|u|pu+F
)

(2.26)

in the space
◦
W1

2 (DT ,ST).

We rewrite (2.26) in the form

u= Au := L−1(K0u+F
)
, (2.27)
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where the operator K0 :
◦
W1

2 (DT ,ST)→ L2(DT) from (2.3) is, by Remark 2.1, a continu-

ous and compact one. Consequently, by virtue of (2.25) the operator A :
◦
W1

2 (DT ,ST)→
◦
W1

2 (DT ,ST) is likewise continuous and compact. At the same time, by Lemma 2.4, for any
parameter τ ∈ [0,1] and any solution of the equation with the parameter u= τAu the a
priori estimate ‖u‖ ◦

W1
2 (DT ,ST )

≤ c‖F‖L2(DT ) with the positive constant c, independent of u,

τ, and F, is valid.
Therefore by Leray-Schauder theorem [32, page 375], (2.27), and hence problem (2.1)-

(2.2), has at least one solution u∈
◦
W1

2 (DT ,ST).
Thus the following theorem is valid.

Theorem 2.7. Let λ > 0, 0 < p < 2/(n− 1), F ∈ L2,loc(D∞), and F ∈ L2(DT) for any T > 0.
Then problem (2.1)-(2.2) is globally solvable, that is, for any T > 0 this problem has the

strong generalized solution u∈
◦
W1

2 (DT ,ST) in the domain DT .

3. Nonexistence of the global solvability

Below we will restrict ourselves to the case when in (2.1) the parameter λ < 0 and the
space dimension n= 2.

Definition 3.1. Let F ∈ C(DT ). The function u is said to be a strong generalized con-

tinuous solution of problem (2.23) if u ∈ ◦
C(DT ,ST) = {u∈ C(DT) : u|ST = 0} and there

exists a sequence of functions um ∈
◦
C2(DT ,ST) such that limm→∞‖um− u‖C(DT ) = 0 and

limm→∞‖Lum−F‖C(DT ) = 0.

We introduce into the consideration the domain Dx0,t0 = {(x, t) ∈ R3 : |x| < t < t0 −
|x− x0|} which for (x0, t0)∈DT is bounded below by a light cone of the future S∞ with
the vertex at the origin and above by the light cone of the past S−x0,t0 : t = t0−|x− x0| with
the vertex at the point (x0, t0).

Lemma 3.2. Let n= 2, F ∈ ◦
C(DT ,ST). Then there exists the unique strong generalized con-

tinuous solution of problem (2.23) for which the integral representation

u(x, t)= 1
2π

∫
Dx,t

F(ξ,τ)√
(t− τ)2−|x− ξ|2

dξ dτ, (x, t)∈DT , (3.1)

and the estimate

‖u‖C(DT ) ≤ c‖F‖C(DT ) (3.2)

with the positive constant c, independent of F, are valid.

Proof. Without restriction of generality, we can assume that the function F ∈ ◦
C(DT ,ST) is

continuous in the domain D∞ such that F ∈ ◦
C(D∞,S∞). Indeed, if (x, t)∈D∞ \DT , then

we can take F(x, t)= F((T/t)x,T). LetDT ,δ : |x|+ δ < t < T , where 0 < δ = const < (1/2)T .
Obviously, DT ,δ ⊂ DT . Since F ∈ C(DT) and F|ST = 0, for some strongly monotonically
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decreasing sequence of positive numbers {δk} there exists the sequence of functions {Fk}
such that

Fk ∈ C∞
(
DT
)
, suppFk ⊂DT ,δk , k = 1,2, . . . ,

lim
k→∞

∥∥Fk −F∥∥C(DT ) = 0.
(3.3)

Indeed, let ϕδ ∈ C([0,+∞)) be the nondecreasing continuous function of one vari-
able such that ϕδ(τ) = 0 for 0 ≤ τ ≤ 2δ and ϕδ(τ) = 1 for t ≥ 3δ. Let F̃δ(x, t) = ϕδ(t −
|x|)F(x, t), (x, t)∈DT . Since F ∈ C(DT) and F|ST = 0, we can easily verify that

