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We consider the problem u′(t)=H(u)(t) +Q(u)(t), u(a)= h(u), where H ,Q : C([a,b];R)

→ L([a,b];R) are, in general, nonlinear continuous operators,H ∈�
αβ
ab (g0,g1, p0, p1), and

h : C([a,b];R)→ R is a continuous functional. Efficient conditions sufficient for the solv-
ability and unique solvability of the problem considered are established.

1. Notation

The following notation is used throughout the paper:
N is the set of all natural numbers.
R is the set of all real numbers, R+ = [0,+∞[,[x]+ = (1/2)(|x|+ x), [x]− = (1/2)(|x|−

x).
C([a,b];R) is the Banach space of continuous functions u : [a,b]→ R with the norm

‖u‖C =max{|u(t)| : t ∈ [a,b]}.
C̃([a,b];R) is the set of absolutely continuous functions u : [a,b]→ R.
L([a,b];R) is the Banach space of Lebesgue integrable functions p : [a,b]→ R with the

norm ‖p‖L =
∫ b
a |p(s)|ds.

L([a,b];R+)= {p ∈ L([a,b];R) : p(t)≥ 0 for t ∈ [a,b]}.
�ab is the set of measurable functions τ : [a,b]→ [a,b].
�ab is the set of continuous operators F : C([a,b];R) → L([a,b];R) satisfying the

Carathèodory condition, that is, for each r > 0 there exists qr ∈ L([a,b];R+) such that

∣∣F(v)(t)
∣∣≤ qr(t) for t ∈ [a,b], v ∈ C

(
[a,b];R

)
, ‖v‖C ≤ r. (1.1)

K([a,b]×A;B), where A⊆ R2, B ⊆ R, is the set of functions f : [a,b]×A→ B satisfy-
ing the Carathèodory conditions, that is, f (·,x) : [a,b]→ B is a measurable function for
all x ∈ A, f (t,·) : A→ B is a continuous function for almost all t ∈ [a,b], and for each
r > 0 there exists qr ∈ L([a,b];R+) such that

∣∣ f (t,x)
∣∣≤ qr(t) for t ∈ [a,b], x ∈A, ‖x‖ ≤ r. (1.2)
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2. Statement of the problem

We consider the equation

u′(t)=H(u)(t) +Q(u)(t), (2.1)

where H ∈�
αβ
ab (g0,g1, p0, p1) (see Definition 2.1) and Q ∈�ab. By a solution of (2.1) we

understand a function u∈ C̃([a,b];R) satisfying the equality (2.1) almost everywhere in
[a,b].

Definition 2.1. We will say that an operator H belongs to the set �
αβ
ab (g0,g1, p0, p1), where

g0,g1, p0, p1 ∈ L([a,b];R+) and α,β ∈ [0,1[, if H ∈�ab is such that, on the set C([a,b];R),
the inequalities

−mg0(t)−µ(m,α)M1−αg1(t)≤H(v)(t)≤Mp0(t) +µ(M,β)m1−β p1(t) for t ∈ [a,b]
(2.2)

are fulfilled, where

M =max
{[
v(t)

]
+ : t ∈ [a,b]

}
, m=max

{[
v(t)

]
− : t ∈ [a,b]

}
, (2.3)

and the function µ : R+× [0,1[→ R+ is defined by

µ(x, y)=
1 if x = 0, y = 0,

xy otherwise.
(2.4)

The class �
αβ
ab (g0,g1, p0, p1) contains all the positively homogeneous operators H and,

in particular, those defined by the formula

H(u)(t)= p0(t)
[
u
(
τ1(t)

)]
+ + p1(t)

[
u
(
τ2(t)

)]β
+

[
u
(
τ3(t)

)]1−β
−

− g0(t)
[
u
(
ν1(t)

)]
− + g1(t)

[
u
(
ν2(t)

)]α
−
[
u
(
ν3(t)

)]1−α
+ ,

(2.5)

where τi,νi ∈�ab (i= 1,2,3), α 	= 0, β 	= 0.
The class of equations (2.1) contains various equations with “maxima” studied, for

example, in [3, 4, 33, 35, 36, 38, 41]. For example, the equations

u′(t)= p(t)max
{
u(s) : τ1(t)≤ s≤ τ2(t)

}
+ q0(t), (2.6)

u′(t)= p(t)max
{
u(s) : τ1(t)≤ s≤ τ2(t)

}
+ f

(
t,u(t),max

{
u(s) : ν1(t)≤ s≤ ν2(t)

})
,

(2.7)

where p,q0 ∈ L([a,b];R), τi,νi ∈�ab (i = 1,2), τ1(t) ≤ τ2(t), ν1(t) ≤ ν2(t) for t ∈ [a,b],
and f ∈ K([a,b]×R2;R), can be rewritten in form (2.1) with H ∈�00

ab([p]+,[p]−, [p]+,
[p]−).

Another type of (2.1) is an equation where H is a linear operator. In that case the
results presented coincide with those obtained in [5, 6]. Other conditions guarantee-
ing the solvability of (2.1), (2.8) with a linear operator H can be found, for example,
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in [10, 11, 13, 15]. Conditions for the solvability and unique solvability of other types of
boundary value problems for (2.1) with a linear operator H are established, for example,
in [8, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 34, 39].

We will study the problem on the existence and uniqueness of a solution of (2.1) sat-
isfying the condition

u(a)= h(u), (2.8)

where h : C([a,b];R)→ R is a continuous operator such that for each r > 0 there exists
Mr ∈ R+ such that

∣∣h(v)
∣∣≤Mr for v ∈ C

(
[a,b];R

)
, ‖v‖C ≤ r. (2.9)

There are many interesting results concerning the solvability of general boundary value
problems for functional differential equations (see, e.g., [1, 2, 7, 9, 24, 25, 28, 29, 30, 31,
32, 37, 40, 42] and the references therein). In spite of this, the general theory of bound-
ary value problems for functional differential equations is not still complete. Here, we try
to fill this gap in a certain way. More precisely, in Section 3, we establish unimprovable
efficient conditions sufficient for the solvability and unique solvability of problem (2.1),
(2.8). In Section 4, some auxiliary propositions are proved. Sections 5 and 6 are devoted
to the proof of the main results and the examples demonstrating their optimality, respec-
tively.

3. Main results

Throughout the paper, q ∈ K([a,b]×R+;R+) is a function nondecreasing in the second
argument and such that

lim
x→+∞

1
x

∫ b

a
q(s,x)ds= 0. (3.1)

Theorem 3.1. Let there exist c ∈ R+ such that, on the set C([a,b];R), the inequality

h(v)sgnv(a)≤ c (3.2)

is fulfilled and, on the set {v ∈ C([a,b];R) : |v(a)| ≤ c}, the inequality

∣∣Q(v)(t)
∣∣≤ q

(
t,‖v‖C

)
for t ∈ [a,b] (3.3)

is satisfied. If, moreover,

∫ b

a
g0(s)ds < 1,

∫ b

a
p0(s)ds < 1, (3.4)
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and, for t ∈ [a,b], the inequalities

( ∫ t
a g1(s)ds

1− ∫ ta g0(s)ds

)(1−β)/(1−α)∫ b

t
p1(s)ds−

( ∫ t
a g1(s)ds

1− ∫ ta g0(s)ds

)1/(1−α)

< 1−
∫ b

t
p0(s)ds, (3.5)

( ∫ t
a p1(s)ds

1− ∫ ta p0(s)ds

)(1−α)/(1−β)∫ b

t
g1(s)ds−

( ∫ t
a p1(s)ds

1− ∫ ta p0(s)ds

)1/(1−β)

< 1−
∫ b

t
g0(s)ds (3.6)

hold, then problem (2.1), (2.8) has at least one solution.

Theorem 3.1 is unimprovable in the sense that neither of the strict inequalities in
(3.4)–(3.6) can be replaced by the nonstrict one (see Remark 6.1).

