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We prove a linear and a nonlinear generalization of the Lax-Milgram theorem. In partic-
ular, we give sufficient conditions for a real-valued function defined on the product of a
reflexive Banach space and a normed space to represent all bounded linear functionals of
the latter. We also give two applications to singular differential equations.

Copyright © 2007 D. Drivaliaris and N. Yannakakis. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The following generalization of the Lax-Milgram theorem was proved recently by An et al.
in [1].

Theorem 1.1. Let X be a reflexive Banach space over R, let {Xn}n∈N be an increasing se-
quence of closed subspaces of X and V =⋃n∈NXn. Suppose that

A : X ×V −→R (1.1)

is a real-valued function on X ×V for which the following hold:
(a) An = A|Xn×Xn is a bounded bilinear form, for all n∈N;
(b) A(·,v) is a bounded linear functional on X , for all v ∈V ;
(c) A is coercive on V , that is, there exists c > 0 such that

A(v,v)≥ c‖v‖2, (1.2)

for all v ∈V .
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Then, for each bounded linear functional v∗ on V , there exists x ∈ X such that

A(x,v)= 〈v∗,v
〉

, (1.3)

for all v ∈V .

In this paper our aim is to prove a linear extension and a nonlinear extension of
Theorem 1.1. In the linear case, we use a variant of a theorem due to Hayden [2, 3],
and thus manage to substitute the coercivity condition in (c) of the previous theorem
with a more general inf-sup condition. In the nonlinear case, we appropriately modify
the notion of type M operator and use a surjectivity result for monotone, hemicontinu-
ous, coercive operators. We also present two examples to illustrate the applicability of our
results.

All Banach spaces considered are over R. Given a Banach space X , X∗ will denote its
dual and 〈·,·〉 will denote their duality product. Moreover, if M is a subset of X , then
M⊥ will denote its annihilator in X∗ and if N is a subset of X∗, then ⊥N will denote its
preannihilator in X .

2. The linear case

To prove our main result for the linear case, we need the following lemma which is a
variant of [2, Theorem 12] and [3, Theorem 1].

Lemma 2.1. Let X be a reflexive Banach space, let Y be a Banach space and let

A : X ×Y −→R (2.1)

be a bounded, bilinear form satisfying the following two conditions:
(a) A is nondegenerate with respect to the second variable, that is, for each y ∈ Y \ {0},

there exists x ∈ X with A(x, y) 
= 0;
(b) there exists c > 0 such that

sup
‖y‖=1

∣
∣A(x, y)

∣
∣≥ c‖x‖, (2.2)

for all x ∈ X .
Then, for every y∗ ∈ Y∗, there exists a unique x ∈ X with

A(x, y)= 〈y∗, y
〉

, (2.3)

for all y ∈ Y .

Proof. Let T : X → Y∗ with 〈Tx, y〉 = A(x, y), for all x ∈ X and all y ∈ Y . Obviously ,T
is a bounded linear map. Since, by (b), ‖Tx‖ ≥ c‖x‖, for all x ∈ X , T is one to one. To
complete the proof, we need to show that T is onto.

Since A is nondegenerate with respect to the second variable, we have that

⊥T(X)= {y ∈ Y | A(x, y)= 0, ∀x ∈ X
}= {0}. (2.4)
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Hence

(⊥T(X)
)⊥ = Y∗, (2.5)

and so by [4, Proposition 2.6.6],

T(X)
w∗ = Y∗. (2.6)

Thus to show that T maps X onto Y∗, we need to prove that T(X) is w∗-closed in Y∗. To
see that, let {Txλ}λ∈Λ be a net in T(X) and let y∗ be an element of Y∗ such that

Txλ
w∗−→ y∗. (2.7)

Without loss of generality, we may assume, using the special case of the Krein-Šmulian
theorem on w∗-closed linear subspaces (see [4, Corollary 2.7.12]), the proof of which
is originally due to Banach [5, Theorem 5, page 124] for the separable case and due to
Dieudonné [6, Theorem 23] for the general case, that {Txλ}λ∈Λ is bounded. Thus, since
‖Tx‖ ≥ c‖x‖ for all x ∈ X , the net {xλ}λ∈Λ is also bounded. Hence, since X is reflexive,
there exist a subnet {xλμ}μ∈M and an element x of X such that {xλμ}μ∈M converges weakly

to x. Since T is w −w∗ continuous, Txλμ
w∗→ Tx. Hence Tx = y∗, and so T(X) is w∗-

closed. �

Remark 2.2. An alternative proof of the previous lemma can be obtained using the closed
range theorem.

We are now in a position to prove our main result for the linear case.