F̃δ ∈ C
(
DT
)
, supp F̃δ ⊂DT ,2δ , lim

δ→∞
∥∥F̃δ −F∥∥C(DT ) = 0. (3.4)

Now we take advantage of the operation of averaging and let

Gδ(x, t)= ε−n
∫
R3
F̃δ(ξ,τ)ρ

(
x− ξ
ε

,
τ

ε

)
dξ dτ, ε = (√2− 1

)
δ, (3.5)

where

ρ ∈ C∞0
(
R3), ∫

R3
ρdxdt = 1, ρ ≥ 0,

suppρ= {(x, t)∈ R3 : x2 + t2 ≤ 1
}
.

(3.6)

From (3.4) and averaging properties [9, page 9] it follows that the sequence Fk = Gδk ,
k = 1,2, . . . , satisfies (3.3). Continuing the function Fk by zero to the strip ΛT : 0 < t < T
and retaining the same notation, we have Fk ∈ C∞(ΛT), where suppFk ⊂ DT ,δk ⊂ DT ,
k = 1,2, . . . . Therefore, just in the same way as in proving Lemma 2.4, for the solution
of the Cauchy problem Luk = Fk, uk|t=0 = 0, ∂uk/∂t|t=0 = 0 in the strip ΛT which exists,
is unique, and belongs to the space C∞(ΛT), we have suppuk ⊂ DT and, more so, uk ∈
◦
C2(DT ,ST), k =,1,2 . . . .

On the other hand, since suppFk ⊂DT , Fk ∈ C∞(ΛT) for the solution uk of the Cauchy
problem, by the Poisson formula the integral representation [33, page 227]

uk(x, t)= 1
2π

∫
Dx,t

Fk(ξ,τ)√
(t− τ)2−|x− ξ|2

dξ dτ, (x, t)∈DT , (3.7)

is valid and the estimate [33, page 215]

∥∥uk∥∥C(DT ) ≤
T2

2

∥∥Fk∥∥C(DT ) (3.8)

holds.

By (3.4) and (3.8), the sequence {uk} ⊂
◦
C2(DT ,ST) is fundamental in the space

◦
C(DT ,

ST) and tends to some function u for which, by virtue of (3.7), the representation (3.1) is
valid and the estimate (3.2) holds. Thus we have proved that problem (2.23) is solvable

in the space
◦
C(DT ,ST).
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As for the uniqueness of the strong generalized continuous solution of problem (2.23),

it follows from the following reasoning. Let u ∈ ◦
C(DT ,ST) and F = 0 and there exists

the sequence of functions uk ∈
◦
C2(DT ,ST) such that limk→∞‖uk − u‖C(DT ) = 0,

limk→∞‖Luk‖C(DT )=0. This implies that limk→∞‖uk −u‖L2(DT )=0 and limk→∞‖Luk‖L2(DT )

= 0. Since the function uk ∈
◦
C2(DT ,ST) can be considered as the strong generalized solu-

tion of problem (2.23) for Fk = Luk from the space
◦
W1

2 (DT ,ST), the estimate ‖uk‖ ◦
W1

2 (DT ,ST )

≤ √eT‖Luk‖L2(DT ) is valid according to Remark 2.5. Therefore limk→∞‖Luk‖L2(DT ) = 0
implies that limk→∞‖uk‖ ◦

W1
2 (DT ,ST )

= 0, and hence limk→∞‖uk‖L2(DT ) = 0. Taking into ac-

count the fact that limk→∞‖uk −u‖L2(DT ) = 0, we obtain u= 0. Thus Lemma 3.2 is proved
completely. �

Lemma 3.3. Let n= 2, λ < 0, F ∈ ◦
C(DT ,ST), and F ≥ 0. Then if u∈ C2(DT) is the classical

solution of problem (2.1)-(2.2), then u≥ 0 in the domain DT .

