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1. Introduction

Throughout this paper, let x = (y, z) be the generic point of RN with y € R™, z € R", where

N=m+n2>3, m2>2,n>1,2<p< (1.1)

N-2

In this paper, we study the multiplicity results of both positive and nodal solutions for the
nonhomogeneous elliptic problems

~Au+u=a@X)|ufPu+ f(x) inQ, ueHN(Q), (1.2)

where 0 € w C R™ is a bounded smooth domain, Q = w xR" is a smooth unbounded cylinder
domain in RV.
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It is assumed that a(x) and f(x) satisfy the following assumptions:

(a1) a(x) is continuous and a(x) € (0,1] on Q, and

lim a(x) =1 uniformly for y € w; (1.3)

2| =00

(f1) f(x) 20, f(x) 20, f(x) € HH(Q);
(f2) yf > 0 in which we defined

1 (p-1)/(p-2)
y=ind [ (p=2) Jul 7/

(1.4)
—j fudx : I a(x)|ulPdx = 1};
Q Q
(f3) there exist positive constants Cy, €y, Ry such that
f(x) <Co exp<— 1+p + eo|z|> for |z| > Ry, uniformly for y € w, (1.5)

where p; is the first positive eigenvalue of the Dirichlet problem —A in w.

For the homogeneous case, that is, f(x) = 0, Zhu [1] has established the existence of
a positive solution and a nodal solution of problem (1.2) in H!(RN) provided a(x) satisfies
a(x) >1in RN and a(x) =1 > C/|x|' as |x| — oo for some positive constants C and . More
recently, Hsu [2] extended the results of Zhu [1] with RY to an unbounded cylinder Q. Let
us recall that, by a nodal solution we mean the solution of problem (1.2) with change of sign.

For the nonhomogeneous case (f(x)#0), Adachi and Tanaka [3] have showed that
problem (1.2) has at least four positive solutions in H!(RN) for a(x) and f(x) satisfy some
suitable conditions, but we place particular emphasis on the existence of nodal solutions.
More recently, Chen [4] considered the multiplicity results of both positive and nodal
solutions of problem (1.2) in H'(RYN). She has showed that problem (1.2) has at least two
positive solutions and one nodal solution in H!(RN) when a(x) and f(x) satisfy some
suitable assumptions.

In the present paper, motivated by [4] we extend and improve the paper by Chen [4].
We will deal with unbounded cylinder domains instead of the entire space and also obtain
the same results as in [4]. Our arguments are similar to those in [5, 6], which are based on
Ekeland'’s variational principle [7].

Now, we state our main results.

Theorem 1.1. Assume (al), (f1), (f2) hold and a(x) satisfies assumption (a2).

(a2) there exist positive constants C, 8y, R such that

a(x)>1-C exp <—mlz|> for |z > R, uniformly for y € w. (1.6)
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Then problem (1.2) has at least two positive solutions ug and uy in H& (Q). Furthermore, uy and uy
satisfy 0 < ug < uy, and ug is a local minimizer of I where I is the energy functional of problem (1.2).

Theorem 1.2. Assume (al), (f1),(f2), (f3) hold and a(x) satisfies assumption (a3).

(a3) there exist positive constants C,R,and 6y <1+ yy such that
a(x)>1 +Eexp<—\/1 + M —50|z|> for |z| > R, uniformly for y € @. (1.7)

Then problem (1.2) has a nodal solution in H& (Q) in addition to two positive solutions uy and u,.

For the case Q = RN, we also have obtained the same results as in Theorems 1.1 and
1.2.

Theorem 1.3. Assume (al), (f1), (f2) hold and a(x) satisfies assumption (a2).

(a2) there exist positive constants C, 6y, R such that

a(x) >1-Cexp <—M|x|> for |x| > R. (1.8)

Then problem (1.2) has at least two positive solutions uy and uy in H'(RYN). Furthermore, uy and
satisfy 0 < ug < u1, and ug is a local minimizer of I where I is the energy functional of problem (1.2).

Theorem 1.4. Assume (al),(f1),(f2),(f3) hold and a(x) satisfies assumption (a3) below.

(a3) there exist positive constants C, R and & < 1 such that

a(x)21+6exp<— 1—50|x|> for |x| > R. (1.9)

Then problem (1.2) has a nodal solution in H'(RN) in addition to two positive solutions uy and u;.

