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We consider the boundary value problem for the nonlinear Poisson equation with a non-
local term−Δu= f (u,

∫
U g(u)), u|∂U = 0. We prove the existence of a positive radial solu-

tion when f grows linearly in u, using Krasnoselskii’s fixed point theorem together with
eigenvalue theory. In presence of upper and lower solutions, we consider monotone ap-
proximation to solutions.
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1. Introduction

Let us consider the following nonlocal BVP in a ball U = B(0,R) of Rn:

−Δu= f

(

u,
∫

U
g(u)

)

,

u|∂U = 0,

(1.1)

where f and g are continuous functions. For simplicity we shall take R = 1. We want to
study the existence of positive radial solutions

u(x)= v
(‖x‖), (1.2)

of (1.1). This may be seen as the stationary problem corresponding to a class of nonlocal
evolution (parabolic) boundary value problems related to relevant phenomena in engi-
neering and physics. The literature dealing with such problems has been growing in the
last decade. The reader may find some hints on the motivation for the study of this math-
ematical model, for example, in the paper by Bebernes and Lacey [1]. For more recent
developments, see [2] and the references therein.
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Here we are considering a nonlocal term inserted in the right-hand side of the equa-
tion. Note, however, that it is also of interest to study boundary value problems where the
nonlocal expression appears in a boundary condition. We refer the reader to the recent
paper by Yang [13] and its references.

When dealing with a nonlinear term with rather general dependence on the nonlo-
cal functional as in (1.1) new difficulties arise with respect to the treatment of standard
boundary value problems. Differences of behaviour which are met in general elliptic and
parabolic problems are already present in simple models as those we shall analyse in this
paper. For instance, the use of the powerful lower and upper solution method (good ac-
counts of which can be consulted in the monographs of Pao [10] and De Coster and
Habets [3]) is limited by the absence of general maximum principles. Even for linear
problems with nonlocal terms the issue of positivity is far from trivial and may require a
detailed study via the analysis of the Green’s operator, as in Freitas and Sweers [6].

The purpose of this paper is twofold. First, we want to improve a quite recent result
of Fijałkowski and Przeradzki [5]: these authors have obtained existence of positive radial
solutions of (1.1) by using Krasnoselskii’s fixed point theorem in cones; the main assump-
tion is that f may grow at most like Au+B, the bound on A being computed by means of
a Green’s function. By using a similar theoretical background, together with the consider-
ation of the eigenvalues of the underlying linear problem, we show that an improvement
of that bound is possible. This is done in Theorem 3.2. Second, while remaining in the
same simple general setting, we will handle (1.1) from the point of view of the upper and
lower solution method. We establish a nonlocal maximum principle (Lemma 4.6) and we
use it as a device to obtain a monotone approximation scheme for the radial solutions of
(1.1) in presence of lower and upper solutions (Theorem 4.10). We follow an idea used
by Jiang et al. [9] in studying a fourth-order periodic problem.

Note that we could use similar methods to consider the case where U = B(0,1)\B(0,ρ),
with 0 < ρ < 1. Similar results could then be reached. We remark also that for special
classes of functions f and g different approaches are needed. For instance, in [8] varia-
tional methods have been used to study existence and multiplicity when f (u,v)= g(u)/
vp(p > 0) and g behaves as an exponencial function.

The authors wish to thank the referee for carefully reading the manuscript and hints
to improve its final form.

2. Some auxiliary results

It is well known that the existence of a solution for some boundary value problems is
equivalent to the existence of a fixed point of a certain operator. For our purpose we need
to consider a second-order ordinary differential equation of the form

−(p(t)u′(t)
)′ = p(t) f

(
t,u(t)

)
, (2.1)

with boundary conditions

u′(0)= u(1)= 0, (2.2)
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where f is a continuous function in [0,1]×R and p ∈ C[0,1] is positive and increasing in
]0,1]. If p > 0 in [0,1], it is well known that the problem is fully regular, having a standard
reduction to a fixed point problem:

u= T f
(·,u(·)) in C[0,1], (2.3)

where T is the linear operator that takes v ∈ C[0,1] into the unique solution u of

−(p(t)u′(t)
)′ = p(t)v(t), u′(0)= u(1)= 0. (2.4)

In addition we can write explicitly

Tv(t)=
∫ 1

0
G(t,s)v(s)ds, (2.5)

where G(t,s) is the Green’s function associated to the problem. The Green’s function is
continuous in [0,1]× [0,1], so T is a completely continuous linear operator in C[0,1].

We are interested in the case where p(t) > 0 in ]0,1] only. Under certain assumptions
we still have a continuous Green’s function for the linear problem (2.4). The reader can
find a more general approach in [7], but for completeness we include here a simple ver-
sion which is sufficient for our purpose.