Proof. If u ∈ C2(DT) is the classical solution of problem (2.1)-(2.2), then u ∈
◦
C2(DT ,

ST), and since F ∈ ◦
C(DT ,ST), the right-hand side G = −λ|u|pu+ F of (2.1) belongs to

the space
◦
C(DT ,ST). Considering the function u∈

◦
C2(DT ,ST) as the classical solution of

problem (2.23) for F =G, that is,

Lu=G, u|ST = 0, (3.9)

it will, more so, be the strong generalized continuous solution of problem (3.9). There-

fore, taking into account that G∈ ◦
C(DT ,ST), by Lemma 3.2, for the function u the inte-

gral representation

u(x, t)=− λ

2π

∫
Dx,t

|u|pu√
(t− τ)2−|x− ξ|2

dξ dτ +F0(x, t) (3.10)

holds. Here

F0(x, t)= 1
2π

∫
Dx,t

F(ξ,τ)√
(t− τ)2−|x− ξ|2

dξ dτ. (3.11)

Consider now the integral equation

v(x, t)=
∫
Dx,t

g0v√
(t− τ)2−|x− ξ|2

dξ dτ +F0(x, t), (x, t)∈DT , (3.12)

with respect to an unknown function v, where g0 =−(λ/2π)|u|p.

Since g0,F0 ∈
◦
C(DT ,ST), and the operator in the right-hand side of (3.12) is an integral

operator of Volterra type with a weak singularity, (3.12) is uniquely solvable in the space
C(DT). It should be noted that the solution v of (3.12) can be obtained by Picard’s method
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of successive approximations:

v0 = 0,

vk+1(x, t)=
∫
Dx,t

g0vk√
(t− τ)2−|x− ξ|2

dξ dτ +F0(x, t), k = 1,2, . . . . (3.13)

Indeed, let

Ωτ =DT ∩{t = τ}, wm|DT
= vm+1− vm

(
w0|DT

= F0
)
,

wm|{0≤t≤T}\DT
= 0, λm(t)=max

x∈Ωt

∣∣wm(x, t)
∣∣, m= 0,1, . . . ,

b =
∫
|η|<1

dη1dη2√
1−|η|2

∥∥g0
∥∥
C(DT ) = 2π

∥∥g0
∥∥
C(DT ).

(3.14)

Then, if

Bβϕ(t)= b
∫ t

0
(t− τ)β−1ϕ(τ)dτ, β > 0, (3.15)

then taking into account the equality

Bmβ ϕ(t)= 1
Γ(mβ)

∫ t
0

(
bΓ(β)

)m
(t− τ)mβ−1ϕ(τ)dτ (3.16)

[12, page 206], by virtue of (3.13), we obtain

∣∣wm(x, t)
∣∣=

∣∣∣∣∣∣
∫
Dx,t

g0wm−1√
(t− τ)2−|x− ξ|2

dξ dτ

∣∣∣∣∣∣
≤
∫ t

0
dτ
∫
|x−ξ|<t−τ

∣∣g0
∣∣∣∣wm−1

∣∣√
(t− τ)2−|x− ξ|2

dξ dτ

≤ ∥∥g0
∥∥
C(DT )

∫ t
0
dτ
∫
|x−ξ|<t−τ

λm−1(τ)√
(t− τ)2−|x− ξ|2

dξ

= ∥∥g0
∥∥
C(DT )

∫ t
0
(t− τ)λm−1(τ)dτ

∫
|η|<1

dη1dη2√
1−|η|2

= B2λm−1(t), (x, t)∈DT.

(3.17)

It follows that

λm(t)≤ B2λm−1(t)≤ ··· ≤ Bm2 λ0(t)= 1
Γ(2m)

∫ t
0

(
bΓ(2)

)m
(t− τ)2m−1λ0(τ)dτ

≤ bm

Γ(2m)

∫ t
0
(t− τ)2m−1

∥∥w0
∥∥
C
(
DT

)dτ = (
bT2

)m
Γ(2m)2m

∥∥F0
∥∥
C(DT ) =

(
bT2

)m
(2m)!

∥∥F0
∥∥
C(DT )

(3.18)
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and hence

∥∥wm

∥∥
C(DT ) =

∥∥λm∥∥C([0,T]) ≤
(
bT2

)m
(2m)!