Among the other interesting problems which are similar to problem (1.2), Bahri and
Berestycki [8] and Struwe [9] have investigated the following equation:

~Au=[ufu+ f(x) in Q, ueHN(Q), (1.10)

where 2 < p < 2N/(N -2), f € L?(Q), and Q is a bounded domain in RN. They found that
(1.10) possesses infinitely many solutions. More recently, Tarantello [5] proved that if p =
2N/(N -2) is the critical Sobolev exponent and f € H™! satisfying suitable conditions, then
(1.10) admits two solutions. For the case when Q is an unbounded domain, Cao and Zhou
[10], Cirstea and Rddulescu [11], and Ghergu and Rddulescu [12] have been investigated the
analogue equation (1.10) involving a subcritical exponent in RY. Furthermore, Radulescu
and Smets [13] proved existence results for nonautonomous perturbations of critical singular
elliptic boundary value problems on infinite cones.
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This paper is organized as follows. In Section2, we give some notations and
preliminary results. In Section 3, we will prove Theorem 1.1. In Section 4, we establish the
existence of nodal solutions.

2. Preliminaries

In this paper, we always assume that Q is an unbounded cylinder domain or RN (N > 3). Let
Qr = {x € Q:|z| < R} for R > 0, and let ¢ be the first positive eigenfunction of the Dirichlet
problem —A in w with eigenvalue p, unless otherwise specified. We denote by C and C;
(i = 1,2,...) universal constants, maybe the constants here should be allowed to depend
on N and p, unless some statement is given. Now we begin our discussion by giving some
definitions and some known results.

We define
1/2
Jull = ( f Y + 12 dx) ,
(17 1)
1/q
llull, = (f |u|‘7dx) , 1<g<om, (2.1)
Q
lull,, = suplu(x)].
x€Q

Let Hé(Q) be the Sobolev space of the completion of C§°(€2) under the norm || - || with the
dual space H(Q), H'(RN) = Hj(R"N) and denote (-,-) the usual scalar product in H}(Q).
The energy functional of problem (1.2) is given by

I(u) = %f (|Vu|2 + u2> - % f a(x)|ulf - j fu, (2.2)

here and from now on, we omit “dx” and “Q” in all the integration if there is no other
indication. It is well known that I is of C! in Hé () and the solutions of problem (1.2) are the
critical points of the energy functional I (see Rabinowitz [14]).

As the energy functional I is not bounded on H}(Q), it is useful to consider the
functional on the Nehari manifold

w={ueH\ @)\ (0} : (I'w),u) =0}, (2.3)
Thus, u € A if and only if

(1)) =l = [ aolul = [ fu=o (2.4)

Easy computation shows that I is bounded from below in the set /. Note that /A contains
every nonzero solution of (1.2).
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Similarly to the method used in Tarantello [5], we split / into three parts:
N = {u eN:ullf-(p-1) f a(x)|ulf > o},
N = {u eN:lul?- (p-1) f a(x)|ulf = O}, (2.5)
N = {u eN:ullf-(p-1) I a(x)|ulf < 0}.
Let us introduce the problem at infinity associated with problem (1.2) as
~Au+u=ufuin Q, wueH}Q),u>0in Q. (2.6)

We state here some known results for problem (2.6). First of all, we recall that by Esteban [15]
and Lien et al. [16], problem (2.6) has a ground state solution w such that

5% = I*(w) = supI* (tw) = (% - %)sr’/ -2, (2.7)

>0

where I* (1) = (1/2)|lul* - (1/p) [ [ulP, S = inf{I*(u) : u € H}(Q), u#0, (I*)'(u) = 0} and
S = inf{f <|Vu|2 + u2) ‘ue Hé(Q),I ufP = 1}. (2.8)

Furthermore, from Hsu [2] we can deduce that for any € € (0, 1+p1) there exist positive
constants C,, C, such that, for all x = (y, z) € Q,

C.9(v) exp<—\/1 +p+ €|z|> <w(x) < Cep(y) exp (—\ 1+ p — e|z|>. (2.9)

We also quote the following lemma (see Hsu [17] or K.-]. Chen et al. [18] for the proof) about
the decay of positive solution of problem (1.2) which we will use later.