Theorem 3.2. Let there exist c ∈ R+ such that, on the set C([a,b];R), inequality (3.2) is
fulfilled and, on the set {v ∈ C([a,b];R) : |v(a)| ≤ c}, the inequality

Q(v)(t)sgnv(t)≤ q
(
t,‖v‖C

)
for t ∈ [a,b] (3.7)

is satisfied. If, moreover, (3.4) holds and

( ∫ t
a g1(s)ds

1− ∫ ta g0(s)ds

)(1−β)/(1−α)∫ b

t
p1(s)ds < 1−

∫ b

t
p0(s)ds for t ∈ [a,b], (3.8)

( ∫ t
a p1(s)ds

1− ∫ ta p0(s)ds

)(1−α)/(1−β)∫ b

t
g1(s)ds < 1−

∫ b

t
g0(s)ds for t ∈ [a,b], (3.9)

then the problem (2.1), (2.8) has at least one solution.

Theorem 3.2 is unimprovable in the sense that neither of the strict inequalities in (3.4),
(3.8), and (3.9) can be replaced by the nonstrict one (see Remark 6.4).

Theorem 3.3. Assume that the operators Hz, z ∈ {v ∈ C([a,b];R) : v(a) = h(v)}, defined
by the formula

Hz(v)(t)
def= H(v+ z)(t)−H(z)(t) for t ∈ [a,b] (3.10)

belong to the set �
αβ
ab (g0,g1, p0, p1). Let, moreover, for all v and w from the set C([a,b];R),

the inequality

[
h(v)−h(w)

]
sgn

(
v(a)−w(a)

)≤ 0 (3.11)

hold, and let

Q(v)≡ q∗ for v ∈ C
(
[a,b];R

)
,

∣∣v(a)
∣∣≤ ∣∣h(0)

∣∣, (3.12)

where q∗ ∈ L([a,b];R). If, moreover, condition (3.4) holds and for t ∈ [a,b] the inequalities
(3.5) and (3.6) are fulfilled, then the problem (2.1), (2.8) has a unique solution.
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Theorem 3.4. Let the operators Hz, z ∈ {v ∈ C([a,b];R) : v(a)= h(v)}, defined by (3.10)

belong to the set �
αβ
ab (g0,g1, p0, p1). Assume also that, on the set C([a,b];R) the inequality

(3.11) is fulfilled, and, on the set {v ∈ C([a,b];R) : |v(a)| ≤ |h(0)|}, the inequality

[
Q(v)(t)−Q(w)(t)

]
sgn

(
v(t)−w(t)

)≤ 0 for t ∈ [a,b] (3.13)

holds. If, moreover, inequalities (3.4), (3.8), and (3.9) are fulfilled, then problem (2.1), (2.8)
has a unique solution.

Remark 3.5. The inclusions Hz ∈�
αβ
ab (g0,g1, p0, p1), where Hz are defined by (3.10), are

fulfilled, for example, if H is a strongly bounded linear operator. In this case, the opti-
mality of obtained results was proved in [21] (see Remark 4.2 on page 97 and Remark
12.2 on page 243 therein). More precisely, Theorems 3.3 and 3.4 are unimprovable in the
sense that neither of the strict inequalities (3.4)–(3.6), (3.8), and (3.9) can be replaced by
the nonstrict one.

The following corollary gives conditions sufficient for the solvability of problem (2.7),
(2.8).

Corollary 3.6. Let there exist c ∈ R+ such that on the set C([a,b];R) the inequality (3.2)
is fulfilled and

∣∣ f (t,x, y)
∣∣≤ q

(
t,|x|) for t ∈ [a,b], x, y ∈ R. (3.14)

If, moreover,

∫ b

a

[
p(s)

]
+ds < 1, (3.15)

∫ b

a

[
p(s)

]
−ds < 1 + 2

√
1−

∫ b

a

[
p(s)]+ds, (3.16)

then problem (2.7), (2.8) has at least one solution.

Corollary 3.7. Let inequality (3.11) be fulfilled on the set C([a,b];R). If, moreover, (3.15)
and (3.16) hold, then problem (2.6), (2.8) has a unique solution.

Remark 3.8. Corollaries 3.6 and 3.7 are unimprovable in the sense that neither of the strict
inequalities (3.15) and (3.16) can be replaced by the nonstrict one. Indeed, if τ1 ≡ τ2 and
ν1 ≡ ν2, then (2.6) and (2.7) are differential equations with deviating arguments. In that
case, the optimality of obtained results was established in [21] (see Remark 4.2 on page
97 and Proposition 10.1 on page 190 therein).

Corollary 3.9. Let there exist c ∈ R+ such that on the set C([a,b];R) the inequality (3.2)
is fulfilled and

f (t,x, y)sgnx ≤ q
(
t,|x|) for t ∈ [a,b], x, y ∈ R. (3.17)
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If, moreover, (3.15) and

∫ b

a

[
p(s)

]
−ds < 2

√
1−

∫ b

a

[
p(s)

]
+ds (3.18)

hold, then the problem (2.7), (2.8) has at least one solution.

The following corollary gives conditions sufficient for the unique solvability of prob-
lem (2.7), (2.8).

Corollary 3.10. Let inequality (3.11) be fulfilled on the set C([a,b];R) and, in addition,[
f
(
t,x1, y1

)− f
(
t,x2, y2

)]
sgn

(
x1− x2

)≤ 0 for t ∈ [a,b], x1,x2, y1, y2 ∈ R. (3.19)

If, moreover, (3.15) and (3.18) hold, then the problem (2.7), (2.8) has a unique solution.

Remark 3.11. Corollaries 3.9 and 3.10 are unimprovable in the sense that neither of the
strict inequalities (3.15) and (3.18) can be replaced by the nonstrict one. Indeed, when
τ1 ≡ τ2 and ν1 ≡ ν2, (2.7) is a differential equation with deviating arguments and, in this
case, the optimality of obtained results is proved in [21] (see Remark 12.2 on page 243
therein).

4. Auxiliary propositions

First we formulate a result from [25] in a suitable for us form.

Lemma 4.1. Let there exist a number ρ > 0 such that, for every δ ∈]0,1[, an arbitrary func-
tion u∈ C̃([a,b];R) satisfying

u′(t)= δ
[
H(u)(t) +Q(u)(t)

]
for t ∈ [a,b], u(a)= δh(u), (4.1)

admits the estimate

‖u‖C ≤ ρ. (4.2)

Then problem (2.1), (2.8) has at least one solution.

Definition 4.2. We will say that an operator H ∈�ab belongs to the set �, if there exists
a number r > 0 such that for any q∗ ∈ L([a,b];R+), c ∈ R+, and δ ∈]0,1], every function
u∈ C̃([a,b];R) satisfying the inequalities |u(a)| ≤ c and∣∣u′(t)− δH(u)(t)

∣∣≤ q∗(t) for t ∈ [a,b] (4.3)

admits the estimate

‖u‖C ≤ r
(
c+

∥∥q∗∥∥L). (4.4)

Lemma 4.3. Let there exist c ∈ R+ such that inequalities (3.2) and (3.3) are fulfilled on the
sets C([a,b];R) and {v ∈ C([a,b];R) : |v(a)| ≤ c}, respectively. If, moreover, H ∈�, then
problem (2.1), (2.8) has at least one solution.
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Proof. Let r be the number appearing in Definition 4.2. According to (3.1), there exists
ρ > 2rc such that

1
x

∫ b

a
q(s,x)ds <

1
2r

for x > ρ. (4.5)

Now assume that a function u ∈ C̃([a,b];R) satisfies (4.1) for some δ ∈]0,1[. Then,
according to (3.2), u satisfies the inequality |u(a)| ≤ c. By (3.3) we obtain that the in-
equality (4.3) is fulfilled with q∗(t) = q(t,‖u‖C) for t ∈ [a,b]. Hence, by the condition
H ∈� and the definition of the number ρ, we get estimate (4.2).

