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We study existence of positive solutions of the nonlinear system −(p1(t, u, v)u′)′ = h1(t)f1(t, u, v)
in (0, 1); −(p2(t, u, v)v′)′ = h2(t)f2(t, u, v) in (0, 1); u(0) = u(1) = v(0) = v(1) = 0, where
p1(t, u, v) = 1/(a1(t) + c1g1(u, v)) and p2(t, u, v) = 1/(a2(t) + c2g2(u, v)). Here, it is assumed that g1,
g2 are nonnegative continuous functions, a1(t), a2(t) are positive continuous functions, c1, c2 ≥ 0,
h1, h2 ∈ L1(0, 1), and that the nonlinearities f1, f2 satisfy superlinear hypotheses at zero and +∞.
The existence of solutions will be obtained using a combination among the method of truncation, a
priori bounded and Krasnosel’skii well-known result on fixed point indices in cones. The main con-
tribution here is that we provide a treatment to the above system considering differential operators
with nonlinear coefficients. Observe that these coefficients may not necessarily be bounded from
below by a positive bound which is independent of u and v.
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Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

We study existence of positive solutions for the following nonlinear system of second-order
ordinary differential equations:

−
(

u′

a1(t) + c1g1(u, v)

)′
= h1(t)f1(t, u, v) in (0, 1),

−
(

v′

a2(t) + c2g2(u, v)

)′
= h2(t)f2(t, u, v) in (0, 1),

u(0) = u(1) = v(0) = v(1) = 0,

(1.1)

where c1, c2 are nonnegatives constants, the functions a1, a2 : [0, 1]→(0,+∞) are continuous,
the functions f1, f2 : [0, 1] × [0,+∞)2→[0,+∞) are continuous, and h1, h2 ∈ L1(0, 1). We will
suppose the following four hypotheses.
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2 Boundary Value Problems

(H1)We have

lim
u+v→0

f1(t, u, v)
u + v

= 0, lim
u+v→0

f2(t, u, v)
u + v

= 0, (1.2)

uniformly for all t ∈ [0, 1].
(H2) There exist p, q > 1, ηi > 0, and 0 < αi < βi < 1 for i = 1, 2, such that

f1(t, u, v) ≥ η1u
p ∀u ≥ 0, t ∈ (

α1, β1
)
,

f2(t, u, v) ≥ η2v
q ∀v ≥ 0, t ∈ (

α2, β2
)
.

(1.3)

(H3) The functions g1, g2 : [0,+∞)2→[0,+∞) are continuous and

lim
u→+∞

gi(u, u) = +∞, for i = 1, 2. (1.4)

In addition, we suppose that there exists an n∗ ∈ N such that g1, g2 are nondecreasing for all
u2 + v2 ≥ n2

∗. Here, g1, g2 are nondecreasing, meaning that

gi
(
u1, v1

) ≤ gi
(
u2, v2

)
, for i = 1, 2, (1.5)

whenever (u1, v1) ≤ (u2, v2), where the inequality is understood inside every component.
(H4)We have

lim
n→+∞

g1(n, n)
nr/(p+1)

= 0, lim
n→+∞

g2(n, n)
nr/(q+1)

= 0, (1.6)

where r = min{p − 1, q − 1}.
Here are some comments on the above hypotheses. Hypothesis (H1) is a superlinear

condition at 0 and Hypothesis (H2) is a local superlinear condition at +∞. About hypothesis
(H3), the fact that g1, g2 are unbounded leads us to use the strategy of considering a truncation
system. Note that if g1, g2 are bounded, we would not need to use that system. Hypothesis
(H4) allows us to have a control on the nonlinear operator in system 1.1.