∥∥F0
∥∥
C(DT ). (3.19)

Therefore the series v = limm→ ∞ vm = v0 +
∑∞

m=0wm converges in the class C(DT) and its
sum is the solution of (3.12). The uniqueness of the solution (3.12) in the space C(DT ) is
proved analogously.

As far as λ < 0, we have g0 = −λ/2π ≥ 0, and by virtue of (3.11), the function F0 ≥ 0
because F ≥ 0 by the condition. Therefore successive approximations vk from (3.13) are
nonnegative, and since limk→∞‖vk − v‖C(DT ) = 0, the solution v ≥ 0 in the domain DT ,
too. It now remains only to note that by virtue of (3.10), the function u is the solution of
(3.12), and according to the unique solvability of that equation, u= v ≥ 0 in the domain
DT . Thus the proof of Lemma 3.3 is complete. �

Remark 3.4. As it can be seen from the proof, Lemma 3.3 is likewise valid if instead of the
condition F ≥ 0 we will require the fulfillment of a more weak condition F0 ≥ 0, where
the function F0 is given by formula (3.11).

Lemma 3.5. Let n= 2, F ∈ 0
C (DT ,ST) and let u∈ C2(DT) be the classical solution of prob-

lem (2.1)-(2.2). Then if for some point (x0, t0)∈DT the function F|Dx0,t0
= 0, then likewise

u|Dx0,t0
= 0, where Dx0,t0 = {(x, t)∈ R3 : |x| < t < t0−|x− x0|}.

Proof. Since F|Dx0,t0
= 0, by the representation (3.1) from Lemma 3.2, the solution u of

problem (2.1)-(2.2) in the domain Dx0,t0 satisfies the integral equation

u(x, t)= 1
2π

∫
Dx,t

g̃0(ξ,η)u(ξ,η)√
(t− τ)2−|x− ξ|2

dξ dτ, (x, t)∈Dx0,t0 , (3.20)

where g̃0 =−λ|u|p. Taking into account the fact that

1
2π

∫
Dx,t

τm√
(t− τ)2−|x− ξ|2

dξ dτ ≤ 1
2π

∫ t
0
dτ
∫
|x−ξ|<t−τ

τm√
(t− τ)2−|x− ξ|2

dξ

= 1
2π

∫ t
0
τm(t− τ)dτ

∫
|η|<1

dη√
1−|η|2

= tm+2

(m+ 1)(m+ 2)

(3.21)

from (3.20) using the method of mathematical induction, we easily get

∣∣u(x, t)
∣∣≤MMk

1
t2k

(2k)!
, (x, t)∈Dx0,t0 , k = 1,2, . . . , (3.22)

where M =maxDT
|u(x, t)| = ‖u‖C(DT ), M1 =maxDT

|g̃0(x, t)|. Therefore, as k→ +∞, we
have u|Dx0,t0

= 0. Thus Lemma 3.5 is proved completely. �
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Let cR and ϕR(x) be, respectively, the first eigenvalue and the eigenfunction of the
Dirichlet problem in the circle ΩR : x2

1 + x2
2 < R

2. Consequently,(
∆ϕR + cRϕR

)∣∣
ΩR
= 0, ϕR

∣∣
∂ΩR

= 0. (3.23)

As is known, cR > 0, and if we change the sign and make the corresponding normalization,
we will be able to get [27, page 25]

ϕR|ΩR
> 0,

∫
ΩR

ϕRdx = 1. (3.24)

Theorem 3.6. Let n = 2, λ < 0, p > 0, F ∈ C(D∞), suppF ∩ S∞ =∅, and F ≥ 0. Then if
the condition

limT→+∞T(p+2)/p
∫ T

0
dt
∫
Ω1

F(2Tξ, t)ϕ1(ξ)dξ = +∞ (3.25)

is fulfilled, then there exists the number T0 = T0(F) > 0 such that for T ≥ T0 problem (2.1)-
(2.2) fails to have the classical solution u∈ C2(DT) in the domain DT .