Lemma 2.1. Assume (al), (f1) and (f3) hold. If u € Hé(Q) is a positive solution of problem (1.2),
then

(i) u € L1(Q) forall g € [2, 0);
(ii) u(y,z) — Oas |z| — 0 uniformly for y € wand u € Cl""(ﬁ)for anyO0<a<1;

(iii) for any € € (0, 1+ 1), there exist positive constants c, Cc such that, forall x = (y, z) € Q,
cep(y) exp (— 1+m + e|z|> <u(x) <cedp(y) exp(— 1+ + e|z|). (2.10)

We end this preliminaries by the following definition.
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Definition 2.2. Let ¢ € R, E be a Banach space and I € C'(E, R).

(i) {u,} is a (PS).-sequence in E for I if I(u,) = ¢ + o(1) and I'(u,) = o(1) strongly in
E'lasn — co.

(ii) We say that I satisfies the (PS). condition if any (PS)_-sequence {u,} in E for I has
a convergent subsequence.

3. Proof of Theorem 1.1

In this section, we will establish the existence of two positive solutions of problem (1.2).
First, we quote some lemmas for later use (see the proof of Tarantello [5] or Chen [4,
Lemmas2.2, 2.3, and 2.4]).

Lemma 3.1. Assume (al) and (f1) hold, then for every u € Hé (Q),u#0, there exists a unique
t~ =t"(u) > 0 such that t-u € N~. In particular, we have

] Ve
t = tmax 3.1
> <(P—1)f a(x)|u|’”> t (3.1)

and I(t"u) = maxy,  I(tu). Moreover, if [ fu > 0, then there exists a unique t* = t*(u) > 0 such
that t*u € N, In particular,

t < tmaxs (3.2)

I(tTu) = ming<s, I (tu) and I(t"u) = maxesol (fu).

max

Lemma 3.2. Assume (al), (f1) and (f2) hold, then for every u € N\ {0}, we have
P = (p=1) [ aGlup #0 (i, o = (0)). (33)

Lemma 3.3. Assume (al), (f1) and (f2) hold, then for every u € N\ {0}, there exist a € > 0 and a
Cl-map t = t(w) > 0,w € H)(Q), |wl| < e satisfying that

t0)=1, tHw)(u-w)e N, for|w|<e,

((0),w) = zf(vqu+Zw) -pf a(x)|u|pz:w_j fo (3.4)
el = (p ~ 1) [ a(20)]ul

Apply Lemmas 3.1, 3.2, 3.3, and Ekeland variational principle [7], and we can establish
the existence of the first positive solution.

Proposition 3.4. Assume (al), (f1) and (f2) hold, then the minimization problem ¢y = inf 4I =
inf 4+ I is achieved at a point ug € A" which is a critical point for I. Moreover, if f(x) > 0 and
f(x)#0, then uy is a positive solution of problem (1.2) and ug is a local minimizer of I.



Boundary Value Problems 7

Proof. Modifying the proof of Chen [4, Proposition 2.5]. Here we omit it. O

Since uy € A" and ¢y = inf 4] = inf 4+, thus, in the search of our second positive
solution, it is natural to consider the second minimization problem:

=inf L. 3.5
C1 1}’[}17 ( )

We will establish the existence of the second positive solution of problem (1.2) by proving
that I satisfies the (PS), -condition.

Proposition 3.5. Assume (al), (f1) and (f2) hold, then I satisfies the (PS) -condition with ¢ €
(—OO, Co + S°°)

Proof. Let {u,} be a (PS).-sequence for I with ¢ € (-oo,cg + 5%). It is easy to see that {u,}
is bounded in H&(Q), so we can find au € H&(Q) such that u, — u weakly in Hg(Q) up to
a subsequence and u is a critical point of I. Furthermore, we may assume u, — u a.e. in £,
u, — ustronglyin L7 (Q) forall1 <s <2N/(N -2). Hence we have that I' () = 0 and

loc
f fu, = f fu+o(1). (3.6)
Set v, = u, — u. Then by (3.6) and Brézis and Lieb lemma (see [19]), we obtain

1) = 3l = [ auap - [ fun

(3.7)
= 1) + glonl? = 5 [ aGoloul + o).
Moreover, by Vitali’s lemma and I'(u#) = 0,
0(1) = (I (), )
= @l - f a()fal’ - f £+ ol - f a(0)loul? +o(1)
(3.8)