Since ρ depends neither on u nor on δ, it follows from Lemma 4.1 that problem (2.1),
(2.8) has at least one solution. �

Let hi ∈ L([a,b];R+) (i = 1,2,3,4), α,β ∈ [0,1[. For an arbitrary fixed t ∈ [a,b], con-
sider the systems of inequalities

m≤m
∫ t

a
h1(s)ds+µ(m,α)M1−α

∫ t

a
h2(s)ds,

m+M ≤M
∫ b

t
h3(s)ds+µ(M,β)m1−β

∫ b

t
h4(s)ds

(4.6)t

and

M ≤M
∫ t

a
h3(s)ds+µ(M,β)m1−β

∫ t

a
h4(s)ds,

M +m≤m
∫ b

t
h1(s)ds+µ(m,α)M1−α

∫ b

t
h2(s)ds,

(4.7)t

where µ : R+ × [0,1[→ R+ is defined by (2.4). By a solution of system ((4.6)t)t (resp.,
((4.7)t)t), we understand a pair (M,m)∈ R+×R+ satisfying ((4.6)t)t (resp., ((4.7)t)t).

Definition 4.4. Let hi ∈ L([a,b];R+) (i = 1,2,3,4) and α,β ∈ [0,1[. We will say that a 4-
tuple (h1,h2,h3,h4) belongs to the set �ab(α,β), if for every t ∈ [a,b] the systems ((4.6)t)t
and ((4.7)t)t have only the trivial solution.

Lemma 4.5. Let H ∈�
αβ
ab (g0,g1, p0, p1). If(

g0,g1, p0, p1
)∈�ab(α,β), (4.8)

then H ∈�.

Proof. Assume on the contrary that, for every n ∈ N , there exist q∗n ∈ L([a,b];R+), cn ∈
R+, δn ∈]0,1], and un ∈ C̃([a,b];R) such that∣∣un(a)

∣∣≤ cn, (4.9)∣∣u′n(t)− δnH
(
un
)
(t)
∣∣≤ q∗n (t) for t ∈ [a,b], (4.10)∥∥un∥∥C > n
(
cn +

∥∥q∗n ∥∥L). (4.11)



270 On a BVP for nonlinear FDE

Put

vn(t)= un(t)∥∥un∥∥C for t ∈ [a,b], n∈N. (4.12)

Obviously, ∥∥vn∥∥C = 1 for n∈N , (4.13)

v′n(t)= δn∥∥un∥∥C H
(
un
)
(t) + qn(t) for t ∈ [a,b], n∈N , (4.14)

where

qn(t)
def= v′n(t)− δn∥∥un∥∥C H

(
un
)
(t) for t ∈ [a,b], n∈N. (4.15)

By virtue of (4.9) and (4.12), we get∣∣vn(a)
∣∣≤ cn∥∥un∥∥C for n∈N. (4.16)

Note also that, in view of (4.10), (4.12), and (4.15), we have

∥∥qn∥∥L ≤
∥∥q∗n ∥∥L∥∥un∥∥C for n∈N. (4.17)

Furthermore, for n∈N , put

Mn =max
{[
vn(t)

]
+ : t ∈ [a,b]

}
, mn =max

{[
vn(t)

]
− : t ∈ [a,b]

}
. (4.18)

Evidently, Mn ≥ 0, mn ≥ 0 for n∈N , and on account of (4.13), we have

Mn +mn ≥ 1 for n∈N. (4.19)

According to (4.18) and (4.19), for every n∈N , the points sn, tn ∈ [a,b] can be chosen in
the following way:

(i) if Mn = 0, then let tn = a and let sn ∈ [a,b] be such that

vn
(
sn
)=−mn, (4.20)

(ii) if mn = 0, then let sn = a and let tn ∈ [a,b] be such that

vn
(
tn
)=Mn, (4.21)

(iii) if Mn > 0 and mn > 0, then let sn, tn ∈ [a,b] be such that (4.20) and (4.21) are
satisfied.

By virtue of (4.13) and (4.18) we have that the sequences {Mn}+∞
n=1 and {mn}+∞

n=1 are
bounded. Obviously, also the sequences {sn}+∞

n=1 and {tn}+∞
n=1 are bounded, and, more-

over, for every n∈N we have either

a≤ sn ≤ tn ≤ b, (4.22)
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or

a≤ tn ≤ sn ≤ b. (4.23)

Therefore, without loss of generality we can assume that there exist M0, m0 ∈ R+ and s0,
t0 ∈ [a,b] such that

lim
n→+∞Mn =M0, lim

n→+∞mn =m0, lim
n→+∞sn = s0, lim

n→+∞ tn = t0, (4.24)

a≤ sn ≤ tn ≤ b for n∈N , (4.25)

or, instead of (4.25),

a≤ tn ≤ sn ≤ b for n∈N. (4.26)

Furthermore, on account of (4.19), we have

M0 +m0 ≥ 1. (4.27)

Let (4.25) be fulfilled. Then the integration of (4.14) from a to sn and from sn to tn,
respectively, for every n∈N yields

vn
(
sn
)= vn(a) +

δn∥∥un∥∥C
∫ sn

a
H
(
un
)
(ξ)dξ +

∫ sn

a
qn(ξ)dξ,

vn
(
tn
)− vn

(
sn
)= δn∥∥un∥∥C

∫ tn

sn
H
(
un
)
(ξ)dξ +

∫ tn

sn
qn(ξ)dξ.

(4.28)

From (4.28), in view of (4.11), (4.12), (4.16)–(4.18), the assumptions δn ∈]0,1] and H ∈
�

αβ
ab (g0,g1, p0, p1), and the choice of points sn and tn, for every n∈N we get

mn ≤mn

∫ sn

a
g0(ξ)dξ +µ

(
mn,α

)
M1−α

n

∫ sn

a
g1(ξ)dξ +

1
n

,

Mn +mn ≤Mn

∫ b

sn
p0(ξ)dξ +µ

(
Mn,β

)
m

1−β
n

∫ b

sn
p1(ξ)dξ +

1
n
.

(4.29)

Therefore, according to (2.4) and (4.24), from (4.29) as n→ +∞ we obtain

m0 ≤m0

∫ s0

a
g0(ξ)dξ +µ

(
m0,α

)
M1−α

0

∫ s0

a
g1(ξ)dξ,

M0 +m0 ≤M0

∫ b

s0

p0(ξ)dξ +µ
(
M0,β

)
m

1−β
0

∫ b

s0

p1(ξ)dξ.
(4.30)

Consequently, the pair (M0,m0) is a solution of system ((4.6)t)s0 with h1 ≡ g0, h2 ≡ g1,
h3 ≡ p0, h4 ≡ p1, α= α, and β = β. However, inequality (4.27) contradicts inclusion (4.8).

If (4.26) is fulfilled, then it can be shown analogously that (M0,m0) is a solution of
inequalities ((4.7)t)t0 with h1 ≡ g0, h2 ≡ g1, h3 ≡ p0, h4 ≡ p1, α= α, and β = β. Also in this
case the inequality (4.27) contradicts (4.8). �
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Lemma 4.6. Let condition (3.4) be satisfied and let for t ∈ [a,b] the inequalities (3.5) and
(3.6) be fulfilled. Then the inclusion (4.8) holds.

Proof. Assume on the contrary that there exists t0 ∈ [a,b] such that either the system
((4.6)t)t0 or the system ((4.7)t)t0 with h1 ≡ g0, h2 ≡ g1, h3 ≡ p0, h4 ≡ p1, α= α, and β = β
has a nontrivial solution.

First suppose that (M0,m0) is a nontrivial solution of ((4.6)t)t0 . Put

G0(t)=
∫ t

a
g0(s)ds, G1(t)=

∫ t

a
g1(s)ds for t ∈ [a,b],

P0(t)=
∫ b

t
p0(s)ds, P1(t)=

∫ b

t
p1(s)ds for t ∈ [a,b].