Proof. Assume that problem (2.1)-(2.2) has the classical solution u∈ C2(DT) in the do-
main DT . Since suppF ∩ S∞ = ∅, there exists the positive number δ < T/2 such that
F|Uδ(ST ) = 0, where Uδ(ST) : |x| ≤ t ≤ |x|+ δ, t ≤ T . By Lemma 3.5, this implies that

u
∣∣
Uδ

(
ST
) = 0. (3.26)

Further, since by the condition F ≥ 0, due to Lemma 3.3,

u|DT
≥ 0. (3.27)

Therefore continuing the functions F and u by zero outside the domain DT to the strip
ΛT : 0 < t < T and retaining the same notation, we find that u ∈ C2(DT) is the classical
solution of (2.1) in the strip ΛT , which, by virtue of λ < 0 and (3.27), we can write in the
form

utt −∆u= |λ|up+1 +F(x, t), (x, t)∈ΛT . (3.28)

Moreover, by (3.26),

suppu⊂DT ,δ , DT ,δ =
{

(x, t)∈ R3 : |x|+ δ < t < T
}
. (3.29)

Below, without restriction of generality we will assume that λ = −1, and hence |λ| =
1, since the case λ < 0, λ �= −1 with regard to p > 0 is reduced to the case λ = −1 by
introducing a new unknown function v = |λ|1/pu. The function v will satisfy the equation

vtt −∆v = vp+1 + |λ|1/pF(x, t), (x, t)∈ΛT . (3.30)

According to (3.30), below, instead of (2.1) we will consider the equation

utt −∆u= up+1 +F(x, t), (x, t)∈ΛT . (3.31)
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We take R≥ T and introduce into the consideration the functions

E(t)=
∫
ΩR

u(x, t)ϕR(x)dx,

fR(t)=
∫
ΩR

F(x, t)ϕR(x)dx, 0≤ t ≤ T.
(3.32)

It is clear that E ∈ C2([0,T]), fR ∈ C([0,T]), and, with regard to (3.27), the function
E ≥ 0. By (3.23), (3.29), and (3.32), the integration by parts results in∫

ΩR

∆uϕRdx =
∫
ΩR

u∆ϕRdx =−cR
∫
ΩR

uϕRdx =−cRE. (3.33)

By (3.24), (3.27), and p > 0, and using Jensen’s inequality [27, page 26], we obtain∫
ΩR

up+1ϕRdx ≥
(∫

ΩR

uϕRdx
)p+1

= Ep+1. (3.34)

From (3.29), (3.31), (3.32), (3.33), and (3.34) it follows that

E′′ + cRE ≥ Ep+1 + fR, 0≤ t ≤ T ,

E(0)= 0, E′(0)= 0.
(3.35)

To investigate problem (3.35), we will use the method of test functions [26, pages 10–
12]. To this end, we take T1, 0 < T1 < T and consider the nonnegative test function ψ ∈
C2([0,T]) such that

0≤ ψ ≤ 1, ψ(t)= 1, 0≤ t ≤ T1, ψ(k)(T)= 0, k = 0,1,2. (3.36)

From (3.35) and (3.36) it easily follows that∫ T
0
Ep+1(t)ψ(t)dt ≤

∫ T
0
E(t)

[
ψ′′(t) + cRψ(t)

]
dt−

∫ T
0
fR(t)ψ(t)dt. (3.37)

If, in Young’s inequality with parameter ε > 0

ab ≤ ε

α
aα +

1
α′εα′−1

bα
′
, a,b ≥ 0, α′ = α

α− 1
, (3.38)

we put α= p+ 1, α′ = (p+ 1)/p, a= Eψ1/(p+1), b = |ψ′′ + cRψ|/ψ1/(p+1) and take into ac-
count that α′/α= 1/(α− 1)= α′ − 1, then we will get

E
∣∣ψ′′ + cRψ

∣∣= Eψ1/α

∣∣ψ′′ + cRψ
∣∣

ψ1/α
≤ ε

α
Eαψ +

1
α′εα′−1

∣∣ψ′′ + cRψ
∣∣α′

ψα′−1
. (3.39)

