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1. Introduction

In this paper,we consider the following Neumann problem:

(W), = Apu,  (VF),=0p0, x€Q >0, (1.1)
Vv = u*oP, V,ov=ulvf, xedQ, t>0, (1.2)
u(x,0) =up(x),  v(x,0)=v(x), x€Q, (1.3)

where Aqu = div(|Vul'Vu) = SN (Vul*tuy),, Viu = (Vul* .., [Vullug,), Q ¢
RY is a bounded domain with smooth boundary 0%, v is the outward normal vector on the
boundary 0Q, ki, ko,m,n > 0, a,p > 0, p,g > 0, and ug(x),vo(x) € Cl(ﬁ) are positive and
satisfy the compatibility conditions.

Parabolic equations like (1.1) appear in population dynamics, chemical reactions, heat
transfer, and so on. In particular, (1.1) may be used to describe the nonstationary flows in a
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porous medium of fluids with a power dependence of the tangential stress on the velocity
of displacement under polytropic conditions. In this case, (1.1) are called the non-Newtonian
polytropic filtration equations (see [1-6] and the references therein). For the Neuman problem
(1.1)—(1.3), the local existence of solutions in time has been established, see survey in [4].
Recall the single quasilinear parabolic equation with nonlinear boundary condition

(uk)t=Au, xeQ, t>0,

a_u =u*, x€0Q,t>0, (1.4)
ov

u(x,0) =up(x), x€Q,

with k > 0, « > 0.1t is known that the solutions of (1.4) exist globally if and only if a < k for
0 < k < 1; they exist globally if and only if a < (k + 1) /2 when k > 1 (see [7-10]).

In [11, 12], M. Wang and S. Wang studied the following nonlinear diffusion system with
nonlinear boundary conditions

(), = Au, (0R),=Av, x€Q,t>0,

— = u*oP, a_v =ulvP, xedQ, t>0, (1.5)
ov ov

u(x,0) =up(x), v(x,0)=9y(x), xE€ Q,

with k1, k; >0, a,f >0, p,g > 0. In [11], they obtained the necessary and sufficient conditions
to the global existence of solutions for 0 < ki, k; < 1. In [12], they considered the case of
ki > 1 or k; > 1 and obtained the necessary and sufficient blowup conditions for the special
case Q = Bg(0) (the ball centered at the origin in RN with radius R). However, for the general
domain €, they only gave some sufficient conditions to the global existence and the blowup of
solutions.

In [2], Wang considered the following system with nonlinear boundary conditions:

(ukl)t = (|ux|m_1ux)xr (Ukz)t = (|vx|n_1vx)xl X € (011)/ t > OI

u(0,£) =0, uy(1,t) =Au*oP(1,t), t>0,
(1.6)
0.(0,8) =0, v.(1,1) = \udoP(1,t), t>0,

u(x,0) =up(x), ov(x,0)=1v9(x), x€]0,1],

with A > 0. They obtained the necessary and sufficient conditions on the global existence of all
positive (weak) solutions.
Sun and Wang in [13] studied the nonlinear equation with nonlinear boundary condition

(uk)t =Anu, x€Q, t>0,
Vauv=u*, xe€0Q, t>0, (1.7)

u(x,0) =up(x), xeQ.
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They proved that all positive (weak) solutions of (1.7) exist globally if and only if a < k
when k < m; they exist globally if and only if & < m(k + 1)/ (m + 1) when k > m.

The main purpose of this paper is to study the influence of nonlinear power exponents
on the existence and nonexistence of global solutions of (1.1)—(1.3). By using upper- and lower-
solution methods, we obtain the necessary and sufficient conditions on the existence of global
(weak) solutions to (1.1)—(1.3). Our main results are stated as follows.

Theorem 1.1. If ky > m, ko > n, then all positive (weak) solutions of (1.1)—(1.3) exist globally if and
onlyifa <m(ki+1)/(m+1), p<nky+1)/(n+1)and pg < (m(k1 +1)/(m+ 1) — a)(n(ks +
1)/(n+1)-p).

Theorem 1.2. If ki < m, ko > n, then all positive (weak) solutions of (1.1)—(1.3) exist globally if and
onlyifa <k, p<n(ky+1)/(n+1)and pg < (ky —a)(n(ko +1)/(n+1) - p).

Theorem 1.3. If ki > m, ky < n, then all positive (weak) solutions of (1.1)—(1.3) exist globally if and
onlyifa <m(ki+1)/(m+1), < kyand pg < (m(k1 +1)/(m +1) — a)(ky - p).