(4.31)

Then, according to the assumptions, (M0,m0) satisfies

m0 ≤m0G0
(
t0
)

+µ
(
m0,α

)
M1−α

0 G1
(
t0
)
, (4.32)

m0 +M0 ≤M0P0
(
t0
)

+µ
(
M0,β

)
m

1−β
0 P1

(
t0
)
. (4.33)

If M0 = 0, then m0 > 0, and from (4.32), in view of (3.4) and (4.31), we get a contradiction
m0 < m0. If m0 = 0, then M0 > 0, and from (4.33), in view of (3.4) and (4.31), we get a
contradiction M0 <M0. Therefore assume that

M0 > 0, m0 > 0. (4.34)

In this case, according to (2.4), we have

µ
(
m0,α

)=mα
0 , µ

(
M0,β

)=M
β
0 . (4.35)

Then from (4.32) and (4.33), in view of (3.4), (4.31), (4.34), and (4.35), we obtain

0 <
m0

M0
≤
(

G1
(
t0
)

1−G0
(
t0
))1/(1−α)

, (4.36)

0 < 1−P0
(
t0
)≤ (m0

M0

)1−β
P1
(
t0
)− m0

M0
. (4.37)

If β = 0, then multiplying (4.36) by (4.37) we get

1−P0
(
t0
)≤ ( G1

(
t0
)

1−G0
(
t0
))1/(1−α)(

P1
(
t0
)− 1

)
, (4.38)

which, in view of (4.31), contradicts (3.5) with t = t0.
Suppose that β 	= 0. Since the function x �→ x1−βA− x, defined on [0,+∞[, A ∈ R+,

achieves the maximal value at the point x = (1−β)1/βA1/β, from (4.37) we obtain

1−P0
(
t0
)≤ (1−β)(1−β)/β(P1

(
t0
))(1−β)/β

P1
(
t0
)− (1−β)1/β(P1

(
t0
))1/β

. (4.39)
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The last inequality results in

(
1−β

β

)β(
1−P0

(
t0
))β ≤ (1−β)P1

(
t0
)
. (4.40)

On the other hand, according to (3.4) and (4.31), the inequalities (4.36) and (4.37)
imply 0 < G1(t0)≤G1(b), 0 < P1(t0)≤ P1(a), and

G1(a)
1−G0(a)

= 0,
G1(b)

1−G0(b)
> 0, (1−β)P1(a) > 0, (1−β)P1(b)= 0. (4.41)

Therefore, since the functions G0, G1, and P1 are continuous, there exists t1 ∈]a,b[ such
that (

G1
(
t1
)

1−G0
(
t1
))1/(1−α)

= ((1−β)P1
(
t1
))1/β

. (4.42)

Using the last equality in (3.5) for t = t1, on account of (4.31), it yields

(
(1−β)P1

(
t1
))(1−β)/β

P1
(
t1
)− ((1−β)P1

(
t1
))1/β

< 1−P0
(
t1
)
, (4.43)

whence we get

(1−β)P1
(
t1
)
<
(

1−β

β

)β(
1−P0

(
t1
))β

. (4.44)

Since the functions P0 and P1 are nonincreasing in [a,b], the last inequality implies

(1−β)P1(t) <
(

1−β

β

)β(
1−P0(t)

)β
for t ∈ [t1,b

]
. (4.45)

According to (4.40) and (4.45) we have

t0 < t1. (4.46)

Furthermore, since the functions G0 and G1 are nondecreasing in [a,b] and the function
P1 is nonincreasing in [a,b], the equality (4.42), on account of (4.46), results in

(
G1
(
t0
)

1−G0
(
t0
))1/(1−α)

≤ ((1−β)P1
(
t0
))1/β

. (4.47)

However, since the function x �→ x1−βA− x, defined on [0,+∞[ with A > 0, is nonde-
creasing in [0,((1−β)A)1/β], from (4.36) and (4.37), by virtue of (4.47), we obtain

1−P0
(
t0
)≤ ( G1

(
t0
)

1−G0
(
t0
))(1−β)/(1−α)

P1
(
t0
)−( G1

(
t0
)

1−G0
(
t0
))1/(1−α)

, (4.48)

which, on account of (4.31), contradicts (3.5) with t = t0.
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In analogous way it can be shown that assuming (M0,m0) to be a nontrivial solution
of ((4.7)t)t0 we obtain a contradiction to (3.6) with t = t0. �

Definition 4.7. We will say that an operator H ∈�ab belongs to the set �, if there exists
a number r > 0 such that for any q∗ ∈ L([a,b];R+), c ∈ R+, and δ ∈]0,1], every function
u∈ C̃([a,b];R) satisfying the inequalities |u(a)| ≤ c and

[
u′(t)− δH(u)(t)

]
sgnu(t)≤ q∗(t) for t ∈ [a,b] (4.49)

admits the estimate (4.4).

Lemma 4.8. Let there exist c ∈ R+ such that on the set C([a,b];R) the inequality (3.2) is sat-
isfied and on the set {v ∈ C([a,b];R) : |v(a)| ≤ c} the inequality (3.7) is fulfilled. If, more-
over, H ∈�, then the problem (2.1), (2.8) has at least one solution.

Proof. Let r be the number appearing in Definition 4.7. According to (3.1), there exists
ρ > 2rc such that

1
x

∫ b

a
q(s,x)ds <

1
2r

for x > ρ. (4.50)

Now assume that a function u ∈ C̃([a,b];R) satisfies (4.1) for some δ ∈]0,1[. Then,
according to (3.2), u satisfies the inequality |u(a)| ≤ c. By (3.7) we obtain that the in-
equality (4.49) is fulfilled with q∗(t) = q(t,‖u‖C) for t ∈ [a,b]. Hence, by the condition
H ∈� and the definition of the number ρ we get the estimate (4.2).

Since ρ depends neither on u nor on δ, it follows from Lemma 4.1 that the problem
(2.1), (2.8) has at least one solution. �

Let hi ∈ L([a,b];R+) (i= 1,2,3,4), α,β ∈ [0,1[. For arbitrarily fixed t ∈ [a,b] consider
the systems of inequalities

m≤m
∫ t

a
h1(s)ds+µ(m,α)M1−α

∫ t

a
h2(s)ds,

M ≤M
∫ b

t
h3(s)ds+µ(M,β)m1−β

∫ b

t
h4(s)ds

(4.51)t

and

M ≤M
∫ t

a
h3(s)ds+µ(M,β)m1−β

∫ t

a
h4(s)ds,

m≤m
∫ b

t
h1(s)ds+µ(m,α)M1−α

∫ b

t
h2(s)ds,

(4.52)t

where µ : R+× [0,1[→ R+ is defined by (2.4).
By a solution of the system ((4.51)t)t, respectively, ((4.52)t)t, we will understand a pair

(M,m)∈ R+×R+ satisfying ((4.51)t)t, respectively, ((4.52)t)t.
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Definition 4.9. Let hi ∈ L([a,b];R+) (i = 1,2,3,4) and α,β ∈ [0,1[. We will say that a 4-
tuple (h1,h2,h3,h4) belongs to the set �ab(α,β), if for every t ∈ [a,b] the systems ((4.51)t)t
and ((4.52)t)t have only the trivial solution.

Lemma 4.10. Let H ∈�
αβ
ab (g0,g1, p0, p1). If(

g0,g1, p0, p1
)∈�ab(α,β), (4.53)

then H ∈�.

Proof. Assume on the contrary that for every n∈N there exist q∗n ∈ L([a,b];R+), cn ∈ R+,
δn ∈]0,1], and un ∈ C̃([a,b];R) such that the inequalities (4.9),[

u′n(t)− δnH
(
un
)
(t)
]

sgnun(t)≤ q∗n (t) for t ∈ [a,b] (4.54)

and (4.11) are fulfilled. Define the functions vn by (4.12). Obviously, the equalities (4.13)
and (4.14) are satisfied, where qn are defined by (4.15). By virtue of (4.9) and (4.12) we
have the inequality (4.16). Furthermore, on account of (4.12), (4.15), and (4.54), we have

qn(t)sgnvn(t)≤ q∗n (t)∥∥un∥∥C for t ∈ [a,b], n∈N. (4.55)

For n ∈ N define numbers Mn and mn by (4.18). Evidently, Mn ≥ 0, mn ≥ 0 for n ∈ N ,
and on account of (4.13), the inequality (4.19) holds.