Lemma 2.1. Let p be continuous, increasing in [0,1], p(0) = 0 and p > 0 in ]0,1]. If the
function

p(s)
∫ 1

s

1
p(τ)

dτ (2.6)

is continuously extendible to [0,1], then the operator T : C[0,1]→ C[0,1] previously con-
sidered is well defined, linear, and completely continuous.

Proof. Consider the equation

−(p(t)u′(t)
)′ = p(t)v(t), (2.7)

with boundary conditions (2.2). Integrating both sides we get

−p(t)u′(t)=
∫ t

0
p(s)v(s)ds. (2.8)

Integrating again, we obtain

u(t)=
∫ 1

t

dτ

p(τ)

∫ τ

0
p(s)v(s)ds

=
∫ t

0
p(s)v(s)ds

∫ 1

t

1
p(τ)

dτ +
∫ 1

t
p(s)v(s)ds

∫ 1

s

1
p(τ)

dτ

=
∫ 1

0
G(t,s)v(s)ds,

(2.9)
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where

G(t,s)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p(s)
∫ 1

t

1
p(τ)

dτ, t ≥ s

p(s)
∫ 1

s

1
p(τ)

dτ, t ≤ s

(2.10)

is clearly continuous in [0,1]× [0,1], so that the operator

Tv(t)=
∫ 1

0
G(t,s)v(s)ds=

∫ t

0
p(s)

∫ 1

t

1
p(τ)

dτv(s)ds+
∫ 1

t
p(s)

∫ 1

s

1
p(τ)

dτv(s) ds

(2.11)

is completely continuous in C[0,1].
It is trivial to see that Tv(1) = 0 and if we differentiate the expression for Tv(t) we

obtain

(Tv)′(t)= p(t)
∫ 1

t

1
p(τ)

dτv(t) +
∫ t

0
− p(s)v(s)

p(t)
ds− p(t)

∫ 1

t

1
p(τ)

dτv(t)

=−
∫ t

0

p(s)v(s)
p(t)

ds,

(2.12)

and thus

(Tv)′(0)= lim
t→0
−
∫ t

0

p(s)v(s)
p(t)

ds=− lim
t→0

v(0)

∫ t
0 p(s)
p(t)

= 0. (2.13)

�

Remark 2.2. The continuous functions p(t) = tn, with n > 0, satisfy the assumptions of
the lemma.

The following fixed point theorem of Krasnoselskii will be used in the next section (see
[4]).

Theorem 2.3. Let P be a cone in a Banach space and S : P → P a completely continuous
operator. If there exist positive constants r < R such that (compression case)

‖Sx‖ ≥ ‖x‖, ∀x ∈ P such that ‖x‖ = r, ‖Sx‖ ≤ ‖x‖, ∀x ∈ P such that ‖x‖ = R,

(2.14)

then S has a fixed point x in P such that r < ‖x‖ < R.

3. Nonlinearities with linear growth in u: a positive solution

Let f : R+ ×R→ R+ and g : R+ → R be continuous functions. The radial solutions v of
the problem (1.1) solve the ordinary differential equation

−v′′(r)− n− 1
r

v′(r)= f

(

v(r),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

(3.1)



R. Enguiça and L. Sanchez 5

which is equivalent to

−(rn−1v′(r)
)′ = rn−1 f

(

v(r),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

, (3.2)

with boundary conditions

lim
r→0+

v′(r)= v(1)= 0, (3.3)

where ωn is the measure of the unit sphere in Rn.
The homogeneous equation −v′′ − (n− 1)v′/r = 0, with the boundary conditions

(3.3), has only the trivial solution, and therefore there exists a Green’s function asso-
ciated to the linear problem. In fact, the Green’s function may be written according to
Lemma 2.1 (see also [5]):

(i) for n > 2,

G(r, t)= tn−1

n− 2

(
1

max(r, t)n−2
− 1

)
; (3.4)

(ii) and for n= 2,

G(r, t)=−t ln
(

max(r, t)
)
. (3.5)

Hence the boundary value problem (3.1)–(3.3) is equivalent to the integral equation

v(r)=
∫ 1

0
G(r, t) f

(

v(t),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

dt. (3.6)

In C[0,1], the Banach space of continuous functions in [0,1] with the usual norm, let
P be the cone of the nonnegative functions. The radial solutions of (1.1) are exactly the
fixed points of the completely continuous operator S : P→ P, defined by

S(v)(r)=
∫ 1

0
G(r, t) f

(

v(t),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

dt. (3.7)

In [5], the following theorem is proved.

Theorem 3.1. Let f :R+×R→R+ and g :R+ →R be continuous functions, and

γ = sup
r∈[0,1]

∫ 1

0
G(r,s)ds. (3.8)

Suppose there exist constants A,B ∈R such that 0≤ A < γ−1 and

f (v, y)≤ Av+B (3.9)

for all v ≥ 0 and y ∈R.
Then the problem (1.1) has a positive radial solution.
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We will show that the estimate on the constant A in the previous result can be im-
proved.