We remark that, the case when a1(s) = a2(s) = 1 and g1(u, v) = g2(u, v) = 0, systems
of type (1.1) have been extensively studied in the literature under different sets of conditions
on the nonlinearities. For instance, assuming superlinear hypothesis, many authors have ob-
tained multiplicity of solutions with applications to elliptic systems in annular domains. For
homogeneous Dirichlet boundary conditions, see de Figueiredo and Ubilla [1], Conti et al.
[2], Dunninger and Wang [3, 4] and Wang [5]. For nonhomogeneous Dirichlet boundary con-
ditions, see Lee [6] and do Ó et al. [7]. Our main goal is to study systems of type (1.1) by
considering local superlinear assumptions at +∞ and global superlinear at zero.

The main result is the following.

Theorem 1.1. Assume hypotheses (H1) through (H4). Then system (1.1) has at least one positive solu-
tion.

One of the main difficulties here lies in the facts that the coefficients of the differential
operators of System (1.1) are nonlinear and that they may not necessarily be bounded from
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below by a positive bound which is independent of u and v. In order to overcome these diffi-
culties, we introduce a truncation of system (1.1) depending on n so that the new coefficient
of the truncation system becomes bounded from below by a uniformly positive constant. (See
(2.2).) This allows us to use a fixed point argument for the truncation system. Finally, we show
the main result proving that, for n sufficiently large, the solutions of the truncation system are
solutions of system (1.1). Observe that, in general, this system has a nonvariational structure.

The paper is organized as follows. In Section 2, we obtain the a priori bounds for the
truncation system. In Section 3, we show that the a priori bounds imply a nonexistence result
for system (2.4). In Section 4, we introduce a operator of fixed point in cones. In Section 5, we
show the existence of positive solutions of the truncation system. In Section 6, we prove the
main result, that is, we show the existence of a solution of system (1.1). Finally, in Section 7 we
give some remarks.

2. A priori bounds for a truncation system

In this section, we establish a priori bounds for the truncation system. The hypothesis (H3)
allows us to find a n∗∗ ∈ N so that n ≥ n∗∗ implies

g1(u, v) ≤ g1(n, n), g2(u, v) ≤ g2(n, n), (2.1)

for all u2 + v2 ≤ n2. Thus, we can define for every n ∈ N, such that n ≥ n∗∗, the functions

gi,n(u, v) =

⎧⎪⎨
⎪⎩
gi(u, v) if u2 + v2 ≤ n2,

gi

(
nu√

u2 + v2
,

nv√
u2 + v2

)
if u2 + v2 ≥ n2,

(2.2)

for i = 1, 2.
In the next section, we will prove the existence of a positive solution for the following

truncation system:

−
(

u′

a1(t) + c1g1,n(u, v)

)′
= h1(t)f1(t, u, v) in (0, 1),

−
(

v′

a2(t) + c2g2,n(u, v)

)′
= h2(t)f2(t, u, v) in (0, 1),

u(0) = u(1) = v(0) = v(1) = 0.

(2.3)

For this purpose we need to establish a priori bounds for solutions of a family of systems
parameterized by λ ≥ 0. In fact, for every n ≥ n∗∗, consider the family

−
(

u′

a1(t) + c1g1,n(u, v)

)′
= h1(t)f1(t, u, v) + λ in (0, 1),

−
(

v′

a2(t) + c2g2,n(u, v)

)′
= h2(t)f2(t, u, v) + λ in (0, 1),

u(0) = u(1) = v(0) = v(1) = 0.

(2.4)
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It is not difficult to prove that every solution of system (2.4) satisfies

u(t) =
∫1

0
K1,n(t, s)

(
h1(s)f1

(
s, u(s), v(s)

)
+ λ

)
ds,

v(t) =
∫1

0
K2,n(t, s)

(
h2(s)f2

(
s, u(s), v(s)

)
+ λ

)
ds.

(2.5)

Here, Ki,n(t, s), i = 1, 2 are Green’s functions given by

Ki,n(t, s)=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
ρi

∫ t

0

(
ai(τ)+cigi,n

(
u(τ), v(τ)

)) ∫1

s

(
ai(τ) + cigi,n

(
u(τ), v(τ)

))
if 0 ≤ t ≤ s ≤ 1,

1
ρi

∫s

0

(
ai(τ)+cigi,n

(
u(τ), v(τ)

)) ∫1

t

(
ai(τ) + cigi,n

(
u(τ), v(τ)

))
if 0 ≤ s ≤ t ≤ 1,

(2.6)

where ρi denotes ρi =
∫1
0 (ai(τ) + cigi,n(u(τ))).