— (I'(@), 7 + lowl? —f a()loal? + o(1)

= ol - f a(loal? +o(1).
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In view of assumptions I(u,) = ¢ +0(1), and (3.7), (3.8), u € N and by Lemma 3.2, we obtain
1 , 1 P
¢ 2co+ slloull” - » a(x)|oal’ +o(1), (3.9)

foal? - [ aGolonl = o(1). (.10)
Hence, we may assume that

[oall> — b, J a(x)|v,|) — b. (3.11)

By the definition of S, we have oa|* > S||U,1||129, combining with (3.11) and ||a||, = 1, and we
get that b > Sb*P. Either b = 0 or b > SP/®?-2_If b = 0, the proof is complete. Assume that
b > SP/P=2) from (2.7), (3.9), and (3.11), we get

c>co+ (1 - 1>b >co+ <1 - 1)5”/(’”‘2) >co+ S%, (3.12)
2 p 2 p

which is a contradiction. Therefore, b = 0 and we conclude that u, — u strongly in H} (Q).
O

Let ey = (0,0,...,0,1) € RN, lete, = (0,0,...,0,1) € R", and let k > 0 be a constant,
we denote wi(x) = w(x — ken) and u(x) = ug(x + ken) for x € Q where w is the ground
state solution of problem (2.6) and uy is the first positive solution of problem (1.2).

Proposition 3.6. Assume (al), (a2) and (f1) hold, then there exists ko > 1 such that

I(up + twy,) <co+ 5%, Vit>0. (3.13)

The following estimates are important to find a path which lies below the first level of
the break down of the (PS), condition. Here we use an interaction phenomenon between
and wy,.

To give a proof of Proposition 3.6, we need to establish some lemmas.

Lemma 3.7. Let By = {x = (y,2) € Q:y € wy, |z| <1}, and wy CC w is a domain in R™. Then for
any € € (0,1 + p), there exists a positive constant Cy(e) such that

f ue(x) > Cre”VIHrek v > 1. (3.14)
B
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Proof. From (2.10), we have for k > 1,

fBluk(x) = JBlu(x + ken)

> apyervime

(3.15)
> 566—1/1+;41+e(k+1) (i)(y)
By
> Cle‘ 1+/¢1+ek.
O

Lemma 3.8. Let © be a domain in R*, and let z = (z1,2a,...,2,) beavectorin R*". If g: © — R
satisfies

f ®| ¢(2)e“!|dz < oo for some o > 0, (3.16)
then
(f@g(z)e“’“’““’dz) e’k = f@g(z)e‘“z"dz +0(l) ask— oo, (3.17)
or
<feg(z)e‘0|z_ke"dz) e’k = feg(z)e"z"dz +0(1) as k — oo. (3.18)

Proof. We know olke,| < 0|z| + 0|z + ke[, then

|g(z)e"’|z+ke"|e°|ke"| < |g(z)e"|z| . (3.19)
Since —o|z + ke,| + olke,| = —0((z, ke,)/|ke,|) + o(1) = =0z, + 0(1) as k — oo, the lemma
follows from the Lebesgue’s dominated convergence theorem. O

Now, we give the proof of Proposition 3.6.

The Proof of Proposition 3.6

Recall By = {x = (y,z) € Q| y € wy,|z| <1}, where wy CC w is a domain in R™. For k > 1, let

Dy ={xeQ:x—-ken € By},

(3.20)

r = min wi (x) = minw(x) > 0.
x€Dy x€By
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We also remark that forall s >0, t >0,

(s+t)P —sP =tV —psP 't >0, (3.21)
and for any so > 0 and rp > 0 there exists Ca(sp, 1p) > 0 such that for all s € [0, rp], t € [so, 10],

(s +t)f —sP — 7 — psP~'t > Cy (s, 10)st. (3.22)

Since I is continuous in Hé (Q), there exists t; > 0 such that for all t € [0, 1],