According to (4.18) and (4.19), for every n∈N the points σn, sn, ξn, tn ∈ [a,b] can be
chosen in the following way:

(i) if Mn = 0, then let ξn = a, tn = a, sn ∈ [a,b] be such that (4.20) is fulfilled, and let

σn =
a if sn = a

inf
{
t ∈ [a,sn

[
: vn(s) < 0 for s∈ ]t,sn]} if sn 	= a,

(4.56)

(ii) if mn = 0, then let σn = a, sn = a, tn ∈ [a,b] be such that (4.21) is fulfilled, and let

ξn =
a if tn = a

inf
{
t ∈ [a, tn

[
: vn(s) > 0 for s∈ ]t, tn]} if tn 	= a,

(4.57)

(iii) if Mn > 0 and mn > 0, then let sn, tn ∈ [a,b] be such that (4.20) and (4.21) are
fulfilled, and let σn and ξn be defined by (4.56) and (4.57), respectively.

Note that for every n∈N the following holds:

if σn 	= sn, then vn(s) < 0 for s∈ ]σn,sn
]
,

if ξn 	= tn, then vn(s) > 0 for s∈ ]ξn, tn
]
.

(4.58)

Furthermore, with respect to (4.16), we get

∣∣vn(σn)∣∣≤ cn∥∥un∥∥C ,
∣∣vn(ξn)∣∣≤ cn∥∥un∥∥C for n∈N. (4.59)
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By virtue of (4.13) and (4.18) we have that the sequences {Mn}+∞
n=1 and {mn}+∞

n=1 are
bounded. Obviously, also the sequences {sn}+∞

n=1 and {tn}+∞
n=1 are bounded, and, more-

over, for every n∈N we have either

a≤ σn ≤ sn ≤ ξn ≤ tn ≤ b, (4.60)

or

a≤ ξn ≤ tn ≤ σn ≤ sn ≤ b. (4.61)

Therefore, without loss of generality we can assume that there exist M0, m0 ∈ R+ and s0,
t0 ∈ [a,b] such that (4.24) is fulfilled, and either

a≤ σn ≤ sn ≤ ξn ≤ tn ≤ b for n∈N , (4.62)

or

a≤ ξn ≤ tn ≤ σn ≤ sn ≤ b for n∈N. (4.63)

Furthermore, on account of (4.19) we have (4.27).
The integration of (4.14) from σn to sn and from ξn to tn, respectively, by virtue of

(4.58), for every n∈N yields

vn
(
sn
)= vn

(
σn
)

+
δn∥∥un∥∥C

∫ sn

σn
H
(
un
)
(ξ)dξ −

∫ sn

σn
qn(ξ)sgnvn(ξ)dξ,

vn
(
tn
)= vn

(
ξn
)

+
δn∥∥un∥∥C

∫ tn

ξn
H
(
un
)
(ξ)dξ +

∫ tn

ξn
qn(ξ)sgnvn(ξ)dξ.

(4.64)

From (4.64), in view of (4.11), (4.12), (4.18), (4.55), (4.59), the assumptions δn ∈]0,1]

and H ∈�
αβ
ab (g0,g1, p0, p1), and the choice of points σn, sn, ξn, and tn, for every n ∈ N

we get

mn ≤mn

∫ sn

σn
g0(ξ)dξ +µ

(
mn,α

)
M1−α

n

∫ sn

σn
g1(ξ)dξ +

1
n

,

Mn ≤Mn

∫ tn

ξn
p0(ξ)dξ +µ

(
Mn,β

)
m

1−β
n

∫ tn

ξn
p1(ξ)dξ +

1
n
.

(4.65)

Then, due to (2.4) and (4.24), from (4.65) as n→ +∞ we obtain

m0 ≤m0

∫ s0

a
g0(ξ)dξ +µ

(
m0,α

)
M1−α

0

∫ s0

a
g1(ξ)dξ,

M0 ≤M0

∫ b

s0

p0(ξ)dξ +µ
(
M0,β

)
m

1−β
0

∫ b

s0

p1(ξ)dξ
(4.66)



Robert Hakl 277

if (4.62) holds, and

M0 ≤M0

∫ t0

a
p0(ξ)dξ +µ

(
M0,β

)
m

1−β
0

∫ t0

a
p1(ξ)dξ,

m0 ≤m0

∫ b

t0
g0(ξ)dξ +µ

(
m0,α

)
M1−α

0

∫ b

t0
g1(ξ)dξ

(4.67)

if (4.63) is true. Consequently, the pair (M0,m0) is a solution of the system ((4.51)t)s0 ,
respectively, ((4.52)t)t0 , with h1 ≡ g0, h2 ≡ g1, h3 ≡ p0, h4 ≡ p1, α= α, and β = β. However,
the inequality (4.27) contradicts the inclusion (4.53). �

Lemma 4.11. Let the inequalities (3.4), (3.8), and (3.9) be fulfilled. Then the inclusion (4.53)
holds.

Proof. Assume on the contrary that there exists t0 ∈ [a,b] such that either the system
((4.51)t)t0 or the system ((4.52)t)t0 with h1 ≡ g0, h2 ≡ g1, h3 ≡ p0, h4 ≡ p1, α = α, and
β = β has a nontrivial solution.

First suppose that (M0,m0) is a nontrivial solution of ((4.51)t)t0 . Define functions G0,
G1, P0, and P1 by (4.31). Then, according to the assumptions, (M0,m0) satisfies

m0 ≤m0G0
(
t0
)

+µ
(
m0,α

)
M1−α

0 G1
(
t0
)
, (4.68)

M0 ≤M0P0
(
t0
)

+µ
(
M0,β

)
m

1−β
0 P1

(
t0
)
. (4.69)

If M0 = 0, then m0 > 0, and from (4.68), in view of (3.4) and (4.31), we get a contradiction
m0 < m0. If m0 = 0, then M0 > 0, and from (4.69), in view of (3.4) and (4.31), we get
a contradiction M0 <M0. Therefore assume that (4.34) holds. In this case, according to
(2.4), we have (4.35). Thus, on account of (3.4), (4.31), and (4.34), from (4.68) and (4.69)
we obtain

0 <m1−α
0

(
1−G0

(
t0
))≤M1−α

0 G1
(
t0
)
,

0 <M
1−β
0

(
1−P0

(
t0
))≤m

1−β
0 P1

(
t0
)
.

(4.70)

Now the inequalities (4.70) result in

M
1−β
0

(
1−P0

(
t0
))(

1−G0
(
t0
))(1−β)/(1−α)

≤ (m1−α
0

(
1−G0

(
t0
)))(1−β)/(1−α)

P1
(
t0
)≤M

1−β
0 G1

(
t0
)(1−β)/(1−α)

P1
(
t0
)
.

(4.71)

However, on account of (4.31) and (4.34), the last inequality contradicts (3.8).
In analogous way it can be shown that assuming (M0,m0) to be a nontrivial solution

of ((4.52)t)t0 we obtain a contradiction to (3.9). �

5. Proofs

Theorem 3.1 follows from Lemmas 4.3, 4.5, and 4.6. Theorem 3.2 follows from Lemmas
4.8, 4.10, and 4.11.
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Proof of Theorem 3.3. From the conditions (3.11) and (3.12) it follows that the condi-
tions (3.2) and (3.3) are satisfied with c = |h(0)| and q ≡ |q∗|, and so the assumptions of
Theorem 3.1 are fulfilled. Therefore, the problem (2.1), (2.8) has at least one solution. It
remains to show that the problem (2.1), (2.8) has no more than one solution.

