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We study the uniqueness of positive solutions of the boundary value problem u′′ + a(t)u′

+ f (u)= 0, t ∈ (0,b), B1(u(0))−u′(0)= 0, B2(u(b)) +u′(b)= 0, where 0 < b <∞, B1 and
B2 ∈ C1(R), a∈ C[0,∞) with a≤ 0 on [0,∞) and f ∈ C[0,∞)∩C1(0,∞) satisfy suitable
conditions. The proof of our main result is based upon the shooting method and the
Sturm comparison theorem.

1. Introduction

The existence of positive solutions of second order ordinary differential equations (ODEs)
with linear boundary conditions has been extensively studied in the literature, see Coff-
man [1], Henderson and Wang [7], Lan and Webb [8] and the references therein. Also the
existence of positive solutions of second order ODEs with nonlinear boundary conditions
has been studied by several authors, see Dunninger and Wang [2], Wang [11] and Wang
and Jiang [12] for some references along this line. However for the uniqueness problem of
second order ODEs, even in the linear boundary conditions case, very little was known,
see Ni and Nussbaum [9], Fu and Lin [6] and Peletier and Serrin [10]. To the best of our
knowledge, no uniqueness results of positive solutions were established for second order
ODEs subject to nonlinear boundary conditions. In this paper, we attempt to prove some
uniqueness results in this direction.

More precisely, we consider the uniqueness of positive solutions of the boundary value
problem

u′′ + a(t)u′ + f (u)= 0, t ∈ (0,b) (1.1)

B1
(
u(0)

)−u′(0)= 0, B2
(
u(b)

)
+u′(b)= 0, (1.2)

where 0 < b <∞. We make the following assumptions:
(C1) f ∈ C[0,∞)∩C1(0,∞) with f (0)= 0,

f (u) > 0, u f ′(u) < f (u), for u > 0; (1.3)
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(C2) a∈ C[0,∞) with a(t)≤ 0 for t ≥ 0;
(C3) Bi ∈ C1[0,∞) satisfies Bi(0) = 0, Bi(x) > 0 for x > 0, B′i (x) is nondecreasing on

(0,∞) (i= 1,2).

Remark 1.1. Condition (C3) implies that B′i (x)≥ 0 for x ≥ 0 (i= 1,2).
In fact, we have from Bi(0)= 0 and Bi(x) > 0 for x > 0 that

B′i (0)≥ 0. (1.4)

This together with the assumption B′i (x) is nondecreasing on (0,∞) implies that B′i (x)≥ 0
for x ≥ 0.

The main result of this paper is the following.

Theorem 1.2. Let (C1)–(C3) hold. Then problem (1.1), (1.2) has at most one positive so-
lution.

Here we say u(t) is a positive solution of (1.1), (1.2), if that u(t) > 0 on [0,b] and satisfies
the differential equation (1.1) as well as the boundary conditions (1.2).

Remark 1.3. As an application of Theorem 1.2, we consider the nonlinear problem

u′′ + a(t)u′ +up = 0, t ∈ (0,b),
(
u(0)

)k −u′(0)= 0,
(
u(b)

)l
+u′(b)= 0,

(1.5)

where p ∈ (0,1), k, l ∈ (1,∞) are given, a ∈ C[0,∞) with a ≤ 0 on [0,∞). Clearly all of
the conditions of Theorem 1.2 are satisfied. Therefore by Theorem 1.2, (1.5) has at most
a positive for any b ∈ (0,∞).

The proof of the main result is motivated by the work of Erbe and Tang [3, 4, 5] and is
based on the shooting method and the Sturm comparison theorem. The rest of the paper
is organized as follows. In Section 2, we state and prove some preliminary lemmas. The
proof of Theorem 1.2 will be given in Section 3.