Theorem 1.4. If ki < m, ky < n, then all positive (weak) solutions of (1.1)—(1.3) exist globally if and
onlyifa < ki, p < kyand pq < (k1 — a)(ky - p).

Remark 1.5. f m =n =1, 0 < ki, kp <1, the results in [11] are included in Theorem 1.4, and if
m=mn=1, k1 >1ork; >1, Theorems 1.1-1.3 improve the results of [12].

Remark 1.6. If we extend the solution to (1.6) to the interval [-1,1] by symmetry, we get a
solution to the same problem (1.6) with the condition at x = 0, substituted by a condition at x =
—1, —uy(=1,t) = \u®oP(=1,t), —v (=1,t) = \udoP(-1,1), t > 0. Conversely, symmetric solutions
to this latter problem are solutions to the original problem (1.6). The problem (1.1)—(1.3) is the
more general N-dimensional version of the problem (1.6). Theorems 1.1-1.4 extend the results
of the problem (1.6) into multidimensional case and it seems to be a natural extension of Wang

[2].

Remark 1.7. If ky = ko, m = n, & = B, p = q = 0, the conclusions of Theorems 1.1 and 1.4
are consistent with those of the single equation (1.7). This paper generalizes the results of the
single equation (1.7) to the system (1.1)—(1.3).

The rest of this paper is organized as follows. Some preliminaries will be given in
Section 2. Theorems 1.1-1.4 will be proved in Sections 3-5, respectively.

2. Preliminaries

As itis well known that degenerate and singular equations need not possess classical solutions,
we give a precise definition of a weak solution to (1.1)-(1.3).

Definition 2.1. Let T > 0 and Qr = Q x (0, T]. A vector function (u(x, t),v(x,t)) is called a weak
upper (or lower) solution to (1.1)—(1.3) in Qr if

(i) u(x,t),v(x,t) € L0, T, W'*(Q)) nW2(0,T; L>(Q)) N C(@);
(i) (u(x,0),v(x,0)) > () (uo(x), vo(x));
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(iii) for any positive two functions g1, g € L1(0, T; W'2(Q)) N L>(Qr), one has
yPp Y, ¢

T
Jf [(ukl)tqfl + V-V | dx dt > (S)j j u*oP g dsdt,
Qr 0 JoQ

T
ff [(Ukz)t(m + V0oV dx dt > (S)f I uloP s, ds dt.
Qr 0 JoQ

(2.1)

In particular, (u(x,t),v(x,t)) is called a weak solution of (1.1)—(1.3) if it is both a weak upper
and a lower solution. For every T < oo, if (u(x,t),v(x,t)) is a solution of (1.1)-(1.3) in Qr, we

say that (u(x,t),v(x,t)) is global.

Next we give some preliminary propositions and lemmas.

Proposition 2.2 (comparison principle). Assume that ug, vy are positive C' Q) functions and (u, v)
is any weak solution of (1.1)—(1.3). Also assume that (u,v) > (6o, 60) > 0 and (u,v) are a lower and
an upper solution of (1.1)—(1.3) in Qr, respectively, with nonlinear boundary flux (\u®vP, \uloP) and

(Au*D, Xu"oP), where 0 < A < 1 < X. Then we have (i1,7) > (u,v) > (u,v) in Qr.

Proof. For small o > 0, letting ¢s;(z) = min{1, max{z/0,0}}, z € R, and setting ¢ = ¢o(u — u),

according to the definition of upper and lower solutions, we have
f f [(15 =) o (u— 1) + (Vonth = Vott) Vg (u — u) | dx dt
QT

< j (AMu"v? — uoP ) o (u — u)ds dt.
0 Jaa

Define

(x) 1, x>0,
X) =
X 0, x<0.

As in [14] by letting 0—0 we get

f (" =), x(u - wydx dt < f (Au"oP - uoP) y(u - u)ds dt,
Q- 0 JoQ

that is,

j (W —ub) |, dx < J‘ (AuoP —uoP) dsdt,
Q 0 Jo

where W, = max{W, 0}. Similarly, we have

’[ (v - o) |, dx < ’[ ’[ (AuTof — uivP) dsdt.
Q 0 Jo

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)
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Since A <1, u,v > §p > 0 and u(x,0) < up(x), v(x,0) < up(x), it follows from the continuity of
u, v, u and v that there exists a 7 > 0 sufficiently small such that \u®v? < u®v?, \uivf < uiof
for (x,t) € Q. It follows from (2.5) and (2.6) that (u,v) > (1, v) in Q..