Let u,v ∈ C̃([a,b];R) be solutions of (2.1), (2.8). Then, in view of (2.8) and (3.11),
we have∣∣u(a)

∣∣= h(u)sgnu(a)≤ ∣∣h(0)
∣∣,

∣∣v(a)
∣∣= h(v)sgnv(a)≤ ∣∣h(0)

∣∣. (5.1)

Put

w(t)= u(t)− v(t) for t ∈ [a,b]. (5.2)

Then, in view of (2.8), (3.11), and (5.2), we obtain∣∣w(a)
∣∣= ∣∣u(a)− v(a)

∣∣= [h(u)−h(v)
]

sgn
(
u(a)− v(a)

)≤ 0 (5.3)

and, with respect to (3.10), (3.12), and (5.1)–(5.3), w is a solution of the problem

w′(t)=Hv(w)(t), w(a)= 0. (5.4)

Moreover, on account of the inequalities (3.4)–(3.6), and Lemma 4.6, we have the inclu-

sion (4.8). Therefore, according to the assumption Hv ∈�
αβ
ab (g0,g1, p0, p1), Lemma 4.5,

and Definition 4.2, w ≡ 0, that is, u≡ v. �

Proof of Theorem 3.4. From the conditions (3.11) and (3.13) it follows that the conditions
(3.2) and (3.7) are satisfied with c = |h(0)| and q ≡ |Q(0)|. Consequently, the assump-
tions of Theorem 3.2 are fulfilled. Therefore, the problem (2.1), (2.8) has at least one
solution. It remains to show that the problem (2.1), (2.8) has no more than one solution.

Let u,v ∈ C̃([a,b];R) be solutions of (2.1), (2.8). Then, in view of (2.8) and (3.11), the
inequalities (5.1) are fulfilled. Define w by (5.2). Then, on account of (2.8), (3.11), and
(5.2), (5.3) holds, and, according to (3.10) and (5.1)–(5.3), w is a solution of the problem

w′(t)=Hv(w)(t) +Qv(w)(t), w(a)= 0, (5.5)

where

Qv(w)(t)=Q(w+ v)(t)−Q(v)(t) for t ∈ [a,b]. (5.6)

Furthermore, by virtue of (3.13), (5.1), (5.2), and (5.6),

Qv(w)(t)sgnw(t)= [Q(u)(t)−Q(v)(t)
]

sgn
(
u(t)− v(t)

)≤ 0 for t ∈ [a,b], (5.7)

and, with respect to the inequalities (3.4), (3.8), (3.9), and Lemma 4.11, we have the inclu-

sion (4.53). Therefore, according to the assumption Hv ∈�
αβ
ab (g0,g1, p0, p1), Lemma 4.10,

and Definition 4.7, w ≡ 0, that is, u≡ v. �
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Proof of Corollary 3.6. To prove the corollary it is sufficient to show that the assumptions
of Theorem 3.1 are fulfilled.

Define operators H and Q by the equalities

H(v)(t)
def= p(t)max

{
v(s) : τ1(t)≤ s≤ τ2(t)

}
for t ∈ [a,b], (5.8)

Q(v)(t)
def= f

(
t,v(t),max

{
v(s) : ν1(t)≤ s≤ ν2(t)

})
for t ∈ [a,b], (5.9)

and put α= 0, β = 0,

g0 ≡ [p]+, p0 ≡ [p]+, g1 ≡ [p]−, p1 ≡ [p]−. (5.10)

Then H ∈�
αβ
ab (g0,g1, p0, p1), the condition (3.14) yields (3.3), and (3.15) implies (3.4). It

remains to verify that for t ∈ [a,b] the inequalities (3.5) and (3.6) hold.
According to (5.10) and since α = 0 and β = 0, the inequalities (3.5) and (3.6) are

equivalent. Assume on the contrary that there exists t0 ∈ [a,b] such that

∫ t0

a

[
p(s)

]
−ds

(∫ b

t0

[
p(s)

]
−ds− 1

)
≥
(

1−
∫ t0

a

[
p(s)

]
+ds

)(
1−

∫ b

t0

[
p(s)

]
+ds

)
. (5.11)

Now, since

AB ≤ 1
4

(A+B)2, (5.12)

we get

∫ t0

a

[
p(s)

]
−ds

(∫ b

t0

[
p(s)

]
−ds− 1

)
≤ 1

4

(∫ b

a

[
p(s)

]
−ds− 1

)2

, (5.13)

and, according to (3.15),

(
1−

∫ t0

a

[
p(s)

]
+ds

)(
1−

∫ b

t0

[
p(s)

]
+ds

)
≥ 1−

∫ b

a

[
p(s)

]
+ds > 0. (5.14)

Thus, in view of (5.13) and (5.14), (5.11) yields
∫ b
a [p(s)]−ds > 1 and

0 < 1−
∫ b

a

[
p(s)

]
+ds≤

1
4

(∫ b

a

[
p(s)

]
−ds− 1

)2

, (5.15)

which contradicts (3.16). �

Proof of Corollary 3.7. To prove the corollary it is sufficient to show that the assumptions
of Theorem 3.3 are fulfilled.

Define operator H by (5.8) and functions g0,g1, p0, p1 by (5.10). Put α= 0, β = 0, and

Q(v)(t)
def= q0(t) for t ∈ [a,b], v ∈ C

(
[a,b];R

)
. (5.16)
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Then obviously, the condition (3.12) with q∗ ≡ q0 is fulfilled, and (3.15) implies (3.4).
Moreover, by the same arguments as in the proof of Corollary 3.6 one can show that, on
account of (3.16), for t ∈ [a,b] the inequalities (3.5) and (3.6) are satisfied.

It remains to show that for every z ∈ {v ∈ C([a,b];R) : v(a) = h(v)} the operator Hz

defined by (3.10) belongs to the set �
αβ
ab (g0,g1, p0, p1). Denote for almost all t ∈ [a,b] by

I(t) the segment [τ1(t),τ2(t)]. Then obviously,

Hz(u)(t)= [p(t)
]

+

(
max

{
u(s) + z(s) : s∈ I(t)

}−max
{
z(s) : s∈ I(t)

})
− [p(t)

]
−
(

max
{
u(s) + z(s) : s∈ I(t)

}−max
{
z(s) : s∈ I(t)

})
≤ [p(t)

]
+ max

{
u(s) : s∈ I(t)

}
− [p(t)

]
−
(

min
{− z(s) : s∈ I(t)

}−min
{−u(s)− z(s) : s∈ I(t)

})
≤ [p(t)

]
+ max

{
u(s) : s∈ I(t)

}− [p(t)
]
−min

{
u(s) : s∈ I(t)

}
≤M

[
p(t)

]
+ +m

[
p(t)

]
− for t ∈ [a,b], u∈ C

(
[a,b];R

)
,

(5.17)

where

M =max
{[
u(t)

]
+ : t ∈ [a,b]

}
, m=max

{[
u(t)

]
− : t ∈ [a,b]

}
. (5.18)

Analogously we can show that

Hz(u)(t)≥−m[p(t)
]

+−M
[
p(t)

]
− for t ∈ [a,b], u∈ C

(
[a,b];R

)
. (5.19)

Consequently, Hz ∈�
αβ
ab (g0,g1, p0, p1). �

Proof of Corollary 3.9. To prove the corollary it is sufficient to show that the assumptions
of Theorem 3.2 are fulfilled.

Define operators H and Q by the equalities (5.8) and (5.9), respectively, and functions

g0,g1, p0, p1 by (5.10). Put α = 0 and β = 0. Then H ∈�
αβ
ab (g0,g1, p0, p1), the condition

(3.17) implies the condition (3.7), and (3.15) yields (3.4). Furthermore, according to
(5.12), we have∫ t

a

[
p(s)

]
−ds

∫ b

t

[
p(s)

]
−ds≤

1
4

(∫ b

a

[
p(s)

]
−ds

)2

for t ∈ [a,b], (5.20)

and, with respect to (3.15), for t ∈ [a,b](
1−

∫ t

a

[
p(s)

]
+ds

)(
1−

∫ b

t

[
p(s)

]
+ds

)
≥ 1−

∫ b

a

[
p(s)

]
+ds > 0. (5.21)

Thus, by virtue of (3.18), the inequalities (5.20) and (5.21) imply that the inequalities
(3.8) and (3.9) are fulfilled. �

Proof of Corollary 3.10. To prove the corollary it is sufficient to show that the assumptions
of Theorem 3.4 are fulfilled.