In order to establish the a priori bound result we need the following two lemmas.

Lemma 2.1. Assume hypotheses (H2) and (H3). Then every solution of system (2.4) satisfies

u(t) ≥ q1(t)‖u‖∞, v(t) ≥ q2(t)‖v‖∞, ∀s ∈ [0, 1], (2.7)

where qi(t) = (min ai)t(1 − t)/(‖ai‖∞ + cigi(n, n)) with i = 1, 2.

Proof. A simple computation shows that every solution (u, v) satisfies

u(s) ≥ q̂1(s, u, v)‖u‖∞, v(s) ≥ q̂2(s, u, v)‖v‖∞, ∀s ∈ [0, 1], (2.8)

where q̂i(s, u, v) = (1/ρi)min
∫s
0(ai(τ) + cigi,n(u(τ), v(τ))),

∫1
s (ai(τ) + cigi,n(u(τ), v(τ)))}.

Since

q̂i(s, u, v) ≥
(
min ai

)
s(1 − s)∥∥ai

∥∥
∞ + cigi(n, n)

, for i = 1, 2, (2.9)

we have that (2.7) is proved.

Lemma 2.2. Assume hypotheses (H2) and (H3). Then Green’s functions satisfy

Ki,n(t, s) ≥
(
minai

)2
∥∥ai

∥∥
∞ + cigi(n, n)

G(t, s), i = 1, 2, (2.10)

where

G(t, s) =

{
(1 − t)s, 0 ≤ s < t ≤ 1,

(1 − s)t, 0 ≤ t ≤ s ≤ 1.
(2.11)
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Theorem 2.3. Assume hypotheses (H2) and (H3). Then there is a positive constant B1 which does not
depend on λ, such that for every solution (u, v) of system (2.4), we have

∥∥(u, v)∥∥ ≤ B1, (2.12)

where ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞, with ‖u‖∞ = maxt∈[0,1]|u(t)|.

Proof. By Lemmas 2.1 and 2.2, every solution (u, v) of system (2.4) satisfies

∥∥(u, v)∥∥ ≥
(
min a1

)2
η1∥∥a1

∥∥
∞ + c1g1(n, n)

∫β1

α1

h1(s)up(s)ds +

(
min a2

)2
η2∥∥a2

∥∥
∞ + c2g2(n, n)

∫β2

α2

h2(s)vq(s)ds

≥ ĉ
(‖u‖p∞ + ‖v‖q∞

)
,

(2.13)

where ĉ = min{((mina1)p+2α
p

1(1−β1)pη1/((‖a1‖∞+c1g1(n, n))p+1))
∫β1
α1
h1(s)ds, ((mina2)q+2α

q

2(1−
β2)

qη2/((‖a2‖∞ + c2g2(n, n))
q+1))

∫β2
α2
h2(s)ds}.

Thus,

1 ≥ ĉ
‖u‖p∞ + ‖v‖q∞
‖u‖∞ + ‖v‖∞ (2.14)

which proves (2.12).

3. A nonexistence result

In this section, we see that the a priori bounds imply a nonexistence result for system (2.4).

Theorem 3.1. System (2.4) has no solution for all λ sufficiently large.

Proof. Let (u, v) be a solution of system (2.4), in other words,

u(t) =
∫1

0
K1,n(t, s)

(
h1(s)f1

(
s, u(s), v(s)

)
+ λ

)
ds,

v(t) =
∫1

0
K2,n(t, s)

(
h2(s)f2

(
s, u(s), v(s)

)
+ λ

)
ds.