Theorem 2.3. Let X be a reflexive Banach space, let Y be a Banach space, let Λ be a directed
set, let {Xλ}λ∈Λ be a family of closed subspaces of X , let {Yλ}λ∈Λ be an upwards directed
family of closed subspaces of Y , and let V =⋃λ∈ΛYλ. Suppose that

A : X ×V −→R (2.8)

is a function for which the following hold:
(a) Aλ =A|Xλ×Yλ is a bounded bilinear form, for all λ∈Λ;
(b) A(·,v) is a bounded linear functional on X , for all v ∈V ;
(c) Aλ is nondegenerate with respect to the second variable, for all λ∈Λ;
(d) there exists c > 0 such that for all λ∈Λ,

sup
y∈Yλ,‖y‖=1

∣
∣Aλ(x, y)

∣
∣≥ c‖x‖, (2.9)

for all x ∈ Xλ.
Then, for each bounded linear functional v∗ on V , there exists x ∈ X such that

A(x,v)= 〈v∗,v
〉

, (2.10)

for all v ∈V .
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Proof. Let v∗ ∈ V∗, and for each λ ∈ Λ, let v∗λ = v∗|Yλ . For all λ ∈ Λ, v∗λ is a bounded
linear functional on Yλ. By hypothesis, for all λ ∈ Λ, Aλ is a bounded bilinear form on
Xλ×Yλ satisfying the two conditions of Lemma 2.1. Since for all λ∈ Λ, Xλ is a reflexive
Banach space, we get that for each λ ∈ Λ, there exists a unique xλ such that Aλ(xλ, y) =
〈v∗λ , y〉, for all y ∈ Yλ. Since A satisfies condition (d), we get that for all λ∈Λ,

c‖xλ‖ ≤ sup
y∈Yλ,‖y‖=1

∣
∣Aλ(xλ, y)

∣
∣= sup

y∈Yλ,‖y‖=1

∣
∣
〈
v∗λ , y

〉∣
∣≤ ‖v∗‖. (2.11)

So {xλ}λ∈Λ is a bounded net in X . Since X is reflexive, there exist a subnet {xλμ}μ∈M of
{xλ}λ∈Λ and x in X such that {xλμ}μ∈M converges weakly to x.

We are going to prove that A(x,v) = 〈v∗,v〉, for all v ∈ V . Take v ∈ V . Then there
exists some λ0 ∈Λ with v ∈ Yλ0 . Since {xλμ}μ∈M is a subnet of {xλ}λ∈Λ, there exists some
μ0 ∈M with λμ0 ≥ λ0. Hence, since the family {Yλ}λ∈Λ is upwards directed,

v ∈ Yλμ , (2.12)

for all μ≥ μ0. Thus, for all μ≥ μ0,

Aλμ

(
xλμ ,v

)= 〈v∗λμ ,v
〉
. (2.13)

Therefore

lim
μ∈M

A
(
xλμ ,v

)= 〈v∗,v
〉
. (2.14)

Since A(·,v) is a bounded linear functional on X ,

lim
μ∈M

A
(
xλμ ,v

)= A(x,v). (2.15)

Hence A(x,v)= 〈v∗,v〉. �

The following example illustrates the possible applicability of Theorem 2.3.

Example 2.4. Let a∈ C1(0,1) be a decreasing function with limt→0 a(t)=∞ and a(t)≥ 0,
for all t ∈ (0,1). We will establish the existence of a solution for the following Cauchy
problem:

u′ + a(t)u= f a.e. on (0,1),

u(0)= 0,
(2.16)

where f ∈ L2(0,1).
Let X = {u ∈ H1(0,1) | u(0) = 0} be equipped with the norm ‖u‖ = (

∫ 1
0 |u′|2dt)1/2,

which is equivalent to the original Sobolev norm, and Y = L2(0,1). Note that X is a re-
flexive Banach space, being a closed subspace of H1(0,1). Let {αn}n∈N be a decreasing
sequence in (0,1) with limn→∞αn = 0. Define

Xn =
{
u∈H1(αn,1

) | u(αn
)= 0

}
, Yn = L2(αn,1

)
(2.17)
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(we can consider Xn and Yn as closed subspaces of X and Y , resp., by extending their
elements by zero outside (αn,1)). Also let V =⋃∞n=1Yn.

Let A : X ×V →R be the bilinear map defined by

A(u,v)=
∫ 1

0
u′vdt+

∫ 1

0
a(t)uvdt. (2.18)

A is well defined and A(·,v) is a bounded linear functional on X for any v ∈V .
Let An = A|Xn×Yn . An be a bounded bilinear form since

∣
∣An(u,v)

∣
∣≤ (1 +Mn

)‖u‖Xn‖v‖Yn , (2.19)

where Mn is the bound of a on [αn,1]. It should be noted that A is not bounded on the
whole of X ×V .