Define operators H and Q by the equalities (5.8) and (5.9), respectively, and functions

g0,g1, p0, p1 by (5.10). Put α= 0 and β = 0. Then H ∈�
αβ
ab (g0,g1, p0, p1) and the inequal-

ities (3.15) and (3.19) yield (3.4) and (3.13). Moreover, by the same arguments as in the
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proof of Corollary 3.9 one can show that, on account of (3.15) and (3.18), the inequalities
(3.8) and (3.9) hold. Furthermore, in a similar manner as in the proof of Corollary 3.7 it
can be shown that for every z ∈ {v ∈ C([a,b];R) : v(a) = h(v)} the operator Hz defined

by (3.10) belongs to the set �
αβ
ab (g0,g1, p0, p1). �

6. Examples

Remark 6.1. In Example 6.2, assuming the first inequality in (3.4) is not satisfied, there

is an operator H ∈ �ab constructed in such a way that H ∈�
αβ
ab (g0,g1, p0, p1), but the

problem

u′(t)=H(u)(t) +ω(t), u(a)= 0, (6.1)

for a suitable ω ∈ L([a,b];R), has no solution. Furthermore, in Example 6.3 there is an

operator H ∈�ab given such that H ∈�
αβ
ab (g0,g1, p0, p1), the condition (3.4) is fulfilled,

and the problem (6.1), with a suitable ω ∈ L([a,b];R), has no solution, assuming the
inequality (3.5) is violated for some t ∈ [a,b].

Examples verifying the optimality of the second inequality in (3.4) and the inequality
(3.6) can be constructed analogously to Examples 6.2 and 6.3, respectively.

Example 6.2. Let α,β ∈ [0,1[, g0,g1, p0, p1 ∈ L([a,b];R+), and let g0 be such that∫ b

a
g0(s)ds≥ 1. (6.2)

Choose t0 ∈]a,b] and ω ∈ L([a,b];R) such that∫ t0

a
g0(s)ds= 1,

∫ t0

a
ω(s)ds < 0, (6.3)

and for v ∈ C([a,b];R) put

H(v)(t)=−g0(t)
[
v
(
t0
)]
− − g1(t)µ

([
v(t)

]
−,α

)[
v(a)

]1−α
+

+ p0(t)
[
v(a)

]
+ + p1(t)µ

([
v(t)

]
+,β

)[
v(a)

]1−β
− for t ∈ [a,b].

(6.4)

Then, obviously, H ∈�
αβ
ab (g0,g1, p0, p1).

Now we will show that the problem (6.1) has no solution. Suppose on the contrary that
there exists a solution u of (6.1). Then the integration of (6.1) from a to t0, on account of
(6.3), yields

u
(
t0
)=−[u(t0)]−∫ t0

a
g0(s)ds+

∫ t0

a
ω(s)ds < 0. (6.5)

However, the last equality, with respect to (6.3), results in

0= u
(
t0
)(

1−
∫ t0

a
g0(s)ds

)
=
∫ t0

a
ω(s)ds < 0, (6.6)

a contradiction.
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Example 6.3. Let α,β ∈ [0,1[, and let g0,g1, p0, p1 ∈ L([a,b];R+) be such that the con-
dition (3.4) is fulfilled, while the inequality (3.5) is violated for some t ∈ [a,b]. Define
functions G0, G1, P0, and P1 by (4.31). Then, since G1(a)= 0 and P1(b)= 0, we have

(
G1(a)

1−G0(a)

)(1−β)/(1−α)

P1(a)−
(

G1(a)
1−G0(a)

)1/(1−α)

< 1−P0(a),

(
G1(b)

1−G0(b)

)(1−β)/(1−α)

P1(b)−
(

G1(b)
1−G0(b)

)1/(1−α)

< 1−P0(b).

(6.7)

Consequently, since we assume that (3.5) is violated for some t ∈ [a,b], there exists t0 ∈
]a,b[ such that(

G1
(
t0
)

1−G0
(
t0
))(1−β)/(1−α)

P1
(
t0
)−( G1

(
t0
)

1−G0
(
t0
))1/(1−α)

= 1−P0
(
t0
)
. (6.8)

Define

H(v)(t)
def=



−g0(t)
[
v
(
t0
)]
− − g1(t)µ

([
v
(
t0
)]
−,α

)[
v(b)

]1−α
+

+p0(t)
[
v(a)

]
+ + p1(t)µ

([
v(t)

]
+,β

)[
v(a)

]1−β
− for t ∈ [a, t0

[
,

−g0(t)
[
v(a)

]
− − g1(t)µ

([
v(t)

]
−,α

)[
v(a)

]1−α
+

+p0(t)
[
v(b)

]
+ + p1(t)µ

([
v(b)

]
+,β

)[
v
(
t0
)]1−β
− for t ∈ [t0,b

]
.

(6.9)

Then, obviously, H ∈�
αβ
ab (g0,g1, p0, p1).

Furthermore, with respect to (3.4), (4.31), and (6.8), we have

G1
(
t0
) 	= 0. (6.10)

Put

f (z)= z

(
1 +

(
c0− 1

)(z− 1
z

)1/(1−α)

− c0

(
z− 1
z

)β/(1−α)
)

for z ∈]1,+∞[, (6.11)

where

c0 = P1
(
t0
)(1−G0

(
t0
)

G1
(
t0
) )β/(1−α)

. (6.12)

It can be easily verified that

γ
def= sup

{
f (z) : z ∈]1,+∞[

}
< +∞. (6.13)

Choose ω ∈ L([a,b];R) such that∫ t0

a
ω(s)ds=−(1−G0

(
t0
))

,
∫ b

t0
ω(s)ds > max{γ,1}. (6.14)
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We will show that the problem (6.1) has no solution. Suppose on the contrary that
there exists a solution u of (6.1). Then the integration of (6.1) from a to t0 and from t0 to
b, respectively, on account of (4.31), (6.9), and (6.14), yields

u
(
t0
)=−G0

(
t0
)[
u
(
t0
)]
− −G1

(
t0
)
µ
([
u
(
t0
)]
−,α

)[
u(b)

]1−α
+ − (1−G0

(
t0
))

, (6.15)

u(b)= u
(
t0
)

+P0
(
t0
)[
u(b)

]
+ +P1

(
t0
)
µ
([
u(b)

]
+,β

)[
u
(
t0
)]1−β
− +

∫ b

t0
ω(s)ds. (6.16)

Hence u(t0) < 0. Assuming u(b) ≤ 0, according to (6.13) and (6.14), from (6.15) and
(6.16) we obtain u(t0)=−1 and

u(b)≥
∫ b

t0
ω(s)ds− 1 > 0, (6.17)

a contradiction. Therefore u(b) > 0. For short put

x = [u(t0)]−, y = [u(b)
]

+. (6.18)

According to above-mentioned we have x > 0, y > 0, and the equalities (6.15) and (6.16)
can be rewritten as follows

x
(
1−G0

(
t0
))=G1

(
t0
)
xαy1−α + 1−G0

(
t0
)
, (6.19)

y
(
1−P0

(
t0
))= P1

(
t0
)
yβx1−β− x+

∫ b

t0
ω(s)ds. (6.20)

From (6.19), in view of (6.10), we get x > 1 and

y = x
(
x− 1
x

)1/(1−α)
(

1−G0
(
t0
)

G1
(
t0
) )1/(1−α)

. (6.21)

Using the last equality in (6.20) we obtain

x
(
x− 1
x

)1/(1−α)
(

1−G0
(
t0
)

G1
(
t0
) )1/(1−α)(

1−P0
(
t0
))

+ x− x
(
x− 1
x

)β/(1−α)
(

1−G0
(
t0
)

G1
(
t0
) )β/(1−α)

P1
(
t0
)= ∫ b

t0
ω(s)ds,

(6.22)

whence, in view of (6.8), the fact that x > 1, and the definition of the function f , we get

f (x)=
∫ b

t0
ω(s)ds, (6.23)

which, on account of (6.13), contradicts (6.14).