(3.1)

Then,

∥∥(u, v)∥∥ ≥ λ

(∫1

0
K1,n

(
s,

1
2

)
ds +

∫1

0
K2,n

(
s,

1
2

)
ds

)
. (3.2)

By Theorem 2.3, we know that ‖(u, v)‖ ≤ B1, thus

λ ≤ B1∫1
0 K1,n(s, 1/2)ds +

∫1
0 K2,n(s, 1/2)ds

, (3.3)

which proves Theorem 3.1.
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4. Fixed point operators

Consider the following Banach space:

X = C([0, 1],R) × C([0, 1],R)
, (4.1)

endowed with the norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞,where ‖u‖∞ = maxt∈[0,1]|u(t)|. Define the cone
C by

C =
{
(u, v) ∈ X : (u, v)(0) = (u, v)(1) = 0, y(u, v) ≥ 0

}
, (4.2)

and the operator Fλ : X→X by

Fλ(u, v)(s) =
(Aλ(u, v)(s),Bλ(u, v)(s)

)
, for s ∈ [0, 1], (4.3)

where

Aλ(u, v)(s) =
∫1

0
K1,n(s, τ)

(
h1(τ)f1

(
τ, u(τ), v(τ)

)
+ λ

)
dτ,

Bλ(u, v)(s) =
∫1

0
K2,n(s, τ)

(
h2(τ)f2

(
τ, u(τ), v(τ)

)
+ λ

)
dτ.

(4.4)

Note that a simple calculation shows us that the fixed points of the operator Fλ are the
positive solutions of system (2.4).

Lemma 4.1. The operator Fλ : X→X is compact, and the cone C is invariant under Fλ.

Proof Outline. The compactness ofFλ follows from the well-known Arzelá-Ascoli theorem. The
invariance of the cone C is a consequence of the fact that the nonlinearities are nonnegative.

In Section 5, we will give an existence result of the truncation system (2.3). The proof
will be based on the following well-known fixed point result due to Krasnosel’skii, which we
state without proof (compare [8, 9]).

Lemma 4.2. Let C be a cone in a Banach space, and let F : C→C be a compact operator such that
F(0) = 0. Suppose there exists an r > 0 verifying

(a) u/= tF(u), for all ‖u‖ = r and t ∈ [0, 1]; suppose further that there exist a compact homotopy
H : [0, 1] × C→C and an R > r such that

(b) F(u) = H(0, u), for all u ∈ C;

(c) H(t, u)/=u, for all ‖u‖ = R and t ∈ [0, 1];

(d) H(1, u)/=u, for all ‖u‖ ≤ R.

Then F has a fixed point u0 verifying r < ‖u0‖ < R.
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5. Existence result of truncation system (2.3)

The following is an existence result of the truncation system.

Theorem 5.1. Assume hipotheses (H1) through (H3). Then there exists a positive solution of system
(2.3).

Proof. We will verify the hypotheses of Lemma 4.2. Let C the cone defined in Section 4 and
define the homotopyH : [0, 1] × C→C by

H(
t, (u, v)

)
(s) =

(Aλ(t, u, v)(s),Bλ(t, u, v)(s)
)
, for s, t ∈ [0, 1], (5.1)

where λ is a sufficiently large parameter, and where

Aλ(t, u, v)(s) =
∫1

0
K1,n(s, τ)

(
h1(τ)f1

(
τ, u(τ), v(τ)

)
+ tλ

)
dτ,

Bλ(t, u, v)(s) =
∫1

0
K2,n(s, τ)

(
h2(τ)f2

(
τ, u(τ), v(τ)

)
+ tλ

)
dτ.

(5.2)

Note thatH(t, u, v) is a compact homotopy and thatH(0, u, v) = F0(u, v), which verifies (b).
On the other hand, we have

∥∥F0(u, v)
∥∥ ≤ (∥∥a1

∥∥
∞ + c1g1(n, n)

) ∫1

0
h1(τ)

f1
(
τ, u(τ), v(τ)

)
u(τ) + v(τ)

dτ
∥∥(u, v)∥∥

+
(∥∥a2

∥∥
∞ + c2g2(n, n)

) ∫1

0
h2(τ)

f2
(
τ, u(τ), v(τ)

)
u(τ) + v(τ)

dτ
∥∥(u, v)∥∥.