Denote 7* = sup{7r € [0,T] : u(x,t) < u(x,t), v(x,t) < v(x,t) for all (x,t) € Q,}. We
claim that 7* = T. Otherwise, from the continuity of u, v, u and v there exists € > 0 such that
™ + e < T and \u®o? < u®oP, \ulof < uiof for all (x,t) € Qrese. By (2.5) and (2.6) we obtain
that u(x,t) < u(x,t), v(x,t) < v(x,t) in Qr, which contradicts the definition of 7*. Hence
(u,v) < (u,v) for all (x,t) € Qr.

Obviously, 6 = min{mingug(x), mingvy(x)} > 0 is a lower solution of (1.1)-(1.3) in
Qr. Therefore, u,v > & > 0 in Qr. Using this fact, as in the above proof we can prove that
(u,7) > (u,v) in Qr.

For convenience, we denote 0 < A < 1 < A, which are fixed constants, and let 6 =
min{ming 1 (x), ming vo(x)} > 0. O

Proposition 2.3. Assume ki > m, ko > nand that « > m(k1 +1)/(m+ 1) or p>n(ky +1)/(n+1)
holds. Then the solutions of (1.1)—(1.3) blow up in finite time.

Proof. Without loss of generality, assume a > m(k; +1)/(m + 1). Consider the single equation

(wk’)t:Vmw, xeQ, t>0,
Vwv =6Pw®, xe€oQ, t>0, (2.7)
w(x,0) = up(x), x€Q.
We know from [13] that w blows up in finite time. Since v > 6, by the comparison principle,
(w, 6) is a lower solution of (1.1)—(1.3) and (u, v) blows up in finite time if & > m(k; + 1)/ (m +
1). O
The following propositions can be proved in the similar procedure.

Proposition 2.4. Assume ki < m, ky > n and that a > ki or p > n(ky +1)/(n + 1) holds. Then the
solutions of (1.1)—(1.3) blow up in finite time.

Proposition 2.5. Assume ki > m, ko < nand that a > m(ky +1)/(m + 1) or p > ky holds. Then the
solutions of (1.1)—(1.3) blow up in finite time.

Proposition 2.6. Assume ki < m, ky < n and that « > ky or p > ky holds. Then the solutions of
(1.1)—(1.3) blow up in finite time.

Let @i (x) (k = m, n) be the first eigenfunction of
—Arp = Lp*(x) in Q, pr(x) =0 on 0Q (2.8)

with the first eigenvalue Ax, normalized by ||pk(x)||,, = 1, then Ax > 0, pix(x) > 0 in Q and
pr(x) € WK N CY(Q) and Bk (x)/0v < 0 on dQ (see [15-17]).
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Thus there exist some positive constants Ag, B, Ck, Dy such that

0 _
420 o ] 2C xeon Vo] <D xeQ  @9)
We have also |V (x)| > Ex provided x € {x € Q : dist(x,0Q) < e, } with Ex = Cr/2 and some
positive constant . For the fixed ¢, there exists a positive constant Fy such that ¢y (x) > Fy if
x € {x € Q: dist(x, 0Q) > &x}.

At the end of this section, we describe two simple lemmas without proofs.

Lemma 2.7. Suppose that positive constants A, B, C, D satisfy AB < CD, then for any two positive
constants a, b, there exist two positive constants Iy, I such that alS > 15 and bIP > 18,

Lemma 2.8. For any constant j > 0, there exist positive constants f;(j) (i = 1,2) which depend only
on j and @(x), such that

AG () +57) < (p(x) +5) < fo() (p(x) +57) Vs 21, (2.10)

where @(x) is a positive bounded function.

3. Proof of Theorem 1.1

Lemma 3.1. Suppose ki > m, ky > n,a < m(ky +1)/(m+ 1), p < n(kp +1)/(n+1), pq <

(m(ky +1)/(m + 1) — a)(n(ky + 1)/(n + 1) — B). Then all positive solutions of (1.1)—(1.3) exist
globally.