2. The preliminary results

To apply the shooting method, we need some properties of the solutions of the initial
value problem

u′′ + ā(t)u′ + f̄ (u)= 0, (2.1)

u(0)= δ, u′(0)= λ. (2.2)

Lemma 2.1. Let ā∈ C[0,∞), f̄ ∈ C[0,∞)∩C1(0,∞) with f̄ (0)= 0 and f̄ (s) > 0 for s > 0.
Let δ ∈ (0,∞) and λ∈R be two given constants. Then (2.1), (2.2) has a unique solution u
satisfying either

(I) u(t) > 0 for t ∈ [0,∞); or
(II) there exists ρ∈ (0,∞) such that

u(t) > 0 on t ∈ [0,ρ), u(ρ)= 0, u′(ρ) < 0. (2.3)
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Proof. For any r ∈ (0,∞), let

Ωr := {(t,u, p) | t ∈ [0,r], u > 0
}
. (2.4)

Then the function

F(t,u, p) := ā(t)p+ f̄ (u) (2.5)

satisfies locally Lipschitz condition in Ωr , and consequently (2.1), (2.2) has a unique so-
lution u(t) such that one of the following cases must occur

(i) u > 0 on [0,∞);
(ii) there exists ρ ∈ (0,∞) such that u > 0 on [0,ρ), and limt→ρ− u(t)= 0;

(iii) there exists T ∈ (0,∞) such that u > 0 on [0,T) and limsupt→T− u(t)=∞.
We claim that (iii) can not occur.
Assume on the contrary that (iii) occurs, then

limsup
t→T−

u′(t)=∞. (2.6)

On the other hand, we have from (2.1) that

(
u′(t)exp

(∫ t

0
ā(s)ds

))′
+ exp

(∫ t

0
ā(s)ds

)
f̄ (u)= 0, t ∈ [0,T) (2.7)

which together with the condition f̄ (s) > 0 for s > 0 implies that

u′(t)exp
(∫ t

0
ā(s)ds

)
is strictly decreasing on [0,T). (2.8)

However this contradicts the fact (2.6).
Therefore either (i) or (ii) must occur.
Suppose on the contrary that (ii) occurs and u′(ρ)= 0. Using the similar argument of

proving (2.8), we conclude that u′(t)exp(
∫ t

0 ā(s)ds) is strictly decreasing on [0,ρ). Thus
u′(t)exp(

∫ t
0 ā(s)ds) > 0 on [0,ρ), and accordingly u′(t) > 0 on [0,ρ). However this contra-

dicts the fact δ = u(0) > u(ρ) = 0. Therefore u′(ρ) < 0 if (ii) occurs. This completes the
proof. �

In order to prove Theorem 1.2, we introduce an initial value problem

u′′ + a(t)u′ + f (u)= 0, (2.9)

u(0)= α > 0, u′(0)= B1(α). (2.10)

For any α > 0, we know from Lemma 2.1 that (2.9), (2.10) has a unique solution u such
that one of the cases occurs:

(i) u > 0 in [0,∞);
(ii) there exists a unique ρ = ρ(α)∈ (0,∞) such that u(t) > 0 on [0, ρ), u(ρ)= 0 and

u′(ρ) < 0.
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Let

Tα =


∞, if (i) occurs

ρ(α), if (ii) occurs.
(2.11)

From α > 0, we have that u(0,α)= α > 0 and u′(0,α)= B1(α) > 0, and consequently

B2
(
u(0,α)

)
+u′(0,α)= B2(α) +B1(α) > 0. (2.12)

Therefore, there exists ε ∈ (0,Tα) such that

B2
(
u(t,α)

)
+u′(t,α) > 0, t ∈ [0,ε). (2.13)

Denote

B(t,α) := B2
(
u(t,α)

)
+u′(t,α). (2.14)

When B(t,α) vanishes at some t0 ∈ (0,Tα), we define b(α) to be the first zero of B(t,α) in
(0,Tα). More precisely, b(α) is a function of α which has the properties

B
(
b(α),α

)= 0, B(t,α) > 0, t ∈ [0, b(α)
)
. (2.15)

If B(t,α) is positive in [0,Tα), then we define b(α)= Tα. Let

N := {α | α > 0, b(α) < Tα
}
. (2.16)

It is obvious that (1.1), (1.2) has no positive solution if N is an empty set. (We recall that
u is a positive solution means u(t) > 0 in [0,b]. So in the case B(Tα,α)= 0, u(t,α) is not a
positive solution of (1.1), (1.2) since u(Tα,α)= 0). Hence we suppose N �= ∅.