284 On a BVP for nonlinear FDE

Remark 6.4. The case when the first inequality in (3.4) is not satisfied is discussed in
Example 6.2. In Example 6.5 below, there are given operators H ,Q ∈�ab such that H ∈
�

αβ
ab (g0,g1, p0, p1), Q satisfies the inequalities (3.7) and (3.13) for v ∈ C([a,b];R), the con-

dition (3.4) is fulfilled, and the problem

u′(t)=H(u)(t) +Q(u)(t), u(a)= 0 (6.24)

has no solution, assuming the inequality (3.8) is violated.
Examples verifying the optimality of the second inequality in (3.4), respectively, the

inequality (3.9), can be constructed analogously to Examples 6.2 and 6.5, respectively.

Example 6.5. Let α,β ∈ [0,1[, and let g0,g1, p0, p1 ∈ L([a,b];R+) be such that the condi-
tion (3.4) is fulfilled, while the inequality (3.8) is violated. Define functions G0, G1, P0,
and P1 by (4.31). Then, since G1(a)= 0 and P1(b)= 0, we have

(
G1(a)

1−G0(a)

)(1−β)/(1−α)

P1(a) < 1−P0(a),

(
G1(b)

1−G0(b)

)(1−β)/(1−α)

P1(b) < 1−P0(b).

(6.25)

Consequently, there exists t0 ∈]a,b[ such that

(
G1
(
t0
)

1−G0
(
t0
))(1−β)/(1−α)

P1
(
t0
)= 1−P0

(
t0
)
. (6.26)

Hence, in view of (3.4), we have (6.10). Choose t1 ∈]t0,b[. Define an operator ϕ :
L([a,b];R)→ L([a,b];R) by

ϕ(p)(t)
def=


p(t) for t ∈ [a, t0

[
,

0 for t ∈ [t0, t1
]
,

p
(
b− t0
b− t1

(
t− t1

)
+ t0

)
for t ∈ ]t1,b

]
.

(6.27)

Then

∫ b

a
ϕ
(
g0
)
(s)ds < 1,

∫ b

a
ϕ
(
p0
)
(s)ds < 1,( ∫ t0

a ϕ
(
g1
)
(s)ds

1− ∫ t0a ϕ
(
g0
)
(s)ds

)(1−β)/(1−α)∫ b

t0
ϕ
(
p1
)
(s)ds= 1−

∫ b

t0
ϕ
(
p0
)
(s)ds,

ϕ
(
p0
)
(t)= 0, ϕ

(
p1
)
(t)= 0 for t ∈ [t0, t1

]
.

(6.28)

Therefore, without loss of generality, we can assume that

p0(t)= 0, p1(t)= 0 for t ∈ [t0, t1
]
. (6.29)
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Define operators H and Q by (6.9) and

Q(v)(t)
def=


ω1(t) for t ∈ [a, t0

[
,

−v3(t) for t ∈ [t0, t1
]
,

ω2(t) for t ∈ ]t1,b
]
,

(6.30)

where ω1, ω2 ∈ L([a,b];R) are such that

∫ t0

a
ω1(s)ds=−(1−G0

(
t0
))

,
∫ b

t1
ω2(s)ds= 1√

2
(
t1− t0

) . (6.31)

Obviously, H ∈�
αβ
ab (g0,g1, p0, p1) and Q satisfies (3.7) with

q
(
t,‖v‖C

)= ∣∣ω1(t)
∣∣+

∣∣ω2(t)
∣∣ for t ∈ [a,b], (6.32)

and (3.13), as well.
We will show that the problem (6.24) has no solution. Suppose on the contrary that

there exists a solution u of (6.24). Then the integration of (6.24) from a to t0, in view
of (4.31) and (6.30), yileds (6.15), whence we get u(t0) < 0. Further, on account of (6.9),
(6.29), and (6.30), we have

u(t)= u
(
t0
)√

1 + 2u2
(
t0
)(
t− t0

) for t ∈ [t0, t1
]
. (6.33)

Finally, the integration of (6.24) from t1 to b, with respect to (4.31) and (6.30), results in

u(b)= u
(
t1
)

+P0
(
t0
)[
u(b)

]
+ +P1

(
t0
)
µ
([
u(b)

]
+,β

)[
u
(
t0
)]1−β
− +

1√
2
(
t1− t0

) . (6.34)

From (6.34), according to u(t0) < 0 and (6.33), we get

u(b)≥ u
(
t0
)√

1 + 2u2
(
t0
)(
t1− t0

) +
1√

2
(
t1− t0

) > 0. (6.35)

For short define numbers x and y by (6.18). According to above-mentioned we have x > 0,
y > 0, and the equalities (6.15) and (6.34), using (6.33), can be rewritten as follows

x
(
1−G0

(
t0
))=G1

(
t0
)
xαy1−α + 1−G0

(
t0
)
, (6.36)

y
(
1−P0

(
t0
))=− x√

1 + 2x2
(
t1− t0

) +P1
(
t0
)
yβx1−β +

1√
2
(
t1− t0

) . (6.37)
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From (6.36), in view of (6.10), we get x > 1 and (6.21). Using (6.21) in (6.37), by virtue
of (6.26), we obtain

x
(
x− 1
x

)1/(1−α)
(

1−G0
(
t0
)

G1
(
t0
) )β/(1−α)

P1
(
t0
)(

1−
(

x

x− 1

)(1−β)/(1−α)
)

= 1√
2
(
t1− t0

) − x√
1 + 2x2

(
t1− t0

) . (6.38)

However, since x > 1, we have

x
(
x− 1
x

)1/(1−α)
(

1−G0
(
t0
)

G1
(
t0
) )β/(1−α)

P1
(
t0
)(

1−
(

x

x− 1

)(1−β)/(1−α)
)
< 0,

1√
2
(
t1− t0

) − x√
1 + 2x2

(
t1− t0

) > 0.
(6.39)

The last two inequalities contradict (6.38).
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[11] R. Hakl, A. Lomtatidze, and B. Půža, On nonnegative solutions of first order scalar functional
differential equations, Mem. Differential Equations Math. Phys. 23 (2001), 51–84.



Robert Hakl 287

[12] , On periodic solutions of first order nonlinear functional differential equations of non-
Volterra’s type, Mem. Differential Equations Math. Phys. 24 (2001), 83–105.

[13] , New optimal conditions for unique solvability of the Cauchy problem for first order linear
functional differential equations, Math. Bohem. 127 (2002), no. 4, 509–524.

[14] , On periodic solutions of first order linear functional differential equations, Nonlinear
Anal. 49 (2002), no. 7, 929–945.

[15] , On a boundary value problem for first-order scalar functional differential equations,
Nonlinear Anal. 53 (2003), no. 3-4, 391–405.
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[40] Š. Schwabik, M. Tvrdý, and O. Vejvoda, Differential and Integral Equations. Boundary Value
Problems and Adjoints, D. Reidel, Dordrecht, 1979.

[41] E. Stepanov, On solvability of some boundary value problems for differential equations with “max-
ima”, Topol. Methods Nonlinear Anal. 8 (1996), no. 2, 315–326 (1997).

[42] R. A. Tsitskishvili, Unique solvability and correctness of a linear boundary value problem for
functional–differential equations, Rep. Enlarged Sessions Sem. I. N. Vekua Inst. Appl. Math.
5 (1990), no. 3, 195–198 (Russian).

Robert Hakl: Mathematical Institute, Academy of Sciences of the Czech Republic, Žižkova 22,
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