Proof. Construct

It/ (m+1)

a(x, 1) = (M4 1"l P, o) T,

(3.1)

(kp-m)lpt/ (n+1)

B(x, 1) = e (M + 1" awme M) TP (A ),

where ¢, = Cpif m > 1, ¢, = Dyyif m < 1,and ¢, = C,iftn > 1,¢, = D, if n < 1, ¢y,
¢, Am, An, C, Cy, Dy, Dy, are defined in (2.8) and (2.9), [j, [, are positive constants to be
determined, M = max{1, ||uo||,, ||vol|,,} and

—1/m

ki- _
L=\ max{ni +n;2(p+a+m)/mM(p+a—m)/m (Amcm—l) 1/"”,

m

2 (pra)/m p 1 (pra-m)/m (Am o1 ) —l/m} ,

L,= f/" max{ ka _fz(q+ﬂ+n)/nM(q+ﬂ—n)/n (AnCZ_l)_l/n, 2(@+p)/n pf(q+p-n)/n (AnCZ_l)_l/n }
n+
(3.2)
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We know that _Ll(Pme(kl—m)llt/(mH)e—Lupmg(krm)llt/(mn) > —e‘l since _ye_y > —6_1 for any y > 0.

Thus for (x,t) € Q x R*, a simple computation shows

— —1/m _ -m m+ _ _1\1 ke
(@), = kilehht (M4 1" rbome O Q@M (4, ) T

—1/m -m m+ -1 ki-1
+ kleklllt (M +1 e—thpme(kl Mgt/ (m+1) (ZM)(le)/mLIl (Amcﬂ_l) /m>

-1/m (k1 —m)h

y X1/m(2]VI)(p+ac)/mLI1 (Amcﬂ_l) m+1

TR
m

1
> _k l k]l]i"
) 1L1€

(3.3)
In addition, we have
< W (M) ( Amcm-l)‘Hﬁemhtem(kl—mﬂlt/ m p=Lympef1-mht/ons)
+ Xle(ZM)”’f“ (Amcrrz-l)—1eklllte—Llm¢me<krm>ht/<m+l) Vm |m+1 (3.4)
< XAy + LymD™) QM) (Ayc ) kbt
Similarly, we can get
@), 2 %kzlzekzlzt, AT < X(Ay + LynD) M) (A, i) T ekobt, (35)
Noting ¢, = ¢, = 0 on 0L, we have on the boundary that
Vv > LM(2M)P e emkitDht/ (ms1) V, 00 > L(2M)TPenlkr)lt/ (n+1),
(3.6)

T < (ZM)p+ae(all+plz)t, l—ﬂaﬂ < (2M)q+ﬁe(q11+ﬂlz)f_

Since pg < (m(ky +1)/(m+1) —a)(n(k, + 1)/ (n+ 1) — ), there exist constants I, I, large such
that

m(k1 + 1)11
m+1

n(kz + 1)12

> aly +pb, p—

> gl + ph;
I > 20 (A + LymDI ) @ M)P* (ky A1), (3.7)

L > 20 (A, + LynD V) M) TP (ky A1)

By (3.3)—(3.7), we know that (u, v) is a global upper solution of (1.1)—(1.3). The global existence
of solutions to (1.1)—(1.3) follows from the comparison principle. O

(m(ki+1)/(m+1) —a)(n(ky +1)/(n+1) — ). Then all positive solutions of (1.1)—(1.3) blow up in
finite time.

Lemma 3.2. Suppose k1 > m, ky > n,a < m(ky +1)/(m+1),p < nlky+1)/(n+1), pg >
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Proof.

Casel. ky >m, k, >n.Letd,, =C,ifm<1,d,, =D,,ifm>1,andd,=C,ifn<1,d, = D, if
n > 1. Inlight of pg > (m(k1 +1)/(m+1) —a)(n(ky + 1) /(n + 1) — B), we choose Iy, I, such that

<ph- (M - a)zl, L <qh- (M —ﬁ)lz. (38)

m+1 n+1

m+1

For the above Iy, I, we set u = (1/(b - ct)")e @m0/ =) 1 — (1/(b - ct)2)e=20n()/b-c)?
wherer; = (ki —m)li +1)/(m+1), 1, = (ko —n)lb +1)/(n+ 1), b = max{1, 6 /4, 67/}, and