By (3.39), from (3.37) we have

(
1− ε

α

)∫ T
0
Eαψ dt ≤ 1

α′εα′−1

∫ T
0

∣∣ψ′′ + cRψ
∣∣α′

ψα′−1
dt−

∫ T
0
fR(t)ψ(t)dt. (3.40)
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Taking into account that min0<ε<α[((α − 1)/(α − ε))(1/εα
′−1)] = 1 which can be

achieved for ε = 1, from (3.40) by means of (3.36), we find that∫ T1

0
Eαdt ≤

∫ T
0

∣∣ψ′′ + cRψ
∣∣α′

ψα′−1
dt−α′

∫ T
0
fR(t)ψ(t)dt. (3.41)

Now in the capacity of the test function ψ we take the function of the type

ψ(t)= ψ0(τ), τ = t

T1
, 0≤ τ ≤ τ1 = T

T1
, (3.42)

where

ψ0 ∈ C2([0,τ1
])

, 0≤ ψ0 ≤ 1,

ψ0(τ)= 1, 0≤ τ ≤ 1, ψ(k)
0

(
τ1
)= 0, k = 0,1,2.

(3.43)

It is not difficult to see that

cR = c1

R2
≤ c1

T2
≤ c1

T2
1

, ϕR(x)= 1
R2
ϕ1

(
x

R

)
. (3.44)

By virtue of (3.42), (3.43), and (3.44), taking into account that ψ′′(t)= 0 for 0≤ t ≤ T1

and fR ≥ 0, since F ≥ 0, as well as the well-known inequality |a + b|α′ ≤ 2α
′−1(|a|α′ +

|b|α′), from (3.41) we obtain∫ T1

0
Eαdt ≤

∫ T1

0

cα
′
R ψ

α′

ψα′−1
dt+

∫ T
T1

∣∣ψ′′ + cRψ
∣∣α′

ψα′−1
dt−α′

∫ T
0
fR(t)ψ(t)dt

≤ cα′R
∫ T1

0
ψdt+T1

∫ τ1

1

∣∣(1/T2
1

)
ψ′′0 (τ) + cRψ0(τ)

∣∣α′(
ψ0(τ)

)α′−1 dτ −α′
∫ T1

0
fR(t)dt

≤ cα′R T1 +
2α

′−1

T2α′−1
1

∫ τ1

1

∣∣ψ′′0 (τ)
∣∣α′(

ψ0(τ)
)α′−1 dτ +T12α

′−1cα
′
R

∫ τ1

1
ψ0(τ)dτ −α′

∫ T1

0
fR(t)dt

≤ cα
′

1

T2α′−1
1

+
2α

′−1

T2α′−1
1

∫ τ1

1

∣∣ψ′′0 (τ)
∣∣α′(

ψ0(τ)
)α′−1 dτ +

2α
′−1cα

′
1

T2α′−1
1

(
τ1− 1

)−α′∫ T1

0
fR(t)dt.

(3.45)

Now we put R= T , τ1 = 2, that is, T1 = (1/2)T . Then inequality (3.45) takes the form∫ (1/2)T

0
Eαdt ≤

(
1
2
T
)1−2α′[

cα
′

1

(
1 + 2α

′−1)+ 2α
′−1
∫ 2

1

∣∣ψ′′0 (τ)
∣∣α′(

ψ0(τ)
)α′−1 dτ

−α′
(

1
2
T
)2α′−1∫ (1/2)T

0
fT(t)dt

]
, 2α′ − 1= p+ 2

p
.

(3.46)

As is known, the function ψ0 with the properties (3.43) for which the integral

κ

(
ψ0
)= ∫ 2

1

∣∣ψ′′0 (τ)
∣∣α′(

ψ0(τ)
)α′−1 dτ < +∞ (3.47)

is finite does exist [26, page 11].
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With regard to (3.32) and (3.44), we have

β(T)=
∫ (1/2)T

0
fT (t)dt =

∫ (1/2)T

0
dt
∫
ΩT

F(x, t)ϕT(x)dx

=
∫ (1/2)T

0
dt
∫
ΩT

F(x, t)
1
T2
ϕ1

(
x

T

)
dx

=
∫ (1/2)T

0
dt
∫
Ω1

F(Tξ, t)ϕ1(ξ)dξ.