Remark 2.2. It is worth remarking here that if (ii) occurs, and accordingly u(ρ(α),α)= 0,
then b(α)∈ (0,ρ(α)),

B
(
b(α),α

)= 0, B(t,α) > 0 on
[
0,b(α)

)
. (2.17)

In fact, we have from Lemma 2.1 that

B
(
ρ(α),α

)= B2
(
u(ρ,α)

)
+u′

(
ρ(α),α

)
< 0, (2.18)

which together with the fact B(0,α) > 0 yields the existence of zero of B(t,α) in (0,ρ(α)).

Lemma 2.3. Let (C1)–(C3) hold and let α∈N . Let u(t,α) be the unique solution of (2.9),
(2.10) on [0,Tα). Then

u(t,α) > 0, t ∈ [0,b(α)
]
,

u′
(
b(α),α

)
< 0.

(2.19)

Proof. By Remark 2.2, b(α)∈ (0,ρ(α)). Applying Lemma 2.1, we get that

u(t,α) > 0, t ∈ [0,b(α)
]
. (2.20)
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The second inequality in (2.19) can be easily deduced from (2.20) and (C3) and the fact

B
(
b(α),α

)= B2
(
u
(
b(α),α

))
+u′

(
b(α),α

)= 0. (2.21)

�

Lemma 2.4. Let (C1)–(C3) hold. Let u(t,α) be the unique solution of (2.9), (2.10)
on [0,Tα). If η ∈ (0,Tα) is such that

B(η,α)= 0, (2.22)

then

B(t,α) > 0, t ∈ [0,η). (2.23)

Proof. From (2.9), we conclude that

(
u′ exp

(∫ t

0
a(s)ds

))′
+ exp

(∫ t

0
a(s)ds

)
f (u)= 0. (2.24)

Since u(t,α) > 0 for all t ∈ [0,η], we have

(
u′(t,α)exp

(∫ t

0
a(s)ds

))′
= −exp

(∫ t

0
a(s)ds

)
f
(
u(t,α)

)
< 0, ∀t ∈ [0,η]. (2.25)

Suppose on the contrary that there exists τ2 ∈ [0,η) such that

B
(
τ2,α

)= B2
(
u
(
τ2,α

))
+u′

(
τ2,α

)= 0. (2.26)

Then we have from condition (C3) and the fact u(τ2,α) > 0 that

u′
(
τ2,α

)=−B2
(
u
(
τ2,α

))
< 0 (2.27)

and accordingly

u′
(
τ2,α

)
exp

(∫ τ2

0
a(s)ds

)
< 0. (2.28)

This together with (2.25) implies that

u′(t,α)exp
(∫ t

0
a(s)ds

)
< 0, t ∈ [τ2,η

]
, (2.29)

and consequently

u′(t,α) < 0, t ∈ [τ2,η
]
. (2.30)

This implies

u
(
τ2,α

)
> u(η,α). (2.31)
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By Remark 1.1 and (2.31), we get

B2
(
u
(
τ2,α

))≥ B2
(
u(η,α)

)
. (2.32)

From (2.30) and (C1)–(C2) and the fact u′′(t,α) = −a(t)u′(t,α)− f (u(t,α)), it follows
that

u′′(t,α) < 0, t ∈ [τ2,η
]

(2.33)

and consequently

u′
(
τ2,α

)
> u′(η,α), (2.34)

which together with (2.32) implies that

B
(
τ2,α

)= B2
(
u
(
τ2,α

))
+u′

(
τ2,α

)
> B2

(
u(η,α)

)
+u′(η,α)= 0. (2.35)

However this contradicts (2.26). �

Remark 2.5. From Lemmas 2.3 and 2.4, we have that if η ∈ (0,Tα) satisfies

B(η,α)= 0. (2.36)

Then

η = b(α). (2.37)

In other words, if α∈N , then b(α) is the unique zero of B(t,α)= 0 in [0,ρ(α)). Therefore
to prove that (1.1), (1.2) has at most one positive solution, it is sufficient to show that for
any l > 0, there exists at most one α∈N such that b(α)= l.