a = min {1’ Al/m (Bmd271)71/mb7<all+p12)/m, Al/n (Bndzfl)fl/nbf(qlﬁﬂlz)/n}, (3.9)
B ) { mam+1Ezq1+1 nan+1Ez+1 )tm(kl _ m) am+11:':nn+l )Ln(kz _ Tl) an+1F;l1+1 } (3 10)
TN TTRL T kb kil ' kals '
By a direct computation, for x € Q, 0 < t < ¢/b, we obtain that
(Eh)t < klllce—ﬂkliﬁm(x)/(b—cf)” (b- Ct)—(k111+1)/ (3.11)
Ao Amamlpme—amtpm(x)/(b—ct)’l N mam+1e—am(pm(x)/(b—ct)’1 V(Pm|m+1 (3 12)
m= (b _ Ct)m(ll+rl) (b _ Ct)m(11+rl)+1’1 : :
If x € Q; = {x € Q: dist(x,0Q) > ¢, }, we have ¢,, > F,,, and thus
mpm ,—ampy, (x)/ (b-ct)"!
Ay > tm@ Fme (3.13)
— (b _ Ct)m(11+r1)
On the other hand, since —~ye ¥ > —e™! for any y > 0, we have
(uk1) < klllcefakﬂﬂm(x)/(bfct)’l - Ct)*(k1l1+1) _ klllce_“m‘l’m(x)/(b—ft) ! ' (3.14)
- a(ky — m)Fpe(b - ct)™h*m)
We have by (3.10), (3.13), and (3.14) that (gkl)t < Ajufor (x,t) € Qp x (0,b/¢).
If x € Q, = {x € Q: dist(x, 0Q) < &}, then |V¢,,| > E,,, and hence
m+1 Em+1 —akipp(x)/(b—ct)"1 m+1 Em+1 —aki @y (x)/ (b—ct)"
At > ma me _ma mle ‘ (3.15)

(b _ Ct)m(l1+r1)+r1 (b _ Ct)klll+1

We follow from (3.10), (3.11), and (3.15) that (gkl)t < Aqufor (x,t) € Qo x (0,b/¢).
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Similarly, we can get (gkz)t < A,v for (x,t) € Qx (0,b/c) also.
We have on the boundary that

~ am|v(pm|m—1e_amtpm(x)/(b_ct)r1 ( _ a(Pm/aV) y amBmdz_l

Vv (b- Ct)m(11+r1) = b- Ct)m(ll+r1) !
(3.16)

n n-1 —ang,(x)/(b—ct)? ( _ n n-1

Voow = a|Vea|" e (- 0w,/ 0v) < B,dr ;

- b- Ct)n(lz+rz) b- Ct)n(le‘z)
u“oP = ;, ulof = ; (3.17)
- - (b _ Ct)a11+plz _ (b _ Ct)qll+ﬁlz
Moreover, by (3.8) we have that

m(li+ 1) <aly +ply, n(l + 1) < gl + pl. (3.18)

Equations (3.9), (3.16)—(3.18) imply that V,uv < Au®vP, V,0-v < \uivf on 0Q. Therefore
(u,v) is a lower solution of (1.1)—(1.3).

Case 2. ky > m, ky = n. Set u as above with v = (1/ (b — ct)2)e=3a()/ b=et"",
Case 3. k1 = m, ky > n. Set v as above with u = (1/ (b — ct))e=a¢n(0)/b=cH'""

Case 4. ki = m, ky = n.Setu = (1/(b - ct))e @m@/C=e'"™ 4 = (1/ (b — ct))e- 2/ G-e)'"

By similar arguments, we conform that (u,v) is a lower solution of (1.1)—(1.3), which
blows up in finite time. We know by the comparison principle that the solution (u, v) blows up
in finite time. O

We get the proof of Theorem 1.1 by combining Proposition 2.3 and Lemmas 3.1 and 3.2.

4. Proof of Theorems 1.2 and 1.3

Lemma 4.1. Suppose ki1 < m, ko > n, a < ki, p < n(ky +1)/(n + 1) with pg < (kg — a)(n(ky +
1)/(n + 1) — B). Then all positive solutions of (1.1)—(1.3) exist globally.