To show that An is nondegenerate, let v ∈ Yn and assume that An(u,v)= 0 for all u∈
Xn, that is,

∫ 1

αn

(
u′ + a(t)u

)
vdt = 0, ∀u∈ Xn. (2.20)

It is easy to see that the above implies that

∫ 1

αn
wvdt = 0, (2.21)

for any continuous function w, and therefore v = 0.
We next show that

sup
‖v‖=1, v∈Yn

∣
∣An(u,v)

∣
∣≥ ‖u‖Xn . (2.22)

Define Tn : Xn→ Y∗n by 〈Tnu,v〉 =An(u,v). Tn is a well-defined bounded linear operator
and Tnu= u′ + a(t)u. Hence

∥
∥Tnu

∥
∥2 =

∫ 1

αn

∣
∣u′ + a(t)u

∣
∣2
dt

=
∫ 1

αn
|u′|2dt+

∫ 1

αn
a2(t)|u|2dt+

∫ 1

αn
a(t)(u2)′dt

=
∫ 1

αn
|u′|2dt+

∫ 1

αn

(
a2(t)− a′(t)

)|u|2dt+ a(1)u2(1)≥ ‖u‖2
Xn

,

(2.23)

since u(αn)= 0, a is decreasing and a(t)≥ 0 for all t ∈ (0,1).
All the hypotheses of Theorem 2.3 are hence satisfied and so if F ∈ V∗ is defined by

F(v)= ∫ 1
0 f vdt, then there exists u∈ X such that

A(u,v)= F(v), ∀v ∈V. (2.24)

Thus u satisfies (2.16).
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3. The nonlinear case

We start by recalling some well-known definitions.

Definition 3.1. Let T : X → X∗ be an operator. Then T is said to be
(i) monotone if 〈Tx−Ty,x− y〉 ≥ 0, for all x, y ∈ X ;

(ii) hemicontinuous if for all x, y ∈ X , T(x+ ty)
w→ Tx as t→ 0+;

(iii) coercive if

lim
‖x‖→∞

〈Tx,x〉
‖x‖ =∞. (3.1)

We also need the following generalization of the notion of type M operator (for the
classical definition, see [7] or [8]).

Definition 3.2. Let X be a Banach space, let V be a linear subspace of X , and let

A : X ×V −→R (3.2)

be a function. Then A is said to be of type M with respect to V if for any net {vλ}λ∈Λ in
V ,x ∈ X and v∗ ∈V∗;

(a) vλ
w→ x;

(b) A(vλ,v)→ 〈v∗,v〉, for all v ∈V ;
(c) A(vλ,vλ)→ 〈v̂∗,x〉, where v̂∗ is the extension of v∗ on the closure of V ,

imply that A(x,v)= 〈v∗,v〉, for all v ∈V .

Our result is the following.

Theorem 3.3. Let X be a reflexive Banach space, let Λ be a directed set, let {Xλ}λ∈Λ be an
upwards directed family of closed subspaces of X , and let V =⋃λ∈ΛXλ. Suppose that

A : X ×V −→R (3.3)

is a function for which the following hold:
(a) A is of type M with respect to V ;
(b) lim‖x‖→∞A(x,x)/‖x‖ =∞;
(c) Aλ(x,·) ∈ X∗λ , for all λ ∈ Λ and all x ∈ Xλ, where Aλ is the restriction of A on

Xλ×Xλ;
(d) the operator Tλ : Xλ→ X∗λ , defined by 〈Tλx, y〉 =Aλ(x, y) for all x, y ∈ Xλ, is mono-

tone and hemicontinuous for all λ∈Λ.
Then for each v∗ ∈V∗, there exists x ∈ X such that

A(x,v)= 〈v∗,v
〉

, (3.4)

for all v ∈V .

Proof. As in the proof of Theorem 2.3, for each λ ∈ Λ, let v∗λ = v∗|Xλ . By the Browder-
Minty theorem (see [8, Theorem 26.A]), a monotone, coercive, and hemicontinuous op-
erator, from a real reflexive Banach space into its dual, is onto. Thus, by (b) and (d), for
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each λ∈Λ, the operator Tλ is onto and so there exists xλ ∈ Xλ such that

Aλ
(
xλ, y

)= 〈v∗λ , y
〉

, (3.5)

for all y ∈ Xλ. In particular Aλ(xλ,xλ) = 〈v∗λ ,xλ〉, and hence by (b), we get that the net
{xλ}λ∈Λ is bounded. Continuing as in the proof of Theorem 2.3 and applying the fact
that A is of type M with respect to V , we get the required result. �

Remark 3.4. It should be noted that since a crucial point in the above proof is the existence
and boundedness of the net {xλ}λ∈Λ, variants of the previous theorem could be obtained
using in (b) and (d) alternative conditions corresponding to other surjectivity results.