(3.48)

If condition (3.25) is fulfilled, then by virtue of (3.46), (3.47), and (3.48) there exists
the number T = T0 > 0 for which the right-hand side of inequality (3.46) is negative,
but this is impossible because the left-hand side of inequality (3.46) is nonnegative. Thus
for T = T0, and hence for T ≥ T0, problem (2.1)-(2.2) fails to have the classical solution
u∈ C2(DT) in the domain DT . Thus Theorem 3.6 is proved completely. �

Corollary 3.7. Let n = 2, λ < 0, F ∈ C(D∞), suppF ∩ S∞ =∅, F �≡ 0, and F ≥ 0. If 0 <
p < 2, then there exists the number T0 = T0(F) > 0 such that for T ≥ T0 problem (2.1)-(2.2)
fails to have the classical solution u∈ C2(DT) in the domain DT .

Indeed, since F �≡ 0 and F ≥ 0, there exists the point P0(x0, t0) ∈ D∞ such that F(x0,
t0) > 0. Without restriction of generality, we can assume that the point P0 lies on the axis
t, that is, x0 = 0, since, otherwise, this can be achieved by the Lorentz transformation for
which (2.1) is invariant and which leaves the characteristic cone S∞ : t = |x| unchanged
[5, page 744]. Since F(0, t0) > 0 and F ∈ C(D∞), there exist the numbers t0 > δ, ε0 > 0, and
σ > 0 such that F(x, t)≥ σ for |x| < ε0, |t− t0| < ε0. Take T > 2(t0 + ε0). Then for |x| < ε0

it is evident that |x/T| < 1/2, and if we introduce the notation m0 = inf |η|<1/2ϕ1(η), then
if ϕ1(x) > 0 in the unit circle Ω1 : |x| < 1, we find that m0 > 0. Hence by virtue of (3.48),
we have

β(T)= 1
T2

∫ (1/2)T

0
dt
∫
ΩT

F(x, t)ϕ1

(
x

T

)
dx

≥ 1
T2

∫ t0+ε

t0−ε
dt
∫
|x|<ε0

F(x, t)ϕ1

(
x

T

)
dx

≥ 1
T2

∫ t0+ε

t0−ε
dt
∫
|x|<ε0

σm0dx = 2πε3
0σm0

T2

(3.49)

and, consequently,

T(p+2)/p
∫ T

0
dt
∫
Ω1

F(2Tξ, t)ϕ1(ξ)dξ = T(p+2)/pβ(2T)≥ 1
2
πε3

0σm0T
(2−p)/p. (3.50)

From the last inequality for 0 < p < 2 we immediately obtain (3.25) and, according to
Theorem 3.6, problem (2.1)-(2.2) fails to have the classical solution u ∈ C2(DT) in the
domain DT for T ≥ T0.
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Corollary 3.8. Let n= 2, λ < 0, F ∈ C(D∞), suppF ∩ S∞ =∅, and F ≥ 0. Suppose next
that F(x, t) ≥ γ(t) ≥ 0 for |x| < ε(t) < t, t > δ, and supt>δ(ε(t)/t) = ε0 < 1, where γ(t) and
ε(t) are the given continuous functions with γ(t)≥ 0 and ε(t) > 0. If the condition

limT→+∞T(2−p)/p
∫ T
δ
ε2(t)γ(t)dt = +∞ (3.51)

is fulfilled, then there exists the number T0 = T0(F) > 0 such that for T ≥ T0 problem (2.1)-
(2.2) fails to have the classical solution u∈ C2(DT) in the domain DT .