Proof. Take
u(x,t) = Rie" log ((1 - g (x))e®—m™ht/m 4 Ry),

4.1)
B, 1) = e (M4 T/ Lne 0 gy ) e 1 g 1) )

for (x,t) € QxR*, wherec, = C,ifn>1,¢c,=D,ifn<1,R, satisfying R, log R, > 2(m—ky)/m,
and constants Ry, M, L, I;, I, are to be determined. By performing direct calculations, we have,
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for (x,t) € Q x R*,

(@), 2 SRR (1og (1 - )40/ 4 Ry))M > KL Rk g8 (log R,

(4.2)

N Rmekiht( _ |y m-1 A, Rmekilit
s (T )y
T\ (1= m(x))elbmmht/m + Rp)™ J Ry

By setting ¢, = Cp if m > 1, ¢, = Dy, if m < 1, we have on the boundary that

m ,kilit ~m—1
Vv, > Rye™ cm Am V5w > LMD/ () gne )it/ (n41),

(1+R)" " (4.3)
70" < (Rylog (1+ Ry))“(2M)Petittelt g9%P < (Rylog (1 + Ry))?(2M)Fedht+fhat,

Since pg < (m—a)(n(ky+1)/(n+1)—p), by Lemma 2.7 there exist two positive constants Ry, M
such that R; log R, > max{1, ||uo|l,,}, M > {1, ||uol|.}, and

R™ > X(2M)P (log (1+ Ro))“(1+ R)™ (¢ A,) ™, (84
(M) > R (log (1+ Ra)).

Set L= Xl/nmax{ ((ky—n)/ (n+1))2ketn+2)/(n41) pflka=n)/ (n+1) (Ancﬁ_l)_l/n, o (ka+1)/(n+1) p f(ka=n)/ (n+1)
x(Anc;"l)_l/n }. By arguments in Lemma 3.1,for (x,t) € Q x R*, we have

-1

_ 1 -7
(82), 2 Shobe™,  8,8< T4, + LDy @M)" S/ 0D (4,) R (45)

On the other hand, since pq < (ki — a)(n(k; +1)/(n + 1) — p), there exist two positive constants
11, I, such that

n(ky +1
Ga-anzpn ("D (46
24, R - .
h> L I > 20 (A, + LuD™ 1) 2M)" 6D/ 040 () A on-1y7F (4.7)

12
k1( IOg Rz) R2

By (4.2)-(4.7), it follows that (u;7) is an upper solution of (1.1)—(1.3). Thus the solutions of
(1.1)-(1.3) are global. O

Lemma 4.2. Suppose k1 < m, ko > n, a < ki, p < n(ky +1)/(n + 1) with pg > (ky — a) (n(ky +
1)/(n + 1) — B). Then all positive solutions of (1.1)—(1.3) blow up in finite time.

Proof. We first prove that there exist I; > 1, I > 1 such that

mkilh+m  mal +a n(ko+1)b+n _ mglh +q
> pl2/ S +
m_kl m_kl n+1 m_kl

pls. (4.8)
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When a < ki, p < n(ky +1)/(n+1), pqg > (k1 —a)(n(ko + 1)/ (n + 1) — p) yields m(k; -
a)/(m—-ki)p) <mq/((m—ki)(n(ky+1)/(n+1) - p)). Hence there exist y > 0 such that m(k; -
a)/(m—ki)p) <p<mq/((m—-ki)(ntka+1)/(n+1)-p)).Setl; =max{1, 1/u, (m-a)/(m-
k0)/ (up-mki-a)/ (m=ky), (n/ (n+1)-q/(m=k1))/ [mq/ (m=k) - (n(ky+1)/ (n+1) - f)pl ),
and I, = ply.

When a = ki, p < n(ky +1)/(n + 1), take I, = max{1, im — a)/(m - ki)p}, h =
max{l, (n/(n+1)-—q/(m—-ki)+ (n(k, +1)/(n+1) - P)lo)((m - k1) /mq)}.

Whena < ki, p = n(ko+1)/(n+1), take Iy = max{1, (n/(n+1)-q/(m-ki))((m-ki)/mq)},
I, =max{1,(m-a)/(m-ki) + m(ki —a)l;/(m—-k1))(1/p)}.

Letd, =C,ifn<1,d,=D,ifn>1,and d = max{|x| | x € Q}, h(x) = X, x; + Nd +1,
y = ah™V/™(x) + (b—ct) ™.