I(ug + twi) < I(uo) + I®°(w), VY k>0, (3.23)

and by the fact that I(uy + twy) — —oc ast — oo uniformly in k > 1, then there exists ty > 0
such that

supl (up + twy) = sup I(ug + twy). (3.24)
£20 0<t<tg

Thus, we only need to show that there exists a constant kg > 1 such that

sup I(ug + twyg) < I(ug) + I®(w), V k2> ko. (3.25)

t1<t<to

Straightforward computation gives us

£ £ 1
T+ 100) = P+ Gl o, )~ [ @l + ton

—quo—tjfwk

= I(uo) + I (twy)
1 J (a(x)|uo + twyi|” — a(x)|uol” — a*|twl”) + tf a(x)uol” ™ wi
P (3.26)
= I(up) + I* (tw)

1 _
- ];J a(x)<|u0 + twi|P = |uol? = [twi P — pluglP 1twk>

+ %J (a®|twi|? — a(x)|twi|P)

<co+ 5% - (I)+ (1),
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where

1 -
(I = ’ j a(x)<|u0 + twi|P = |uolP — |twi|P - pluol’ 1twk>/

1 (3.27)
(11 = { (@ - ago)lewl
Thus, we only need to prove that there exists a constant ko > 1 such that
-(I)+ 1) <0, Vtelt,to]. (3.28)

Now we estimate (I) and (II). Without loss of generality, we may assume that 5y < (p* -
1)(1 + p1). Thus, we can choose €, small enough such that

p\/]. + U1 — E() > \/1 + 41+ 50. (329)

By (3.21),

1 _
(1) = = [ ) (o + trl” = ol = e = plaf 1)
(3.30)

1 _
> 2 a0 (o + trnl? =l = o = plof o).
Dy

Let ap = infyeqa(x) > 0, sp = fyminyep, wi(x), 1o = max{maxyequo(x), fomaxyeqw(x)} > 0
and by applying (3.22), we obtain

a
(I > —OI Ca (50, 10) tugwy
P J D,
(3.31)
> %Cz(so,ro)tlf wew Vte[t,to]

XEBy
Let e = 69/2. Then applying (3.14), we have for A = (ay/p)C1(60/2)Ca (50, 10)t1 (Minyep, w(x))

(I) > Ae™V H#+(60/2k (3.32)
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Next from (a2), (2.9), (3.29), and Lemma 3.8, there exists a k; such that for any k > k;,

(1) = %f(aw ~ a(x)) i

(a” - a(x))|twl” + lf (a® - a(x))|twil”
Qr PJo\ox

p
fo

G Ilalloo)f CP gp (y) e P/ I ailz-ke
Qr

<

(3.33)
P

+ t_OJ CCE (i)p (y)e—q/1+ﬂ1+§0\z\e—p\/1+ﬂ1—50|z—k€,,|

Plae,

p
< CoerVImak ooy J ¢”(y)dyf e~V TrtsBulzrken gpy/TopGolzl g 7
a 14 E w R~

< C3e*”\/mk + Cye~V 1tk
From (3.29), we have for B = 2max{Cs;, C4},
(II) < Be™V Hi+bok, (3.34)
Finally, we can choose kj > k; large enough such that
Be vV IHuttok o AgmV It O0/2K -y | > . (3.35)

Thus from (3.26) and (3.32)-(3.35), we obtain (3.13). This completes the proof of
Proposition 3.6.

Proposition 3.9. For ¢y = inf 4-I, there exists a (PS) ., -sequence {u,} C N~ for 1. In particular, we
have ¢1 < cg + S*.

Proof. Set X = {u € HS(Q) : |lul| = 1} and define the map ¥ : ¥ — A~ given by ¥(u) =
t~(u)u. Since the continuity of t~(u) follows immediately from its uniqueness and extremal
property, thus ¥ is continuous with continuous inverse given by ¥~!(u) = u/||u||. Clearly /A~
disconnecting H} () is exactly two components:

u, = {u —0oru:|ul < t(ﬁ)}
o e ()}

(3.36)

and " c U;.
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We will prove that there exists ¢y such that uy + tywy, € Uy. Denote t; = t ((ug +
twy, )/ ||uo + twy, ||)- Since t~ ((uo + twy,) / ||uo + twy, ||) ((1o + twi,) / ||uo + twy,||) € V™, we have

tp.r a(x)|ug + twy, I”
2 h 0
; o + twoi I fluo + twk0|| f f (uo + k) 2 0. (337)
Thus
h< [ o + twi, | ]”/(”2) _ [ (/1) + i, ]”/(”Z)
1 - =
([ a(x)[up + twy, |P)? (f a(x)|(uo/t) +wi PP

<[ [ (o /£) + i, || ]p/(p_z) . (3.38)

(/ aol(uo/t) + i, )P where 4o = infga(x) > 0
0

at"|lwi | < 00 as t —s oo.