(5.3)

Taking ‖(u, v)‖ = δ with δ > 0 sufficiently small, from hypothesis, we have

∥∥F0(u, v)
∥∥ <

∥∥(u, v)∥∥, (5.4)

which verifies (a) of Lemma 4.2. By Theorem 2.3, we clearly have (c).
Finally, choosing λ sufficiently large in the homotopy H(t, u), we see that condition (d)

of Lemma 4.2 is satisfied by Theorem 3.1. The proof of Theorem 5.1 is now complete.

6. Proof of main result Theorem 1.1

The proof of Theorem 1.1 is direct consequence of the following.

Theorem 6.1. Assume hypotheses (H1) through (H4). Then there exists an n0 ∈ N such that every
solution (u, v) of system (2.4) with n > n∗∗ satisfies

∥∥(u, v)∥∥ < n2
0. (6.1)
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Proof. For otherwise, there would exist a sequence of solutions {(un, vn)}n of system (2.4) such
that ‖(un, vn)‖ ≥ n2, for all n ∈ N with n > n∗∗. Using the same argument as in Theorem 2.3, we
would obtain the estimate

1 ≥ min

{(
min a1

)p+2
α
p

1

(
1 − β1

)p
η1(∥∥a1

∥∥
∞ + c1g1(n, n)

)p+1
∫β1

α1

h1(s)ds,

(
min a2

)q+2
α
q

2

(
1 − β2

)q
η2(∥∥a2

∥∥
∞ + c2g2(n, n)

)q+1
∫β2

α2

h2(s)ds

}
‖u‖p∞ + ‖v‖q∞
‖u‖∞ + ‖v‖∞ .

(6.2)

We have ‖un‖∞ =
√
‖un‖2∞ + ‖vn‖2∞ sin θn and ‖vn‖∞ =

√
‖un‖2∞ + ‖vn‖2∞ cos θn with θn ∈

[0, π/2]. Moreover, there exists a constant c > 0 such that sinpθn + cosqθn > c. Then

1
nmin{p−1,q−1}

≥ min

{(
min a1

)p+2
αp(1 − β)pη1c(∥∥a1

∥∥
∞ + c1g1(n, n)

)p+1
∫β1

α1

h1(s)ds,

(
min a2

)q+2
αq(1 − β)qη2c(∥∥a2

∥∥
∞ + c2g2(n, n)

)q+1
∫β2

α2

h2(s)ds

}
,

(6.3)

which is impossible, since limn→+∞(nr/(p+1)/(‖a1‖∞ + c1g1(n, n))) = +∞ and limn→+∞(nr/(q+1)/
(‖a2‖∞ + c2g2(n, n))) = +∞ by hypothesis (H4).

7. Remarks

(i) We note that the solutions of nonlinear system (1.1) are of C1 functions in [0, 1] and C2

almost every where, in (0, 1). Note also that when h1(t), h2(t) are continuous functions, the
solutions of system (1.1) are classic.

(ii) A little modification of our argument may be done to obtain an existence result of
the following more general system:

−
(

u′

a1(t) + c1g1(u, v)

)′
= k1(t, u, v) in (0, 1),

−
(

v′

a2(t) + c2g2(u, v)

)′
= k2(t, u, v) in (0, 1),

u(0) = u(1) = v(0) = v(1) = 0,

(7.1)

where k1, k2 satisfy (H2). In addition, we must assume that there exist continuous functions
f̂1, f̂2 : [0, 1] × [0,+∞)2→[0,+∞) satisfying (H1) and (H2), and nonnegative functions h1, h2 ∈
L1(0, 1), so that for all t ∈ [0, 1],

k1(t, u, v) ≤ h1(t)f̂1(t, u, v), k2(t, u, v) ≤ h2(t)f̂2(t, u, v). (7.2)
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