Define u(x,t) = y®, v = (1/(b - ct)) exp{—ap,(x)/(b—ct)"}, where 0 = (m+1/1;)/(m—
ki), r=((kn —n)lh+1)/(n+1), b=max{1, ((1/2)68)/h §1/2} and

a =min {b’] (2Nd +1)"1/m \1/ "(Bnd’H)_l/ " (@Bl +pl)/n
(4.9)
1 m -1/m
.)Ll/m <9m <1 + ) Nm/Z(ZNd + 1)2m(9—1)> b(—u911+pl2)/m ,

m

(4.10)

nan+1E}r11+1 /\n(kz _ Tl) an+11:;11+1 amem—l (1 + 1/m)mN(m+1)/2 }

szm{ kb kaly / kil

By a direct computation, for (x,t) € Q x (0,b/c), we have

m
Amz > <a9<1 + %)) N(m+1)/Zykle—lym(e—l)—k19+l > (Ekl)t- (411)

By similar arguments in Lemma 3.2, we have (2*2) , < Ayofor (x,t) € Qx (0,b/c).
Moreover, for (x,t) € 0Q x (0,b/c), we have

1 m
Vol < <a9<1 + E)) N™2(2Nd +1)2" (b - ct) ™ h,

aandn—l
v vy < —n;
=T (b - ety (4.12)

woP = (ah(x) ™ 4 (b= ct) ™) (b - ) PR > (b — ct) @O,
wIoP = (ah(x)" " + (b - ct) ™) (b - ct) P2 > (b — ct) @O
By (4.8), we have
m(6 - 1)) < ably +ph, n(l, +r) < qbly + pl. (4.13)

By (4.9), (4.12), and (4.13), we have that (1, v) is a lower solution of (1.1)—(1.3), which with the
comparison principle implies that the solutions of (1.1)—(1.3) blow up in finite time. O

It has been shown from Proposition 2.4 and Lemmas 4.1 and 4.2 that Theorem 1.2 is true.
In a similar way to the proof of Theorem 1.2, we have Theorem 1.3.
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5. Proof of Theorem 1.4

Lemma 5.1. Suppose k1 < m, k, < n, a < ki, p < ky with pg < (k1 — a) (ko — B). Then all positive
solutions of (1.1)—(1.3) exist globally.

Proof. Take u = a(1 — @, (x) +e”)m/(m7k1), v = b(l-yu(x)+e , where 8 = m(n —
k) (ki —a)/n(m - ki)p and a, b, I are the undetermined positive constants.

Calculating directly for (x,t) € Q x R*, we have by Lemma 2.8 that

elt)"/ (n-k2)

akFimk,l

2(m — k1)

mk1 < mkl ) klt/( 7k)
1_ m 1 m=k 7

AmﬁS)Lm(ﬂ( am > f2< mk; ><1_(Pm(x)+emkllt/(mfk1))

+< am ) mk; "’”f( mk; >(1 (Pm(x)+emkllt/(m—k1))

)mkl / (Tn*kl)

@), > = ——~ (1 - gm(x) +

m—kq m—kq 5.1)
< <)L . mk; Dm+1>< am )mf2< mk; )(1 P () + @l (oK) .
- " - k1 m — k1 m — k " !
- bk 2nk,01 ol ka/ (n—ka)
(@), 2 5= (1= gu(x) + ™)

2(n - k2)

bkznk291 nk; k.01t / (n—
> 1= @u(x) + e™e0t/ (n=ka2)y
2 s (5 ) (- n e )

nk n+1>< bn > < nk; ) B nka6lt/ (n—k2)
nU<<.)L + an p— f2 — (1-¢n(x) +e )-

Letc, =Cpifm>1,¢,,=D,,if m<1,andc, =C,ifn>1,c, =D, if n < 1. We have on the
boundary that

m
Vv > <ma1nk1> A (1= (x) + e”)mkmm_kl)

m —
> am—a< m ) sz_lAmf1<m1§1kl_ kl“))(l +em(k1—a)lt/(m—k1))ﬁal

m—k1

o n(k, - p) > n(ka—P)Olt/ (n—ks)\ =P
n—k2> cr A"f1<—n—k (1+e Yo

n k
an_p< n ) C;’_lAnﬁ(n( 2~ ﬂ)>(1+emqlt/m ki) )v
Tl—kz

>(1 + em(kl—u)lt/(m—kl))ﬁa

V,ov > b"‘p<
(5.2)

Hagp _ bp(l + eGlt)”P/("*kz)ﬁzx < bpf2<
2

W = al(1+ )" "B < aqf2< (1 +emat/ onk)gh,

mk1
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Since pq < (k1 — a) (ko — ) < (m — a)(n — B), we know by Lemma 2.8 that there exist constants
a 2 [[uo(x)|lg, b 2 [[vo(x)||, such that

o (5 2) 2w ()

( ) (5.3)

n k,-p - m

n-p n-1 nika > q ( q >

ot () o () 2 (5 )