Consider the problem (3.1)–(3.3) and the associated eigenvalue problem:

−v′′(r)− n− 1
r

v′(r)= λv(r), with lim
r→0+

v′(r)= 0, v(1)= 0. (3.10)

We have

−v′′(r)− n− 1
r

v′(r)= λv(r)⇐⇒ (
rn−1v′(r)

)′
+ λrn−1v(r)= 0. (3.11)

To find the eigenvalues, it is useful to consider the auxiliar initial value problem:

(
rn−1v′(r)

)′
+ rn−1v(r)= 0, v(0)= 1, v′(0)= 0. (3.12)

The solution v to this problem is well defined in [0,+∞[, oscillates, and has zeros {ξn |
n∈N} such that 0 < ξ1 < ξ2 < ··· → +∞, with ξn+1− ξn→ π (see [12]).

Define u(r)= v(βr). Then

u′(r)= βv′(βr), u′′(r)= β2v′′(βr). (3.13)

Using (3.12) we have

(n−1)(βr)n−2v′(βr)+(βr)n−1v′′(βr)+(βr)n−1v(βr)=0⇐⇒ (
rn−1u′(r)

)′
+β2rn−1u(r)=0.

(3.14)

It is obvious that u′(0)= 0, so it remains to find β such that u(1)= 0. As u(1)= v(β),
we get β = ξn for some n∈N, hence β = ξn and, therefore, the eigenvalues of (3.10) are

λn = β2 = ξn
2. (3.15)

Let us identify the zeros of the unique solution of (3.12). We have

(
rn−1v′(r)

)′
+ rn−1v(r)= 0⇐⇒ rn−3(r2v′′ + (n− 1)rv′ + r2v

)= 0, (3.16)

and the last equation has the form

t2u′′ + atu′ +
(
b+ ctm

)
u= 0, (3.17)

which is easily reduced to a Bessel equation (cf. [11]). Using the new independent variable

y = r(n−2)/2v (3.18)

we obtain the transformed equation

r2y′′ + r y′ +

(

r2−
(
n− 2

2

)2
)

y = 0, (3.19)
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whose solutions are well known, and thus we get
(i) v(r)= c1r(−n−2)/2J(n−2)/2(r) + c2r(−n−2)/2K(n−2)/2(r) if n is even, or

(ii) v(r)= c1r(−n−2)/2J(n−2)/2(r) + c2r(−n−2)/2J(2−n)/2(r) if n is odd,
where c1, c2 are constants and Ji, Ki are Bessel functions of order i, of the first and second
kind, respectively.

Taking into consideration the boundary conditions, the constant c2 must be zero in
both cases (otherwise we would have limr→0+ v(r)=∞), so that

v(r)= c1r
(−n−2)/2J(n−2)/2(r). (3.20)

For our boundary value problem we know that γ−1 = 2n (see [5]). If we compare
√

2n
with ξ1—the zeros of these Bessel functions are well known—we can see that

√
2n < ξ1 (3.21)

and hence,

γ−1 < λ1 (first eigenvalue of (3.10)). (3.22)

For instance, for n= 2 or n= 4 we have

√
4= 2,000 < ξ1

(
J0
)≈ 2,404,

√
8≈ 2,828 < ξ1

(
J1
)≈ 3,832.

(3.23)

By adapting the approach of [5] we will prove the following improved version of Theorem
3.1.

Theorem 3.2. Let f :R+×R→R+ and g :R+ →R be continuous functions, and λ1 defined
as above.

Suppose there exist constants A,B ∈R such that 0≤A < λ1, and

f (v, y)≤ Av+B, ∀v ≥ 0, y ∈R. (3.24)

Then the problem (1.1) has a positive radial solution.

Let φ be an eigenfunction associated with the first eigenvalue λ1. We have

−φ′′ − n− 1
r

φ′ = λ1φ, φ′(0)= 0= φ(1). (3.25)

Since our computation above shows that we may assume that φ(t) = v(ξ1r) where
v(r)= r−n−2/2Jn−2/2(r), it is clear that φ > 0 in [0,1[, (and, by the way, φ′(1) < 0). We may
therefore consider the norm

∥
∥v(r)

∥
∥
X = sup

[0,1[

∣
∣v(r)

∣
∣

φ(r)
, (3.26)
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in the Banach space

X =
{
v ∈ C

(
[0,1]

)
:

∣
∣v(r)

∣
∣

φ(r)
bounded

}
. (3.27)

Then, as stated before, we can write problem (3.1)–(3.3) as v = Sv, where

S(v)(r)=
∫ 1

0
G(r, t) f

(

v(t),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds
)
dt, for v ∈ X. (3.28)

Let T denote the operator introduced in Section 2, with p(s)= sn−1. This operator acts
in C[0,1]. Let K be the restriction of T to X and v ∈ X . Since

∣
∣v(t)

∣
∣≤ ‖v‖Xφ(t),

∫ 1

0
G(r, t)φ(t)dt = φ(r)

λ1
,

(3.29)

we have

∣
∣K(v)(r)

∣
∣≤

∫ 1

0
G(r, t)

∣
∣v(t)

∣
∣dt ≤ ‖v‖X

∫ 1

0
G(r, t)φ(t)dt (3.30)

so that
∣
∣K(v)(r)

∣
∣

φ(r)
≤ ‖v‖X

λ1
. (3.31)

Taking the least upper bound in the left-hand side of the last inequality, we obtain

∥
∥K(v)

∥
∥
X ≤

‖v‖X
λ1

. (3.32)

This estimate, which is the main reason to work in the functional space X , will be used in
the proof of Theorem 3.2 in a crucial way.