Therefore, there exists t, > 0 such that t; = ™ ((uo +twy,) / ||uo +twi, ||) < ||wk, ||, for t > t,. Since
to>t +1, then

Il + towor, > = [lo||* + £3]|zok, ||* + 2o f (VugVwy, + ugwy,)

= |luo|l* + £3]|zo, II* +2t0f i, |P 140 (3.39)

2 2 2 2
> tol|wi 17 > [lww, [I” > £,

hence ug + towy, € Us.
N~ disconnects H (Q) in exactly two components, so we can find an s € (0,1) such
that ug + stowy, € N~ . Therefore ¢; < I(uy + stywg,) < ¢o + S, which follows from

Proposition 3.6.
Analogously to the proof of Proposition 3.4, by the Ekeland variational principle we
can show that there exists a (PS), -sequence {u,} C /A~ for I. O

Proposition 3.10. Assume (al),(a2),(f1) and (f2) hold, then the functional I has a minimizer
uy € N~ which is also a critical point of I and uy > 0 for f >0, f #£0.

Proof. From Propsitions 3.5 and 3.9, we can deduce that u, — wu; strongly in Hj(Q).
Consequently, u; is a critical point of I, u; € N~ (since A~ is closed) and I(u1) = ¢;.

By Lemma 3.1, we can choose a number ¢~ (Ju;|) > 0 such that ¢~ (|u;|)|u1] € A~. Since
u; € N, t (u1) = 1. Applying Lemma 3.1 again, we conclude that

t_(|u1|) > tmax(lulD = tmax(ul)/

(3.40)
=1I(w) = max | I(tur) > I(t" (Jur)ur) > I(t (Jua])ua]) > ci.

Ztmax (U 1
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Hence I(t™(Ju1|)u1) = c1. So we can always take u; > 0. By the maximum principle for weak

solutions (see Gilbarg and Trudinger [20]) we can show that if f > 0, f #0, then 3 > 0 in
Q. O

The proof of Theorem 1.1

By Propositions 3.4 and 3.10, we obtain the conclusion of Theorem 1.1.

4. Existence of Nodal Solution

In this section, we will study the existence of nodal solutions for problem (1.2). To this end,
we need to compare some different minimization problems. Define

N ={u=u"-u e N:u" e N},

(4.1)
./ng {u:qu—uie./U:—uiE./vi}.
Here, we use notation u* = max{+u,0}. Set
pr = inf I(u), (4.2)
ueNy
= inf I(u). 4.3
p2= inf 10 (43)

Then we have

Proposition 4.1. (a) If 1 < c1, then the minimization problem (4.2) attains its infimum at a point
which defines a sign changing critical point of 1. (b) Analogously, if p» < c1 the same conclusion holds
for the minimization problem (4.3).

Proof. The proof is almost the same as that in Tarantello [6, Proposition 3.1] . O

The above proposition would yield the conclusion for the main theorem only if the
given relations between f1, ,, and ¢; could be established. While it is not clear whether or not
such inequalities should hold, we will use these values to compare with another minimization
problem. Namely, set

N, =N N ={u=u"-u eN:u"',-u" e N} C N (4.4)
and define

¢y = inf I(u). (4.5)
ue Ny

It is clear that ¢, > c;. Since I satisfies (PS), condition only locally, we need the following
upper bound for ¢;. Recall thatey = (0,0,...,0,1) € RN, e, =(0,0,...,0,1) € R* and wy (x) =
w(x — ken) where k > 1 and w is the ground state solution of problem (2.6).
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Lemma 4.2. Assume (al), (a3) and (f1)-(f3) hold. For any fixed k > 1, there exist s > 0, t > 0
such that

suy — twy € N, (4.6)
and for k large,
¢ < supl(su; —twyg) < cy +S=. (4.7)
s,t>0

Proof. To prove (4.6), it suffices to show that there exist s > 0 and t > 0 such that

s(up —twy) € N, s(uy — twy)” € N (4.8)
To this purpose, let
t = rninﬂ, ty = maxﬂ. (4.9)
Q Wy Q Wk