We now apply Theorem 3.3 to a singular Dirichlet problem.

Example 3.5. Let Ω be a bounded domain in RN . We consider the Dirichlet problem

−
N∑

i=1

∂

∂xi

(

a(x)
∂u

∂xi

)

+ f (x,u)= 0 a.e. on Ω,

u= 0 on ∂Ω,

(3.6)

where a∈ L∞loc(Ω) and there exists c1 > 0 such that a(x)≥ c1 a.e. on Ω, and f : Ω×R→
R is a monotone increasing (with respect to its second variable for each fixed x ∈ Ω)
Carathéodory function, for which there exist h∈ L2(Ω) and c2 > 0 such that

∣
∣ f (x,u)

∣
∣≤ h(x) + c2|u|, ∀x ∈Ω, u∈R. (3.7)

We will show that if the above hypotheses on a and f hold, then problem (3.6) has a weak
solution, that is, that there exists a function u∈H1

0 (Ω) with

∫

Ω
a(x)∇u∇vdx+

∫

Ω
f (x,u)vdx = 0, ∀v ∈ C∞0 (Ω). (3.8)

To this end, let X =H1
0 (Ω), let {Ωn}n∈N be an increasing sequence of open subsets of

Ω such that Ωn ⊆Ωn+1 and

∞⋃

n=1

Ωn =Ω (3.9)

and Xn = H1
0 (Ωn), for each n ∈ N. Observe that we can consider each Xn as a closed

subspace of X by extending its elements by zero outside Ωn and let

V =
∞⋃

n=1

Xn. (3.10)

Finally, let

A : X ×V −→R (3.11)
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be the function defined by

A(u,v)=
∫

Ω
a(x)∇u∇vdx+

∫

Ω
f (x,u)vdx. (3.12)

By a(x)≥ c1 a.e. on Ω, the monotonicity of f , and the growth condition (3.7), we have

A(u,u)=
∫

Ω
a(x)|∇u|2dx+

∫

Ω
f (x,u)udx

=
∫

Ω
a(x)|∇u|2dx+

∫

Ω

(
f (x,u)− f (x,0)

)
udx+

∫

Ω
f (x,0)udx

≥ c1‖∇u‖2
L2(Ω)−‖h‖L2(Ω)‖u‖H1

0 (Ω).

(3.13)

Since by the Poincaré inequality ‖∇u‖L2(Ω) is equivalent to the norm of X , it follows that
A is coercive.

Let An = A|Xn×Xn . Then, since a ∈ L∞loc(Ω), it follows that a ∈ L∞(Ωn), for all n ∈ N.
Combining this with (3.7), we have that

∣
∣An(u,v)

∣
∣≤ c(u,n)‖v‖Xn , (3.14)

where c(u,n) is a positive constant depending on n and u. So the operator

Tn : Xn −→ X∗n , (3.15)

with 〈Tnu,v〉Xn =An(u,v), is well defined for all n∈N. Let

T1,n,T2,n : Xn −→ X∗n (3.16)

be the operators defined by

〈
T1,nu,v

〉
Xn
=
∫

Ωn

a(x)∇u∇vdx,
〈
T2,nu,v

〉
Xn
=
∫

Ωn

f (x,u)vdx. (3.17)

Then T1,n is a monotone bounded linear operator. Using the monotonicity of f , it is easy
to see that T2,n is monotone. Finally, recalling that the Nemytskii operator corresponding
to f is continuous (see, e.g., [8, Proposition 26.7]) and that the embedding of Xn into
L2(Ωn) is compact, we have that T2,n is hemicontinuous. Thus Tn = T1,n +T2,n is mono-
tone and hemicontinuous for all n∈N.

To finish the proof, let un
w→ u in X . Then since for all v ∈V ,

u �−→
∫

Ω
a(x)∇u∇vdx (3.18)

is a bounded linear functional and, by the continuity of the Nemytskii operator and the
compactness of the embedding of X into L2(Ω),

∫

Ω
f
(
x,un

)
vdx −→

∫

Ω
f (x,u)vdx, (3.19)



D. Drivaliaris and N. Yannakakis 9

for all v ∈V , we get that

A
(
un,v

)−→ A(u,v), ∀v ∈V. (3.20)

Thus A is of type M with respect to V . Applying now Theorem 3.3 we get that there exists
u∈ X such that A(u,v)= 0 for all v ∈V . Observing that C∞0 (Ω) is contained in V , we get
that u is the required weak solution of (3.6).
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