Indeed, for |x| < ε(t), t ≤ (1/2)T , we have |x/T| < ε(t)/T = (ε(t)/t)(t/T) ≤ (1/2)ε0.
Since

∫
|η|<(1/2)ε0

ϕ1(η)=m0 > 0, by virtue of (3.48) we have

β(T)= 1
T2

∫ (1/2)T

0
dt
∫
ΩT

F(x, t)ϕ1

(
x

T

)
dx

≥ 1
T2

∫ (1/2)T

δ
dt
∫
|x|<ε(t)

γ(t)ϕ1

(
x

T

)
dx

≥ m0

T2

∫ (1/2)T

δ
dt
∫
|x|<ε(t)

γ(t)dx = πm0

T2

∫ (1/2)T

δ
ε2(t)γ(t)dt.

(3.52)

Therefore with regard to (3.48),

T(p+2)/p
∫ T

0
dt
∫
Ω1

F(2Tξ, t)ϕ1(ξ)dξ = T(p+2)/pβ(2T)≥ πm0

4
T(2−p)/p

∫ T
δ
ε2(t)γ(t)dt,

(3.53)

whence by (3.51) we obtain (3.25) and hence the validity of Corollary 3.8.

Remark 3.9. Inequality (3.46) allows us to estimate the time interval after which the so-
lution fails. Indeed, let

χ(T)= sup
0<t<T

α′
(

1
2
t
)2α′−1∫ (1/2)t

0
ft(τ)dτ,

χ0 = cα′1

(
1 + 2α

′−1)+ 2α
′−1

κ

(
ψ0
)
,

(3.54)

where α′ = (p + 1)/p, and the finite positive number κ(ψ0) is given by (3.47). Since
F ∈ C(D∞), the function χ(T) in the interval 0 < T < +∞ is continuous and nonde-
creasing, while by virtue of (3.25) and (3.48) we have limT→+∞ χ(T) = +∞. Hence since
limT→0 χ(T) = 0, the equation χ(T) = χ0 is solvable. Denote by T = T1 the root of the
above-mentioned equation for which χ(T) > χ(T1) for T1 < T < T1 + ε, where ε is a suf-
ficiently small positive number. Now it is clear that problem (2.1)-(2.2) has no classical
solution in the domain DT for T > T1, since in this case the right-hand side of inequality
(3.46) is negative.
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tions (Berlin), vol. 26, Springer, Berlin, 1997.

[11] J. Hadamard, Lectures on Cauchy’s Problem in Partial Differential Equations, Yale University
Press, New Haven, 1923.

[12] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Izdat. “Mir”, Moscow, 1985.
[13] K. Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen,

Math. Z. 77 (1961), 295–308 (German).
[14] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta

Math. 28 (1979), no. 1-3, 235–268.
[15] , Blow-up for quasilinear wave equations in three space dimensions, Comm. Pure Appl.

Math. 34 (1981), no. 1, 29–51.
[16] F. John and S. Klainerman, Almost global existence to nonlinear wave equations in three space

dimensions, Comm. Pure Appl. Math. 37 (1984), no. 4, 443–455.
[17] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math.

33 (1980), no. 4, 501–505.
[18] M. Keel, H. F. Smith, and C. D. Sogge, Almost global existence for quasilinear wave equations in

three space dimensions, J. Amer. Math. Soc. 17 (2004), no. 1, 109–153.
[19] M. A. Krasnosel’skiı̆, P. P. Zabreı̆ko, E. I. Pustyl’nik, and P. E. Sobolevskiı̆, Integral Operators in

Spaces of Summable Functions, Izdat. “Nauka”, Moscow, 1966.
[20] A. Kufner and S. Fuchik, Nonlinear Differential Equations, Izdat. “Nauka”, Moscow, 1988.
[21] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Izdat. “Nauka”,

Moscow, 1973.
[22] I. Lasiecka and J. Ong, Global solvability and uniform decays of solutions to quasilinear equa-

tion with nonlinear boundary dissipation, Comm. Partial Differential Equations 24 (1999),
no. 11-12, 2069–2107.

[23] H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the
form Putt =−Au+ �(u) , Trans. Amer. Math. Soc. 192 (1974), 1–21.
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