For t € (t1,t2), denote by s, (t) and s_(t) the positive values given by Lemma 3.1 according to
which we have

s (t)(uy — twy)" € N, —s_(t)(uy — twg)” € N". (4.10)
Note that s..(t) and s_(t) are continuous with respect to t satifying

lims, (t) = t"((u1 — iwk) ") < +oo,  lims,(t) = +oo,
t—t; t—t;

(4.11)

tlintw_(t) =+oo, lims_(t) =t (—(uy — bawi)”) < +oo.
-t t—t

Therefore, by the continuity of s.(t), we can find ty € (t1, t2) such that s.(ty) = s_(tg) = so > 0.
This gives (4.8) with t = tp and s = sy.

To prove (4.7), we only need to estimate I(su; — twy) for s > 0 and ¢t > 0. First, it is
obvious that the structure of I guarantees the existence of ry > 0 (independent of k large)
such that I(su; — twi) < ¢1 < ¢ + S, for all s? + £ > r3. On the other hand, for s? + £* < 73,
since I is continuous in HO1 (Q), there exists t € (0, ry) small enough such that

I(suy —twy) < I(uy) +I®(w) =c; +S*, Vs*+#< rg, t<t. (4.12)
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At this point, we find large ko > 1, such that I(su; — twy) < ¢; + S* holds for all 2+ < rg
and t > t:

1 1
I(suy - twy) = §||Su1 — twy||* - ;’[ a(x)|suy — twi|’ - J‘ f (suy — twy)

1 1 1 1
= (gl = [ acotsu - | o) + (Fheoel® = > [ ronp)

1
— st f (Vu Vwy + ujwy) — ’ f (a(x)|sur — twil? — a(x)|sua|P — |[fwy|P)

+J‘ftwk

- 1
= I(sup) + I*(twy) - st’[ ww Yy ?—9 f a(x)(|sur|P + |twi|P — |sur — twy|P)

- % j (a(x) — a®)|twy|? + tf ftwy.
(4.13)

By (4.13) and the following elementary inequality:
- -1
|a+ BI” 2 | + I — Cs (a7 B] + lal|B""), YapeRp>1, (4.14)
where Cs is some positive constant, we have

sup  I(suy —twg) = sup I(sug —twy)
$2+12<r7, 520, 12t 0<s<ry, I<t<ry

a - - _
<supl(suy) +supl® (twy) + I ||°°C5rg ! J‘ <u’f 1wk + ulwz 1)
520 £0 14

i
- % f (a(x) - (1°°)wa7 + TQJ‘ Sfwk.
(4.15)

Without loss of generality, we may assume Ry = Rande € (0, 50) where Ry, R and &,
are given in (f3) and (a3), respectively.
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(i) First, by the Holder inequality and (2.9),

: (p-1)/p 1/p
f uf_ wi < <’[ u’f) <f wi>
QRU QRO QRU

1/p
<Co ( [ [ g@ervimay dz>
wY {z:|z|<Ry}

< C7e_ 1+y1—ek'

(4.16)

From (2.9), (2.10), and applying Lemma 3.8, there exists a k; such that for k > k;

J . < Csf e~ ()il g/ Tn—elzskenl 4
Q\Ry {z:]z2Ro} (4.17)
< Coe~ 1+/41—sk.

Similarly, we also obtain

.[ wi_lul < Cpe~ (D) VIHa=ek)
QRO
f |a(x) - a®fwy < CryePVIHaek, (4.18)

j |F () [e0x < Crpe V5%,
R,

0

and there exists a k, > k; such that for k > k»

f wz_lm < C13€_ 1+;41—ek' (419)
Q\Ry

(ii) Since a(x) satisfies assumption (a3) and by Lemma 3.8, there exists a k3 > k, such
that for k > k3,

J‘ (a(x) - ao")wi7 > CpyeVIHm=d0k (4.20)
\Qx,

By (f3), (2.9), and Lemma 3.8, there exists a ks > k3 such that for k > kg,

fwk < wa e—\/l+‘u]+50|z\e—\/l+/41—s|z+ken\dz
{z:lzI2Ro} (4.21)

< Clle_ 1+/41—ek‘

Q\Ry
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(iii) Note that the constants C; (5 < i < 11) in (i), (ii) are independent of k. Thus, by (i),
(ii), 2 < p <2N/(N —2) and let € = 69/2, we can find a kg > k; such that for k > ky,