Lemma 3.3. The operator S : X → X is completely continuous.

Proof. Since the embedding i1 : X → C[0,1] is continuous, the Nemytskii operator N :
X → C[0,1] given, for each v ∈ X , by

N(v)= f

(

v,ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

(3.33)

is continuous. Moreover it takes bounded sets into bounded sets.
Now let us consider the following decomposition of T :

C[0,1]
T∗−→ C2

∗[0,1]
i2−→ C1

∗[0,1]
i3−→ X , (3.34)
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where

C2
∗[0,1]= {u∈ C2[0,1] : u′(0)= u(1)= 0

}
,

C1
∗[0,1]= {u∈ C1[0,1] : u(1)= 0

}
,

(3.35)

i2, i3 are embeddings, and T∗ is the operator T acting between those two spaces.
The operator (T∗)−1 takes u into−u′′ − ((n− 1)/r)u′; it is obviously linear continuous

and bijective and, therefore, using the open map theorem, we get that T∗ is continuous.
The embedding i2 is a well-known completely continuous operator and using L’Hospital’s
rule we can prove that i3 is also continuous. Since S = i3i2T∗i1, the conclusion of the
lemma is now straightforward. �

Proof of Theorem 3.2. The proof is similar to that of Theorem 3.1 and so we only outline
it. If f (0,ωng(0)/n)= 0, then v ≡ 0 is obviously a fixed point of the operator S, so let us
suppose that f (0,ωng(0)/n) > 0. Then there exist positive constants M and δ such that

f

(

v(t),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

≥M, ∀‖v‖X ≤ δ. (3.36)

A simple computation yields

‖Sv‖X ≥M sup
r∈]0,1[

∫ 1

0

G(r, t)
φ(r)

dt =Mε, (3.37)

if ‖v‖X ≤ δ, where we have set ε := supr∈]0,1[

∫ 1
0 (G(r, t)/φ(r))dt.

If we define Ω1 = {v ∈ X | ‖v‖X < min(Mε/2,δ)}, in ∂Ω1 we have

‖Sv‖X ≥Mε > ‖v‖X . (3.38)

Defining Ω2 = {v ∈ X | ‖v‖X < ‖TB‖X/(1−A′/λ1)} with A < A′ < λ1, then for v ∈
P∩ ∂Ω2 we have (using the positivity of T and the estimate (3.32))

‖Sv‖X ≤
∥
∥T(Av+B)

∥
∥
X ≤ ‖AKv‖X +‖TB‖X

<
A′/λ1‖TB‖X

1−A′/λ1
+
‖TB‖X −A′/λ1‖TB‖X

1−A′/λ1
= ‖v‖X .

(3.39)

Applying Krasnoselskii’s fixed point Theorem 2.3 (compression version) we find a
fixed point of S, and therefore a positive radial solution of (1.1). �

In both theorems above, as mentioned in [5], the condition on f does not depend
on the second variable, and, therefore, nothing is restraining the behaviour of g. The
arguments used there are also valid for the same problem with f (v(r),α(v)), for any con-
tinuous functional α in X .

A similar procedure allows us to prove a result in the spirit of the one considered in
[5] where g is restrained, but the condition on f is weakened.
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Theorem 3.4. Let f :R+×R→R+ and g :R+ →R be continuous functions.
Suppose there exist positive constants A < λ1, B, C, D, p, and q with pq ≤ 1 such that

f (v, y)≤ Av+B+C|y|p ∀v ≥ 0, y ∈R,

∣
∣g(v)

∣
∣≤D|v|q ∀v ∈R,

(3.40)

where φ is the eigenfunction associated with λ1.
Then the problem (1.1) has a positive radial solution.