Now we denote the variation of u(t,α) by φ(t,α)= ∂u(t,α)/∂α. Then, φ(t,α) satisfies

φ′′ + a(t)φ′ + f ′(u)φ= 0, (2.38)

φ(0,α)= 1, φ′(0,α)= B′1(α). (2.39)

Lemma 2.6. Suppose that

B′2
(
u
(
b(α),α

))
φ
(
b(α),α

)
+φ′

(
b(α),α

) �= 0, α∈N. (2.40)

Then one of the following cases must occur
(i) N is an open interval;

(ii) N = (0, j1)∪ ( j2,∞) with 0 < j1 < j2 < +∞. Moreover, b′(α) > 0 for all (0, j1);
b′(α) < 0 for all ( j2,∞).

Proof. We firstly show that b(α)∈ C1(N) and b′(α) �= 0.
From Lemma 2.3, (C1)–(C2), we conclude that

u′′
(
b(α),α

)=−a(b(α)
)
u′
(
b(α),α

)− f
(
u
(
b(α),α

))
< 0. (2.41)
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This together with

B
(
b(α),α

)= 0 (2.42)

and (C3) and (2.19) implies that

∂

∂t
B(t,α)

∣∣∣
t=b(α)

= B′2
(
u
(
b(α),α

))
u′
(
b(α),α

)
+u′′

(
b(α),α

)
< 0. (2.43)

So by Implicit Function theorem, b(α) is well-defined as a function of α in N and b(α)∈
C1(N). Furthermore, it follows from (2.43) that N is an open set.

Differentiating both sides of (2.42) with respect to α, we obtain

B′2
(
u
(
b(α),α

))[
u′
(
b(α),α)b′(α) +φ

(
b(α),α

)]
+u′′

(
b(α),α

)
b′(α) +φ′

(
b(α),α

)= 0,
(2.44)

that is,
[
B′2
(
u
(
b(α),α

))
u′
(
b(α),α

)
+u′′

(
b(α),α

)]
b′(α)

+B′2
(
u
(
b(α),α

))
φ
(
b(α),α

)
+φ′

(
b(α),α

)= 0.
(2.45)

which together with (2.40) implies that

b′(α) �= 0. (2.46)

Next we show that if ᾱ ∈ (0,∞) \N is such that there is a sequence {αn} ⊂ N and
αn→ ᾱ as n→∞, then b(αn)→ +∞.

Suppose on the contrary that b(αn) � +∞, then there exists a subsequence of {b(αn)}
which converges to a limit number t∗. Without loss of generality, we may suppose that
b(αn)→ t∗ as n→∞, and consequently

B
(
t∗, ᾱ

)= lim
n→∞B

(
b
(
αn
)
,αn
)= 0. (2.47)

However this contradicts ᾱ /∈N .
Finally we show that if N is not an open interval, then (ii) must occur.
Suppose J1 = ( j0, j1) and J2 = ( j2, j3) are two distinct components of N with 0 < j1 <

j2 <∞. Then

lim
α→ j−1

b(α)= lim
α→ j+2

b(α)= +∞. (2.48)

Since b(α) is strictly monotonic in each component of N , we have that b′(α) > 0 in J1, and
b′(α) < 0 in J2. Meanwhile

lim
α→ j+0

b(α) < +∞, lim
α→ j−3

b(α) < +∞. (2.49)

It follows that j0 = 0 and j3 = +∞, and accordingly N = (0, j1)∪ ( j2,∞) with b′(α) > 0 in
(0, j1), and b′(α) < 0 in ( j2,∞). �
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3. Proof of Theorem 1.2

By Remark 2.5, we only need to show that for any l > 0, there exists at most one α ∈ N
such that b(α)= l.