For the above constants a, b, we choose a constant I so large that

mk, am \™ mk; akimikl mk;
b ) () Gk < (i)
( +m—k1 m m—kq f2 m—kq _2(m—k1)f1 m—kq

(5.4)

nk, bn \" nk, bk2nk,01 nk,
wete ) R) 2GR S k)
< Thok n—ky n—ky f2 n-ky _Z(n—k2)f1 n-ky
By (5.1)-(5.4), we know that (%, 7) is an upper solution of (1.1)-(1.3), Thus the solutions of
(1.1)-(1.3) are global. O

Lemma 5.2. Suppose ki < m, k, < n, a < ki, p < ky with pg > (k1 — a) (ko — B). Then all positive
solutions of (1.1)—(1.3) blow up in finite time.

Proof. We first prove that there exist I; > 1, I > 1 such that

mkil; + m ma11+a+nplz+p nkzlz+n<mqll+q nﬂlz+,[3
m—k1 - m—k1 n—kzl Tl—k;)_ - m—k1 n-— kz

In fact, when a < ki, p < ko, pq > (k1 — a) (ko — p) yields (m(ki — a)/(m — k1)) ((n - ko) /np) <
(mq/(m—ki))((n—ky)/n(k, - p)). Hence there exists p > 0 such that (m(k, —a)/(m—ki1))((n—
ky)/np) < p < (mq/(m —k1))((n - ky)/n(ky — P)). Set I; = max{1, 1/p, (m —a)/(m - ki) -
p/ (n-k2))/ (np/ (n - k)~ m(ky - @)/ (m - k1)), ((n =)/ (n ko) = q/ (m~ k1)) / (mq/ (m -
k) - (n(ka = B)/ (n - k2)w)}, and o = ply.

When ki < a and f§ = ky, take l; = max{1, ((n-p)/(n—kz)—q/(m—k1))((m-ki)/mq)}, > =
max{l, (m—-a)/(m—-ki)-p/(n-ky)+m(k; —a)ly/(m—ki1))((n-ky)/np)}.

When ki = & and ff < ky, let [, = max{1, ((m-a)/(m-ki)-p/(n-k))((n-ky)/np)}, L =
max{1, (n-p)/(n-kz) —q/(m-ki) +n(kz - )/ (n - k2))((m - k1) /mq)}.

Take y = ah"*V/"(x) + (b—ct)™, z = ah™V/"(x) + (b—ct) ™, and u = y?, v = 2, where

=(m+1/L)/(m-ky), o= (n+ 1/12)/(71 k), b = max{1, ((1/2)6/€)/1 ((1/2)61/9) /=y,

and

(5.5)

am -1/m
(1 + m)ON1/22° 1] (N d+1)> (@0l pots) /.

a = min {b‘ll (2Nd + 1)~rm/m <g1

m
o-11" -1/n
b—lz(ZNd 4 1)—(1+n)/nl <J\_1 (1 + Tl)O'Nl/ZZ 1] (2Nd . 1)> b_(q911+ﬁ012)/n},
- n
(5.6)
mQam-1 mN7(m+1)/2 ngn- 1 (n+1)/2
szm{a 0" (1+1/m)"N ,a (1+1/n)"N } (57)
klll kzlz
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By a direct computation for (x,t) € Q x (0,b/c), we have
LN\ \pome1) /2, kio-1, m(@-1)—ki6+1 k
+ - —-1)—k10+
AmEZ <a9<1+E>> Nm y 1 ym 1 > (E 1)t’ (58)
A > 1 1 nN(n+1)/2 koo-1, n(o-1)-kyo+1 > ko 59
n? 2\ ac +; Y Y > (v )t‘ (5.9)
For (x,t) € 0Q x (0,b/c), we have
1 m
Vodv < <a9<1 + E)) N™22Nd +1)2™0 D (p — ) ™ODh

n
V,0v < (ao(l + %)) N"22Nd +1)2" D (p - cf) ™D,

(5.10)
WP = YTz > (b - cf)"(@Ohpoh),
zqgﬁ - yqezﬂa > (b Ct)—(q911+ﬂo‘lz)'
Moreover, (5.5) implies
m(0 - 1)1 < ably + poly, n(o - 1) < g6l + fob. (5.11)

It follows from (5.6), (5.8)—(5.11) that (1, v) is a lower solution of (1.1)—(1.3). Because (1, v)
blows up in finite time, and so does (u, v). O

By Proposition 2.6 and Lemmas 5.1 and 5.2, we see that Theorem 1.4 holds.
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