Remark 3.5. We could have considered in (3.1) a right-hand side of the form f (r,v(r),ωn∫ 1
0 s

n−1g(v(s))ds), continuous in [0,1]×R×R. Indeed we might even work with a nonlin-
ear nonnegative function f (r,v,w) continuous in (v,w) for a.e. r ∈ [0,1], and measurable
in r for all (v,w)∈R×R. However in this case, defining

L
p
k (0,1)=

{

u : u is measurable in ]0,1[,
∫ 1

0
sk
∣
∣u(s)

∣
∣ds < +∞

}

(3.41)

we should confine ourselves to L
p
n−1(0,1) Carathéodory functions f , that is,

∀M > 0 sup
|v|+|w|≤M

∣
∣ f (·,v,w)

∣
∣∈ L

p
n−1(0,1), (3.42)

where p > n is fixed.
Under this restriction, it can still be shown that the analogue of Lemma 3.3 holds,

because we can obtain an analogue of T acting compactly from L
p
n−1(0,1) to C1∗[0,1].

4. Lower and upper solutions and monotone approximation

We will now apply the lower and upper solution method to find solutions of the boundary
value problem (3.1)–(3.3).

We should point that in [10, page 695] a monotone method approach using lower
and upper solutions is applied to an epidemic problem with diffusion. The problem con-
sidered in there is a second-order system of two PDE with a nonlocal term, under as-
sumptions related to those we use below (in particular a Lipschitz condition) and where
uniqueness is obtained as well.

We will use two different types of conditions concerning the given functions f and g,
and construct monotone convergent sequences to solutions of the problem.

Let us define the linear operator

Lu(r)=−u′′(r)− n− 1
r

u′(r) + λu(r). (4.1)

Lemma 4.1. Let λ≥ 0, and u∈ C1[0,1]∩C2]0,1[ be such that Lu(r)≥ 0 in ]0,1], u′(0)≤
0 and u(1)≥ 0. Then u(r)≥ 0 for all r ∈ [0,1].
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Proof. Towards a contradiction, assume that u(r0) < 0 for some r0 ∈]0,1[. There are two
cases to consider:

(i) u(r) < 0 in some interval ]c,d[⊂ [0,1], with u(c)= u(d)= 0.
Let us consider first the case where λ > 0. Then there must exist p ∈]c,d[ such that

u′(p)= 0 and u′′(p)≥ 0, and since u(p) < 0, we get Lu(p) < 0, which is a contradiction.
If λ= 0, integrating in [c,d], we get the contradiction

0 < dn−1u′(d)− cn−1u′(c)≤ 0; (4.2)

(ii) u(r) < 0 in some interval [0,c[⊂ [0,1], with u(c)= 0.
If u′(0) < 0, the same argument applies. If u′(0)= 0, integrating in [0,c], we get

0 >−cn−1u′(c) + λ
∫ c

0
rn−1u(r)dr ≥ 0. (4.3)

�

From now on we assume that f :R×R→R and g :R→R are continuous functions.
Consider the boundary value problem

−u′′(r)− n− 1
r

u′(r)= f

(

u(r),ωn

∫ 1

0
sn−1g

(
u(s)

)
ds

)

for 0 < r ≤ 1, (4.4)

u′(0)= 0= u(1). (4.5)

We say that α(r) is a lower solution of (4.4)-(4.5) if

−α′′(r)− n− 1
r

α′(r)≤ f

(

α(r),ωn

∫ 1

0
sn−1g

(
α(s)

)
ds

)

for 0 < r ≤ 1,

α′(0)≥ 0, α(1)≤ 0.

(4.6)

A function β satisfying the reversed inequalities is called an upper solution.
Let α0 be a lower solution and β0 an upper solution of (4.4)-(4.5). Consider the re-

striction L0 of the operator L to the subspace {u∈ C1[0,1]∩C2]0,1[: u′(0)= u(1)= 0}.
With the notations above, to get a solution of the problem (4.4)-(4.5) is equivalent to find
a fixed point of the completely continuous operator in C[0,1],

Φu≡ L−1
0

(

f

(

u,ωn

∫ 1

0
sn−1g

(
u(s)

)
ds

)

+ λu

)

. (4.7)

Let us define

Rf
(
u,v1,v2

)= f
(
u,v2

)− f
(
u,v1

)

v2− v1
, Rg

(
u1,u2

)= g
(
u2
)− g

(
u1
)

u2−u1
. (4.8)

Lemma 4.2. Let α0 be a lower solution and β0 an upper solution of (4.4)-(4.5) such that
α0 ≤ β0 in [0,1]. Suppose f (u,v) is such that

f
(
u2,v

)− f
(
u1,v

)≥−λ(u2−u1
)
, (4.9)
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for some λ≥ 0, v ∈R, u1, u2 such that for some r ∈ [0,1],α0(r)≤ u1 ≤ u2 ≤ β0(r), and Rf ,
Rg have the same sign for all u1,u2 such that α0(r)≤ u1,u2 ≤ β0(r) for some r ∈ [0,1].