Recall that for any given α∈N , (2.43), (2.45) hold. If we can show that

B′2
(
u
(
b(α),α

))
φ
(
b(α),α

)
+φ′

(
b(α),α

)
> 0, α∈N (3.1)

then it follows from (2.43) and (2.45) that

b′(α) > 0, α∈N. (3.2)

Thus by Lemma 2.6, N must be an open interval. Moreover we know from (3.2) that b(α)
is a strictly increasing function on N . Thus, for any given l > 0, there is at most one α∈N
such that b(α)= l, and consequently, (1.1), (1.2) has at most one positive solution.

Proof of Theorem 1.2. Now we prove (3.1).
First we claim that

φ(t,α) > 0, t ∈ [0,b(α)
]
. (3.3)

Suppose on the contrary that φ(t,α) has a zero in (0,b(α)]. We denote the first zero of
φ(t,α) in (0,b(α)] by t3, then 0 < t3 ≤ b(α) and

u′φ−uφ′
∣∣
t=t3 =−u

(
t3,α

)
φ′
(
t3,α

)≥ 0 (3.4)

since φ(t3,α)= 0 and φ(t,α) > 0 on (0, t3) implies φ′(t3,α)≤ 0.
Notice that

φ′′ + a(t)φ′ + f ′(u)φ= 0 (3.5)

so that using (C1) and (1.1) we can compute

[
exp

(∫ t

0
a(s)ds

)
(u′φ−uφ′)

]′
= exp

(∫ t

0
a(s)ds

)[
f ′(u)u− f (u)

]
φ < 0 (3.6)

for t ∈ (0, t3). Next we compute from (C3) and (2.39) and (2.10)

exp
(∫ t

0
a(s)ds

)
(u′φ−uφ′)

∣∣
t=0 = B1(α)−αB′1(α)= (B′1(ξ1(α)

)−B′1(α)
)
α≤ 0, (3.7)

where ξ1(α)∈ (0,α). This means that

exp
(∫ t

0
a(s)ds

)
(u′φ−uφ′)

∣∣
t=t3 < 0 (3.8)

and accordingly

u′φ−uφ′
∣∣
t=t3 < 0. (3.9)

However this contradicts (3.4). Therefore (3.3) is true.
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Using (3.5), (1.1), (C1) and (3.3), we can conclude

[
exp

(∫ t

0
a(s)ds

)
(u′φ−uφ′)

]′
= exp

(∫ t

0
a(s)ds

)[
f ′(u)u− f (u)

]
φ < 0, t ∈ (0,b(α)

]
(3.10)

which together with (3.7) implies that

(u′φ−uφ′)
∣∣
t=b(α) < 0. (3.11)

Since

0= B
(
b(α),α

)
= B2

(
u
(
b(α),α

))
+u′

(
b(α),α

)
= B′2

(
ξ2(α)

)
u
(
b(α),α

)
+u′

(
b(α),α

) (3.12)

for some ξ2(α)∈ (0,u(b(α),α)), we have that

u′
(
b(α),α

)=−B′2(ξ2(α)
)
u
(
b(α),α

)
. (3.13)

This together with (3.11) implies

−u
(
b(α),α

)[
B′2
(
ξ2(α)

)
φ
(
b(α),α

)
+φ′

(
b(α),α

)]
=−B′2

(
ξ2(α)

)
u
(
b(α),α

)
φ
(
b(α),α

)−u
(
b(α),α

)
φ′
(
b(α),α

)
= u′

(
b(α),α

)
φ
(
b(α),α

)−u
(
b(α),α

)
φ′
(
b(α),α

)
= u′φ−uφ′

∣∣
t=b(α) < 0

(3.14)

and consequently

B′2
(
ξ2(α)

)
φ
(
b(α),α

)
+φ′

(
b(α),α

)
> 0. (3.15)

Now we have from (C3) and the facts ξ2(α)≤ u(b(α),α) and φ(b(α),α) > 0 that

B′2
(
u
(
b(α),α

))
φ
(
b(α),α

)
+φ′

(
b(α),α

)≥ B′2
(
ξ2(α)

)
φ
(
b(α),α

)
+φ′

(
b(α),α

)
> 0. (3.16)

Therefore (3.1) holds. �
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