P
”ﬂwg@*f@f%W+mwfﬁ-%fwurmwmi+mfﬁw<0 (4:22)

Combining (4.15) and (4.22), we obtain that there exists a kg > k4 such that for

k > kO/
sup I(suy — twy) < supl(sup) + supl®(twy) = c1 + S*. (4.23)
s2+12<r3, 520, 21 520 20
This completes the proof of Lemma 4.2. m

Proposition 4.3. Assume (al),(a2),(f1) and (f2) hold. If p1 > c¢1 and P > ci1, then the

minimization problem ¢, = inf 4-I(u) attains its infimum at u, € N, which defines a changing
sign critical point of I.

Proof. It is obvious that /; is closed. Exactly as in the proof of [6, Proposition 3.2], by means
of Ekeland’s principle, we derive a (PS),-sequence {u,} C A, for I. In particular, we have
0 < by < |luf]| < by, for some constants by and by,. Thus, we can take a subsequence, also
denoted by {u,}, such that u¥ — u* weakly in H; (). We start by showing that u* #0.

Indeed, if by contradiction we assume, for instant, that u* = 0, then we can deduce
that

;1P - [ aGols” = o). (424)
On the other hand,
107) = 507 = [ aGolul = [ ;= 31 = [ aGopsP +o.  @25)
By (4.24) and ||u}|| > by > 0, we may assume that
il —b, [ aGir — v (4.26)

Using the argument in the proof of Proposition 3.5, by (2.7), (4.24), and (4.25), we can deduce
that b > 5P/~ and

I(uy) = G - %)b +o(1) > (% - %)sr’/(r’z) +0(1) = S + o(1). (4.27)

However, by Lemma 4.2, I (u},) = ¢ —I(-u,;) +0(1) < ca—c1+0(1); thatis, lim, _, . I (1)) = c2 -
¢1 < 5% which contradicts (4.27). A similar argument applies to u~. Therefore, u, = u* —u~#0
is a weak solution of problem (1.2) changing sign and u, € A, I(uy) > co.
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Set u}; = u* + v}, and u,, = u™ + v, with v — 0 weakly in H;(Q). Note that
oz —f a(x)|v; " = o(1). (4.28)

In view of Proposition 3.9 and Lemma 4.2, we also have

nh_{n (I(vy) +1(vy)) = nh_r)n I(v,) = nlijn I(uy) — I(up)

(4.29)
<cp—-cg<cr+S%®—cy<25%.
Therefore, we must have
min{ lim I(v},), lim I(-v;,) } < §%. (4.30)
Without loss of generality, we suppose
lim I(v)) < S*. (4.31)
By (4.24), we have
+ 1 +112 1 +1P
I(w,) = 5 lloall” - v a(x)[v,|” +o(1). (4.32)

We claim that lim,, . [0} ||* = 0. Indeed, we assume {v}} is bounded below, as above, (4.28)
and (4.32) imply I(v}) > S + o(1), contradicting (4.31). In the same way, if lim,,_, . [ (-v;,) <
5%, we can also prove lilnn_mllv,;||2 = 0. Hence we have limnﬂmHlel2 =0or lirr1n_>m||v,;||2 =
0; thatis, up = u™ —u~ € N or up = u* —u~ € N,. By assumptions ff; > ¢ and f» > ¢, we
conclude that I(uy) > ¢;.

If we write u,, = u + w, with w, — 0 weakly in Hé (Q), we have

o —f a()lwal? = o(1),

Tim I(ut,) ~ () = lim annnz - % f a<x>|wn|P) (4.33)

Furthermore, by Lemma 4.2, we have

Iim I'(u,) — I(up) = co — (1) < cp —c1 < S*. (4.34)
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We claim that limy, _, oo ||, ||* = 0. Indeed, we assume {w, } is bounded below, as above, (4.33)
imply I(w,) > S* +0(1), contradicting (4.34). Consequently, u, — u, strongly in H}(Q) and
I(uy) = co. O

The Proof of Theorems 1.2-1.4

The conclusion of Theorem 1.2 follows immediately from Theorem 1.2 and Propositions 4.1
and 4.3. With the same argument, we also have that Theorems 1.3 and 1.4 hold for Q = RY.
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