Then, for any two functions u1(r),u2(r)∈ C[0,1] such that

α0(r)≤ u1(r)≤ u2(r)≤ β0(r), (4.10)

the following inequality holds:

Φu1(r)≤Φu2(r). (4.11)

Proof. The Green’s function Gλ associated with L0 is nonnegative according to Lemma
4.1. We have

Φu2(r)−Φu1(r)

=
∫ 1

0
Gλ(r, t)

[

f

(

u2,ωn

∫ 1

0
sn−1g

(
u2(s)

)
ds

)

− f

(

u1,ωn

∫ 1

0
sn−1g

(
u2(s)

)
ds

)]

dt

+
∫ 1

0
Gλ(r, t)

[

f

(

u1,ωn

∫ 1

0
sn−1g

(
u2(s)

)
ds

)

− f

(

u1,ωn

∫ 1

0
sn−1g

(
u1(s)

)
ds

)]

dt

+
∫ 1

0
Gλ(r, t)λ

(
u2−u1

)
dt

≥
∫ 1

0
Gλ(r, t)

[− λ
(
u2−u1

)
+ λ
(
u2−u1

)]
dt ≥ 0.

(4.12)

�

Remark 4.3. Clearly if f and g are C1 functions, the hypotheses of the last theorem are
satisfied provided that

∂ f

∂u
≥−λ,

∂ f

∂v
,
∂g

∂u
have the same sign. (4.13)

Theorem 4.4. Suppose that f and g satisfy the assumptions of Lemma 4.2. Let α0, β0 be
lower and upper solutions, respectively, of (4.4)-(4.5). Setting

αn+1 =Φαn, βn+1 =Φβn, ∀n∈N0, (4.14)

then

α0 ≤ α1 ≤ ··· ≤ αn ≤ ··· ≤ βn ≤ ··· ≤ β1 ≤ β0. (4.15)

The monotone bounded sequences (αn)n∈N0 and (βn)n∈N0 defined above are convergent
in C[0,1], respectively, to the minimal and maximal solutions of (4.4)-(4.5) in the interval
[α0,β0].
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Proof. Since

Lα1 = f

(

α0,ωn

∫ 1

0
sn−1g

(
α0(s)

)
ds

)

+ λα0,

Lα0 ≤ f

(

α0,ωn

∫ 1

0
sn−1g

(
α0(s)

)
ds

)

+ λα0,

(4.16)

we have

L
(
α1−α0

)≥ 0,
(
α1−α0

)′
(0)≤ 0,

(
α1−α0

)
(1)≥ 0, (4.17)

and therefore, by Lemma 4.1, we have α0 ≤ α1.
Using similar argumets, we can prove that α1 ≤ β0.
We are now able to apply Lemma 4.2 to α0 and α1 which gives α1 ≤ α2. By iteration

of this argument, we prove that (αn)n∈N0 is an increasing sequence and stays below β0.
Analogously, we prove that (βn)n∈N0 is a decreasing sequence so that

α0 ≤ α1 ≤ ··· ≤ αn ≤ ··· ≤ βn ≤ ··· ≤ β1 ≤ β0. (4.18)

Concerning the convergence of the sequences, as the cone of positive functions in
C[0,1] is normal (since 0≤ u≤ v implies ‖u‖ ≤ ‖v‖), we can use the standard argument
([14, page 283]), which gives the convergence of this iteration method to fixed points of
Φ, and these are exactly the smallest and largest fixed points in [α0,β0]⊂ C[0,1]. �

Example 4.5. Let us consider the nonlocal differential equation

−u′′(r)− 2
r
u′(r)= 4

3
πeu

∫ 1

0
s2(u(s) + 1

)
ds (4.19)

with boundary conditions u′(0)= u(1)= 0.
In this case we have n= 3, f (u,v)= euv and g(u)= (u+ 1)/3.
Consider α0 ≡ 0 and β0 = 1− r. Then

−α′′0 (r)− 2
r
α′0(r)= 0≤ 4

9
π = 4

3
πe0

∫ 1

0
s2ds (4.20)

and α′0(0)= α0(1)= 0, so α0 is a lower solution of (4.5).
For r ∈ [0,1] we have

−(r2β′0
)′ = 2r ≥ 5

9
πr2e1−r = 4

3
πr2e1−r

∫ 1

0
s2(1− s+ 1)ds, (4.21)

β′0(0)=−1 and β0(1)= 0. Therefore β0 is an upper solution of (4.5)–(4.19).
The conditions in the Theorem 4.4 are satisfied for α0 and β0, so there exists a solution

u of (4.5)–(4.19), such that

0≤ u(r)≤ 1− r, ∀r ∈ [0,1]. (4.22)
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This solution is the limit of a monotone sequence constructed as in the statement of
the theorem.

Let us now try another approach using the lower and upper solution method, where
we drop a part of the monotonicity assumptions.

Lemma 4.6. Suppose that u∈ C1[0,1]∩C2]0,1[ satisfies

−u′′(r)− n− 1
r

u′(r) + λu(r) +M
∫ 1

0
sn−1

∣
∣u(s)

∣
∣ds≥ 0 (4.23)

for some λ, M > 0 such that λ+M < 1 and u′(0) ≤ 0, u(1) ≥ 0. Then u(r) ≥ 0 for all r ∈
[0,1].

Proof. Suppose by contradiction that there exists a function u0 that satisfies the assump-
tions above and is negative at some point.

Normalising u0, we can assume that
∫ 1

0 s
n−1|u0(s)|ds = 1 without loss of generality,

which implies that ‖rn−1u0(r)‖∞ ≥ 1.
Let us consider the auxiliary problem

−w′′(r)− n− 1
r

w′(r) +M = 0, w′(0)=w(1)= 0. (4.24)

which is equivalent to

(
rn−1w′(r)

)′ = rn−1M, w′(0)=w(1)= 0. (4.25)

Integrating (4.25), we get

w(r)= M

2n

(
r2− 1

)≤ 0. (4.26)

As u0 satisfies

−u′′0 (r)− n− 1
r

u′0(r) + λu0(r) +M ≥ 0, (4.27)

with u′0(0)≤ 0, u0(1)≥ 0, we have

−(u0−w
)′′ − n− 1

r

(
u0−w

)′
+ λ
(
u0−w

)≥−λw,

(
u0−w

)′
(0)≤ 0,

(
u0−w

)
(1)≥ 0,

(4.28)

and, therefore, applying Lemma 4.1, we get u0 ≥w.
We can easily see that rn−1u0(r)≥rn−1w(r)≥−M/2n>−1, so the fact that ‖rn−1u0(r)‖∞≥1

insures that there exists a > 0 such that u0(a)≥ 1/an−1.
If u0 is negative at b > a, there exists c ∈]a,b[ such that u0(c) = 0 (we can assume

that u′0(b) = 0). Using Lagrange’s theorem, there exists d ∈ [a,c] such that u′0(d) ≤ −1/
an−1. As d ≥ a, we have dn−1u′0(d) ≤ −1 and therefore there exists e ∈ [d,b] such that
(rn−1u′0(r))′|r=e ≥ 1, (we can take e such that en−1u0(e) < 1).
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If u is negative at b < a, there exists c < a such that u0(c)= 0. As u0(a) > 1, there exists
d ∈]c,a[ such that u′0(d)≥ 1. Considering the boundary condition u′0(0)≤ 0, there exists
e ∈ [0,d[ such that u′0(e) = 0 and u′0(r) > 0 for all r ∈]e,d]. Therefore there exists f ∈
[e,d] such that u′′0 ( f )≥ 1 and u′0( f ) > 0 (we can take f such that f n−1u0( f ) < 1).

In both cases, we know that for some r0 we have (rn−1u′0(r))′|r=r0≥1, and rn−1
0 u0(r0)<1.

Therefore we would get

−(rn−1u′0(r)
)′ |r=r0 +λrn−1

0 u0
(
r0
)

+M ≤−1 + λ+M < 0 (4.29)

which is a contradiction. �

For a given function u(r)∈ C[0,1], consider the boundary value problem

−v′′(r)− n− 1
r

v′(r) + λv(r)= f

(

u(r),ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

+ λu(r), (4.30)

with v′(0)= 0= v(1). Using the operator L defined in the beginning of this section, this
equation is equivalent to the fixed point equation in C[0,1],

v = L−1
0

(

f

(

u,ωn

∫ 1

0
sn−1g

(
v(s)

)
ds

)

+ λu

)

≡Φuv. (4.31)

Remark 4.7. Using a comparison method as the one in the proof of Lemma 4.6, we get
‖L−1

0 ‖ ≤ 1/2n in C[0,1].

Lemma 4.8. If f (u,v) is k1-Lipschitz in v, g is k2-Lipschitz, and k1k2ωn < 2n2, then Φu has
a unique fixed point.

Proof. We have

∣
∣Φuv2(r)−Φuv1(r)

∣
∣≤ 1

2n
k1

∣
∣
∣
∣
∣ωn

∫ 1

0
sn−1g

(
v2(s)

)
ds−ωn

∫ 1

0
sn−1g

(
v1(s)

)
ds

∣
∣
∣
∣
∣

≤ 1
2n

k1k2ωn

∫ 1

0
sn−1

∣
∣v2(s)− v1(s)

∣
∣ds≤ k1k2ωn

2n2

∥
∥v2− v1

∥
∥∞,

(4.32)

so that

∥
∥Φuv2(r)−Φuv1(r)

∥
∥∞ ≤

k1k2ωn

2n2

∥
∥v2− v1

∥
∥∞ (4.33)

and therefore Φu is a contraction mapping. �

Lemma 4.9. Let f and g be functions defined as in Lemma 4.8, λ > 0 such that k1k2ωn + λ <
1, and suppose that

f
(
u2,v

)− f
(
u1,v

)≥−λ(u2−u1
)
, (4.34)

for all r ∈ [0,1], v ∈R, and u1 ≤ u2.
Let u1(r)≤ u2(r) be two given functions defined in [0,1] and v1(r), v2(r) the two respec-

tive solutions of (4.31). Then v1(r)≤ v2(r).
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Proof. We have

− (v2− v1
)′′ − n− 1

r

(
v2− v1

)′
+ λ
(
v2− v1

)

= λ
(
u2−u1

)
+ f

(

u2,ωn

∫ 1

0
sn−1g

(
v2
)
ds

)

− f

(

u1,ωn

∫ 1

0
sn−1g

(
v2
)
ds

)

+ f

(

u1,ωn

∫ 1

0
sn−1g

(
v2
)
ds

)

− f

(

u1,ωn

∫ 1

0
sn−1g

(
v1
)
ds

)

≥−k1k2ωn

∫ 1

0
sn−1

∣
∣v2− v1

∣
∣ds.

(4.35)

The conclusion follows from Lemma 4.6. �

Theorem 4.10. Suppose that f (u,v) is k1-Lipschitz in v, g is k2-Lipschitz. Suppose that for
some λ > 0 such that k1k2ωn + λ < 1,

f
(
u2,v

)− f
(
u1,v

)≥−λ(u2−u1
)
, (4.36)

for all v ∈R, and u1 ≤ u2. Let α0 and β0 be a lower solution and an upper solution of (4.4)-
(4.5), respectively, with α0 ≤ β0 in [0,1]. Taking (αn)n∈N0 and (βn)n∈N0 such that, according
to Lemma 4.8,

αn+1 =Φαnαn+1, βn+1 =Φβnβn+1, ∀n∈N0, (4.37)

then

α0 ≤ α1 ≤ ··· ≤ αn ≤ ··· ≤ βn ≤ ··· ≤ β1 ≤ β0. (4.38)

The monotone bounded sequences (αn)n∈N0 , (βn)n∈N0 defined above are convergent inC[0,1]
to solutions of (4.4)-(4.5).

Proof. The computation used here is similar to another one used in [9]. We have

L
(
α1−α0

)≥ f

(

α0,ωn

∫ 1

0
sn−1g

(
α1(s)

)
ds

)

− f

(

α0,ωn

∫ 1

0
sn−1g

(
α0(s)

)
ds

)

≥−k1k2ωn

∫ 1

0

∣
∣α1(s)−α0(s)

∣
∣ds

(4.39)

with

(
α1−α0

)′
(0)≤ 0,

(
α1−α0

)
(1)≥ 0, (4.40)

and, therefore, using Lemma 4.6, we get α0 ≤ α1. Let us prove that α1 ≤ β0. This comes
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from

L
(
β0−α1

)≥ f

(

β0,ωn

∫ 1

0
sn−1g

(
β0(s)

)
ds

)

+ λβ0 − f

(

α0,ωn

∫ 1

0
sn−1g

(
β0(s)

)
ds

)

+ f

(

α0,ωn

∫ 1

0
sn−1g

(
β0(s)

)
ds

)

− f

(

α0,ωn

∫ 1

0
sn−1g

(
α1(s)

)
ds

)

− λα0

≥−λ(β0−α0
)

+ λ
(
β0−α0

)− k1k2ωn

∫ 1

0

∣
∣β0(s)−α1(s)

∣
∣ds

=−k1k2ωn

∫ 1

0

∣
∣β0(s)−α1(s)

∣
∣ds.

(4.41)

Applying this lemma in the following iterations, we prove that

α0 ≤ α1 ≤ ··· ≤ αn ≤ ··· ≤ βn ≤ ··· ≤ β1 ≤ β0 (4.42)

as in the proof of Theorem 4.4.
Concerning the convergence of the sequences, there is a slight difference from the usual

method, because in each iteration we use a different operator. But, as

αn+1(r)= L−1
0

(

f
(
αn,ωn

∫ 1

0
sn−1g

(
αn+1(s)

)
ds

)

+ λαn

)

(4.43)

and ‖αn‖∞ ≤max(‖α0‖∞,‖β0‖∞), we have that ‖αn+1‖C1 is bounded, and, therefore, us-
ing Àrzela-Ascoli Theorem, there exists a convergent subsequence of αn. Considering the
monotonicity of αn, we get the conclusion by the standard argument. �

Remark 4.11. It is not difficult to prove that the monotone sequences defined in Theorem
4.10 converge in fact to extremal solutions of the boundary value problem (4.4)-(4.5).

Example 4.12. Suppose that

liminf
(a,b)→(0+,0+)

f
(
a, (ωn/n)g(b)

)

a
> λ1. (4.44)

and there exists k > 0 such that f (k,ωng(k)/n) < 0. Suppose in addition that f and g
satisfy the assumptions of Theorem 4.10.

Then there exists a positive solution of (4.4)-(4.5). This solution may be approximated
by monotone sequences. In fact, a simple calculation shows that for ε > 0 small enough,
εφ is a positive lower solution of (4.4)-(4.5). The constant k is clearly an upper solution.
The statement follows.
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